

Head First C#
TABLE OF CONTENTS
Special Upgrade Offer
A Note Regarding Supplemental Files
Advance Praise for Head First C#
Praise for other Head First books

How to Use this Book: Intro
Who is this book for?
Who should probably back away from this book?

We know what you’re thinking.
And we know what your brain is thinking
Metacognition: thinking about thinking
Here’s what WE did
Here’s what You can do to bend your brain into submission
Read me
What version of Windows are you using?
Using Windows 8 or later? Then you’ll start with Windows Store apps
Don’t have Windows 8 or VS2013 yet? No problem — you’ll start with WPF apps
You’ll move on to create desktop applications

The technical review team
Acknowledgments
Safari® Books Online

1. Start Building with C#: Build something cool, fast!
Why you should learn C#
Here’s what the IDE automates for you...
What you get with Visual Studio and C#...

C# and the Visual Studio IDE make lots of things easy
What you do in Visual Studio...
What Visual Studio does for you...
Aliens attack!
Only you can help save the Earth
Here’s what you’re going to build
Start with a blank application
Set up the grid for your page
Add controls to your grid
Use properties to change how the controls look
Controls make the game work
You’ve set the stage for the game
What you’ll do next
Add a method that does something
Use the IDE to create your own method

Fill in the code for your method
Finish the method and run your program
Here’s what you’ve done so far
Add timers to manage the gameplay
Make the Start button work
Run the program to see your progress
Add code to make your controls interact with the player
Dragging humans onto enemies ends the game
Your game is now playable
Make your enemies look like aliens
Add a splash screen and a tile
Publish your app
Use the Remote Debugger to sideload your app
Start remote debugging

2. It’s all Just Code: Under the hood
When you’re doing this...
...the IDE does this
Where programs come from
Every program starts out as source code files
Build the program to create an executable
The .NET Framework gives you the right tools for the job
Your program runs inside the Common Language Runtime

The IDE helps you code
Anatomy of a program
Let’s take a closer look at your code

Two classes can be in the same namespace
Your programs use variables to work with data
Declare your variables
Variables vary
You have to assign values to variables before you use them
A few useful types

C# uses familiar math symbols
Use the debugger to see your variables change
Loops perform an action over and over
Use a code snippet to write simple for loops

if/else statements make decisions
Build an app from the ground up
Make each button do something
Set up conditions and see if they’re true
Use logical operators to check conditions

Windows Desktop apps are easy to build
Rebuild your app for Windows Desktop
Your desktop app knows where to start
You can change your program’s entry point
So what happened?

When you change things in the IDE, you’re also changing your code
Wait, wait! What did that say?

3. Objects: Get Oriented!: Making code make sense
How Mike thinks about his problems
How Mike’s car navigation system thinks about his problems
Mike’s Navigator class has methods to set and modify routes
Some methods have a return value

Use what you’ve learned to build a program that uses a class
So what did you just build?

Mike gets an idea
He could create three different Navigator classes...

Mike can use objects to solve his problem
You use a class to build an object
An object gets its methods from its class

When you create a new object from a class, it’s called an instance of that class
A better solution...brought to you by objects!
Theory and practice
A little advice for the code exercises

An instance uses fields to keep track of things
Methods are what an object does. Fields are what the object knows.

Let’s create some instances!
Thanks for the memory
What’s on your program’s mind
You can use class and method names to make your code intuitive
Give your classes a natural structure
Let’s build a class diagram

Class diagrams help you organize your classes so they make sense
Build a class to work with some guys
Create a project for your guys
Build a form to interact with the guys
There’s an easier way to initialize objects
A few ideas for designing intuitive classes

4. Types and References: It’s 10:00. Do you know where your data is?
The variable’s type determines what kind of data it can store
A variable is like a data to-go cup
10 pounds of data in a 5-pound bag
Even when a number is the right size, you can’t just assign it to any variable
So what happened?

When you cast a value that’s too big, C# will adjust it automatically
C# does some casting automatically
When you call a method, the arguments must be compatible with the types of the parameters
Debug the mileage calculator
Combining = with an operator
Objects use variables, too
Using an int
Using an object

Refer to your objects with reference variables
References are like labels for your object
If there aren’t any more references, your object gets garbage-collected
Multiple references and their side effects
Two references means TWO ways to change an object’s data
A special case: arrays
Use each element in an array like it is a normal variable

Arrays can contain a bunch of reference variables, too
Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!
Objects use references to talk to each other
Where no object has gone before
Build a typing game
Controls are objects, just like any other object

I. C# Lab: A Day at the Races

5. Encapsulation: Keep your privates... Private
Kathleen is an event planner
What does the estimator do?
You’re going to build a program for Kathleen
Kathleen’s test drive
Each option should be calculated individually
It’s easy to accidentally misuse your objects
Encapsulation means keeping some of the data in a class private
Use encapsulation to control access to your class’s methods and fields
But is the RealName field REALLY protected?
Private fields and methods can only be accessed from inside the class
Encapsulation makes your classes...
Mike’s navigator program could use better encapsulation
Think of an object as a black box

A few ideas for encapsulating classes
Encapsulation keeps your data pristine
A quick example of encapsulation

Properties make encapsulation easier
Build an application to test the Farmer class
Use automatic properties to finish the class
Fully encapsulate the Farmer class

What if we want to change the feed multiplier?
Use a constructor to initialize private fields

6. Inheritance: Your object’s family tree
Kathleen does birthday parties, too
We need a BirthdayParty class
Here’s what we’re going to do:

Build the Part y Planner version 2.0
One more thing...can you add a $100 fee for parties over 12?
When your classes use inheritance, you only need to write your code once
Dinner parties and birthday parties are both parties

Build up your class model by starting general and getting more specific
How would you design a zoo simulator?
Use inheritance to avoid duplicate code in subclasses
Different animals make different noises
Think about what you need to override

Think about how to group the animals
Create the class hierarchy
Every subclass extends its base class
C# always calls the most specific method

Use a colon to inherit from a base class
We know that inheritance adds the base class fields, properties, and methods to the subclass...
...but some birds don’t fly!

A subclass can override methods to change or replace methods it inherited
Any place where you can use a base class, you can use one of its subclasses instead
A subclass can hide methods in the superclass
Hiding methods versus overriding methods
Use different references to call hidden methods
Use the new keyword when you’re hiding methods

Use the override and virtual keywords to inherit behavior
A subclass can access its base class using the base keyword
When a base class has a constructor, your subclass needs one, too
The base class constructor is executed before the subclass constructor

Now you’re ready to finish the job for Kathleen!
Build a beehive management system
How you’ll build the beehive management system
Use inheritance to extend the bee management system

7. Interfaces and Abstract Classes: Making classes keep their promises
Let’s get back to bee-sics
Lots of things are still the same

We can use inheritance to create classes for different types of bees
An interface tells a class that it must implement certain methods and properties
Use the interface keyword to define an interface
Now you can create an instance of NectarStinger that does both jobs
Classes that implement interfaces have to include ALL of the interface’s methods
Get a little practice using interfaces
You can’t instantiate an interface, but you can reference an interface
Interface references work just like object references
You can find out if a class implements a certain interface with “is”
Interfaces can inherit from other interfaces
Any class that implements an interface that inherits from IWorker must implement its methods
and properties

The RoboBee 4000 can do a worker bee’s job without using valuable honey
is tells you what an object implements; as tells the compiler how to treat your object
A CoffeeMaker is also an Appliance
Upcasting works with both objects and interfaces
Downcasting lets you turn your appliance back into a coffee maker
When downcasting fails, as returns null

Upcasting and downcasting work with interfaces, too
There’s more than just public and private
Access modifiers change visibility
Some classes should never be instantiated
An abstract class is like a cross between a class and an interface
Like we said, some classes should never be instantiated
Solution: use an abstract class

An abstract method doesn’t have a body
The four principles of object-oriented programming

Polymorphism means that one object can take many different forms
Keep your eyes open for polymorphism in the next exercise!

8. Enums and Collections: Storing lots of data
Strings don’t always work for storing categories of data
Enums let you work with a set of valid values
Enums let you represent numbers with names
We could use an array to create a deck of cards...

...but what if you wanted to do more?
Arrays are hard to work with
Lists make it easy to store collections of...anything
Lists are more flexible than arrays
Lists shrink and grow dynamically
Generics can store any type
Collection initializers are similar to object initializers
Let’s create a List of Ducks

Here’s the initializer for your List of Ducks
Lists are easy, but SORTING can be tricky

Lists know how to sort themselves
IComparable<Duck> helps your list sort its ducks

An object’s CompareTo() method compares it to another object
Use IComparer to tell your List how to sort
Create an instance of your comparer object

Multiple IComparer implementations, multiple ways to sort your objects
IComparer can do complex comparisons
Overriding a ToString() method lets an object describe itself
Update your foreach loops to let your Ducks and Cards print themselves

Add a ToString() method to your Card object, too
You can upcast an entire list using IEnumerable

Combine your birds into a single list
You can build your own overloaded methods
Use a dictionary to store keys and values
The dictionary functionality rundown

Your key and value can be different types
Build a program that uses a dictionary
And yet MORE collection types...

Generic collections are an important part of the .NET Framework
A queue is FIFO — First In, First Out
A stack is LIFO — Last In, First Out

9. Reading and Writing Files: Save the last byte for me!
.NET uses streams to read and write data
Different streams read and write different things
Things you can do with a stream:

A FileStream reads and writes bytes to a file
Write text to a file in three simple steps
The Swindler launches another diabolical plan
Reading and writing using two objects
Data can go through more than one stream
Use built-in objects to pop up standard dialog boxes
ShowDialog() pops up a dialog box

Dialog boxes are just another WinForms control
Dialog boxes are objects, too
Use the built-in File and Directory classes to work with files and directories
Things you can do with File:
Things you can do with Directory:

Use file dialogs to open and save files (all with just a few lines of code)
IDisposable makes sure your objects are disposed of properly
Avoid filesystem errors with using statements
Use multiple using statements for multiple objects

Trouble at work
You can help Brian out by building a program to manage his excuses

Writing files usually involves making a lot of decisions
Use a switch statement to choose the right option
Use a switch statement to let your deck of cards read from a file or write itself out to one
Add an overloaded Deck() constructor that reads a deck of cards in from a file
What happens to an object when it’s serialized?
But what exactly IS an object’s state? What needs to be saved?
When an object is serialized, all of the objects it refers to get serialized, too...
Serialization lets you read or write a whole object graph all at once
You’ll need a BinaryFormatter object
Now just create a stream and read or write your objects

If you want your class to be serializable, mark it with the [Serializable] attribute
Let’s serialize and deserialize a deck of cards
.NET uses Unicode to store characters and text
C# can use byte arrays to move data around
Use a BinaryWriter to write binary data
Use BinaryReader to read the data back in

You can read and write serialized files manually, too
Find where the files differ, and use that information to alter them
Working with binary files can be tricky
Use file streams to build a hex dumper

How to make a hex dump
Working with hex

StreamReader and StreamWriter will do just fine (for now)
Use Stream.Read() to read bytes from a stream

II. C# Lab: The Quest

10. Designing Windows Store Apps with XAML: Taking your apps to the next level
Brian’s running Windows 8
Windows Forms use an object graph set up by the IDE
Use the IDE to explore the object graph
Windows Store apps use XAML to create UI objects
Redesign the Go Fish! form as a Windows Store app page
Page layout starts with controls
Rows and columns can resize to match the page size
Use the grid system to lay out app pages
Data binding connects your XAML pages to your classes
Context, path, and binding
Two-way binding can get or set the source property
Bind to collections with ObservableCollection
Use code for binding (without using any XAML at all!)

XAML controls can contain text...and more
Use data binding to build Sloppy Joe a better menu
Use static resources to declare your objects in XAML
Use a data template to display objects
INotifyPropertyChanged lets bound objects send updates
Modify MenuMaker to notify you when the GeneratedDate property changes

11. Async, Await, and Data Contract Serialization: Pardon the interruption
Brian runs into file trouble
Windows Store apps use await to be more responsive
Use the FileIO class to read and write files

Use the file pickers to locate file paths
Build a slightly less simple text editor
A data contract is an abstract definition of your object’s data

Data contract serialization uses XML files
Use async methods to find and open files
KnownFolders helps you access high-profile folders
The whole object graph is serialized to XML
Stream some Guy objects to XML files
Take your Guy Serializer for a test drive
Use a Task to call one async method from another
Build Brian a new Excuse Manager app
Separate the page, excuse, and Excuse Manager
Create the main page for the Excuse Manager
Add the app bar to the main page
Build the ExcuseManager class
Add the code-behind for the page

12. Exception Handling: Putting out fires gets old
Brian needs his excuses to be mobile
But the program isn’t working!

When your program throws an exception, .NET generates an Exception object
Brian’s code did something unexpected
All exception objects inherit from Exception
The debugger helps you track down and prevent exceptions in your code
Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse Manager
Uh oh — the code’s still got problems...
Handle exceptions with try and catch
What happens when a method you want to call is risky?

Use the debugger to follow the try/catch flow
If you have code that ALWAYS should run, use a finally block
Use the Exception object to get information about the problem
Use more than one catch block to handle multiple types of exceptions
One class throws an exception that a method in another class can catch
Bees need an OutOfHoney exception
An easy way to avoid a lot of problems: using gives you try and finally for free
Exception avoidance: implement IDisposable to do your own cleanup
The worst catch block EVER: catch-all plus comments
You should handle your exceptions, not bury them

Temporary solutions are OK (temporarily)
A few simple ideas for exception handling
Brian finally gets his vacation...
...and things are looking up back home!

13. Captain Amazing: The Death of the Object
Your last chance to DO something... your object’s finalizer
When EXACTLY does a finalizer run?

You can SUGGEST to .NET that it’s time to collect the garbage
Dispose() works with using; finalizers work with garbage collection
Finalizers can’t depend on stability
Make an object serialize itself in its Dispose()
A struct looks like an object...
...but isn’t an object
Values get copied; references get assigned
Structs are value types; objects are reference types

Here’s what happened...
The stack vs. the heap: more on memory
Use out parameters to make a method return more than one value
Pass by reference using the ref modifier
Use optional parameters to set default values
Use nullable types when you need nonexistent values
Nullable types help you make your programs more robust
“Captain” Amazing...not so much
Extension methods add new behavior to EXISTING classes
Extending a fundamental type: string

14. Querying Data and Building Apps With Linq: Get control of your data
Jimmy’s a Captain Amazing super-fan...
...but his collection’s all over the place
LINQ can pull data from multiple sources
.NET collections are already set up for LINQ
LINQ makes queries easy
LINQ is simple, but your queries don’t have to be
Jimmy could use some help

Windows Store apps use page-based navigation
Use the IDE to explore app page navigation

Start building Jimmy an app
Use the new keyword to create anonymous types
LINQ is versatile
Add the new queries to Jimmy’s app
LINQ can combine your results into groups
Combine Jimmy’s values into groups
Use join to combine two collections into one sequence
Jimmy saved a bunch of dough
Use semantic zoom to navigate your data
Add semantic zoom to Jimmy’s app
You made Jimmy’s day
The IDE’s Split App template helps you build apps for navigating data

15. Events and Delegates: What your code does when you’re not looking
Ever wish your objects could think for themselves?
But how does an object KNOW to respond?
When an EVENT occurs...objects listen
Want to DO SOMETHING with an event? You need an event handler

One object raises its event, others listen for it...
Then, the other objects handle the event
Connecting the dots
Use a standard name when you add a method to raise an event

The IDE generates event handlers for you automatically
Generic EventHandlers let you define your own event types
C# does implicit conversion when you leave out the new keyword and type

Windows Forms use many different events
One event, multiple handlers
Windows Store apps use events for process lifetime management
Use the IDE to explore process lifetime management events

Add process lifetime management to Jimmy’s comics
XAML controls use routed events
IsHitTestVisible determines if an element is “visible” to the pointer or mouse

Create an app to explore routed events
Connecting event senders with event listeners
“My people will get in touch with your people.”

A delegate STANDS IN for an actual method
A delegate adds a new type to your project

Delegates in action
An object can subscribe to an event...
...but that’s not always a good thing!

Use a callback to control who’s listening
A callback is just a way to use delegates
MessageDialog uses the callback pattern
Use delegates to use the Windows settings charm

16. Architecting Apps with the mvvm Pattern: Great apps on the inside and outside
The Head First Basketball Conference needs an app
But can they agree on how to build it?
Do you design for binding or for working with data?
MVVM lets you design for binding and data
Use the MVVM pattern to start building the basketball roster app
User controls let you create your own controls
The ref needs a stopwatch
MVVM means thinking about the state of the app
Start building the stopwatch app’s Model
Events alert the rest of the app to state changes
Build the view for a simple stopwatch
Add the stopwatch ViewModel
Finish the stopwatch app
Converters automatically convert values for binding
Converters can work with many different types
Styles set properties on multiple controls
Use a resource dictionary to share resources between pages
Visual states make controls respond to changes
Use DoubleAnimation to animate double values
Use object animations to animate object values
Build an analog stopwatch using the same ViewModel
UI controls can be instantiated with C# code, too
C# can build “real” animations, too

Create a project and add the pictures
Create a user control to animate a picture
Make your bees fly around a page
Use ItemsPanelTemplate to bind controls to a Canvas
Congratulations! (But you’re not done yet...)

III. C# Lab Invaders
A. Leftovers: The top 10 things we wanted to include in this book

#1. There’s so much more to Windows Store
#2. The Basics

...more basics...
#3. Namespaces and assemblies

...so what did I just do?
Building a “Hello World” program from the command line

#4. Use BackgroundWorker to make your WinForms responsive
#5. The Type class and GetType()
#6. Equality, IEquatable, and Equals()
#7. Using yield return to create enumerable objects
#8. Refactoring

Extract a method
Rename a variable
Consolidate a conditional expression

#9. Anonymous types, anonymous methods, and lambda expressions
#10. LINQ to XML

Save and load XML files
Query your data
Read data from an RSS feed

Did you know that C# and the .NET Framework can...
B. Windows Presentation Foundation: WPF Learner’s Guide to Head First C#

Why you should learn WPF
Build WPF projects in Visual Studio
How to use this appendix
Chapter 1

Start with a blank application
Set up the grid for your window
Add controls to your grid
Use properties to change how the controls look
Controls make the game work
You’ve set the stage for the game
What you’ll do next
Add a method that does something
Use the IDE to create your own method
Fill in the code for your method
Finish the method and run your program
Here’s what you’ve done so far
Add timers to manage the gameplay
Make the Start button work
Run the program to see your progress
Add code to make your controls interact with the player
Dragging humans onto enemies ends the game
Your game is now playable
Make your enemies look like aliens

Chapter 2
Use the debugger to see your variables change
Build an app from the ground up

Chapter 10
WPF applications use XAML to create UI objects
Redesign the Go Fish! form as a WPF application
Page layout starts with controls
Rows and columns can resize to match the page size
Use data binding to build Sloppy Joe a better menu
Use static resources to declare your objects in XAML
Use a data template to display objects
INotifyPropertyChanged lets bound objects send updates
Modify MenuMaker to notify you when the GeneratedDate property changes

Chapter 11
C# programs can use await to be more responsive
Stream some Guy objects to a file
Take your Guy Serializer for a test drive

Chapter 12

Brian’s code did something unexpected
Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse Manager
Uh-oh — the code’s still got problems...
Handle exceptions with try and catch
What happens when a method you want to call is risky?
Use the debugger to follow the try/catch flow
If you have code that should ALWAYS run, use a finally block

Chapter 14
Build a WPF comic query application

Chapter 15
XAML controls use routed events
IsHitTestVisible determines if an element is “visible” to the pointer or mouse
Create an app to explore routed events

Chapter 16
Use the MVVM pattern to start building the basketball roster app
User controls let you create your own controls
Build the view for a simple stopwatch
Finish the stopwatch app
Converters automatically convert values for binding
Converters can work with many different types
Build an analog stopwatch using the same ViewModel
UI controls can be instantiated with C# code, too
Create a user control to animate a picture
Make your bees fly around a page
Use ItemsPanelTemplate to bind controls to a Canvas
Congratulations! (But you’re not done yet...)

Index
Special Upgrade Offer

Head First C#

Jennifer Greene

Andrew Stellman

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

This book is dedicated to the loving memory of Sludgie the Whale, who swam to Brooklyn on April 17, 2007.

You were only in our canal for a day, but you’ll be in our hearts forever.

Special Upgrade Offer
If you purchased this ebook directly from oreilly.com, you have the following benefits:

DRM-free ebooks — use your ebooks across devices without restrictions or limitations
Multiple formats — use on your laptop, tablet, or phone
Lifetime access, with free updates
Dropbox syncing — your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all
these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.

http://oreilly.com

A Note Regarding Supplemental Files
Supplemental files and examples for this book can be found at
http://examples.oreilly.com/0636920027812/. Please use a standard desktop web browser to access
these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that
ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that
while we provide as much of the media content as we are able via free download, we are sometimes
limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

http://examples.oreilly.com/0636920027812/
mailto:booktech@oreilly.com

Advance Praise for Head First C#
“Head First C# is a great book, both for brand new developers and developers like myself coming from a Java background. No
assumptions are made as to the reader’s proficiency yet the material builds up quickly enough for those who are not complete
newbies — a hard balance to strike. This book got me up to speed in no time for my first large scale C# development project at
work — I highly recommend it.”

— Shalewa Odusanya, Technical Account Manager, Google

“Head First C# is an excellent, simple, and fun way of learning C#. It’s the best piece for C# beginners I’ve ever seen — the
samples are clear, the topics are concise and well written. The mini-games that guide you through the different programming
challenges will definitely stick the knowledge to your brain. A great learn-by-doing book!”

— Johnny Halife, Chief Architect, Mural.ly

“Head First C# is a comprehensive guide to learning C# that reads like a conversation with a friend. The many coding challenges
keep it fun, even when the concepts are tough.”

— Rebeca Duhn-Krahn, founding partner at Semphore Solutions

“I’ve never read a computer book cover to cover, but this one held my interest from the first page to the last. If you want to learn
C# in depth and have fun doing it, this is THE book for you.”

— Andy Parker, fledgling C# programmer

“It’s hard to really learn a programming language without good engaging examples, and this book is full of them! Head First C# will
guide beginners of all sorts to a long and productive relationship with C# and the .NET Framework.”

— Chris Burrows, developer for Microsoft’s C# Compiler team

“With Head First C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very approachable while
covering a great amount of detail in a unique style. If you’ve been turned off by more conventional books on C#, you’ll love this
one.”

— Jay Hilyard, software developer, co-author of C# 3.0 Cookbook

“I’d reccomend this book to anyone looking for a great introduction into the world of programming and C#. From the first page
onwards, the authors walks the reader through some of the more challenging concepts of C# in a simple, easy-to-follow way. At the
end of some of the larger projects/labs, the reader can look back at their programs and stand in awe of what they’ve
accomplished.”

— David Sterling, developer for Microsoft’s Visual C# Compiler team

“Head First C# is a highly enjoyable tutorial, full of memorable examples and entertaining exercises. Its lively style is sure to
captivate readers — from the humorously annotated examples, to the Fireside Chats, where the abstract class and interface butt
heads in a heated argument! For anyone new to programming, there’s no better way to dive in.”

— Joseph Albahari, C# Design Architect at Egton Medical Information Systems, the UK’s
largest primary healthcare software supplier, co-author of C# 3.0 in a Nutshell

“[Head First C#] was an easy book to read and understand. I will recommend this book to any developer wanting to jump into the
C# waters. I will recommend it to the advanced developer that wants to understand better what is happening with their code. [I will
recommend it to developers who] want to find a better way to explain how C# works to their less-seasoned developer friends.”

— Giuseppe Turitto, C# and ASP.NET developer for Cornwall Consulting Group

“Andrew and Jenny have crafted another stimulating Head First learning experience. Grab a pencil, a computer, and enjoy the ride
as you engage your left brain, right brain, and funny bone.”

— Bill Mietelski, software engineer

“Going through this Head First C# book was a great experience. I have not come across a book series which actually teaches you
so well....This is a book I would definitely recommend to people wanting to learn C#”

— Krishna Pala, MCP

Praise for other Head First books
“I feel like a thousand pounds of books have just been lifted off of my head.”

— Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for practical development strategies
— gets my brain going without having to slog through a bunch of tired stale professor-speak.”

— Travis Kalanick, Founder of Scour and Red Swoosh Member of the MIT TR100

“There are books you buy, books you keep, books you keep on your desk, and thanks to O’Reilly and the Head First crew, there is
the penultimate category, Head First books. They’re the ones that are dog-eared, mangled, and carried everywhere. Head First
SQL is at the top of my stack. Heck, even the PDF I have for review is tattered and torn.”

— Bill Sawyer, ATG Curriculum Manager, Oracle

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that helps even non-programmers
think well about problem-solving.”

— Cory Doctorow, co-editor of Boing Boing Author, Down and Out in the Magic Kingdom and
Someone Comes to Town, Someone Leaves Town

“I received the book yesterday and started to read it...and I couldn’t stop. This is definitely très ‘cool.’ It is fun, but they cover a lot
of ground and they are right to the point. I’m really impressed.”

— Erich Gamma, IBM Distinguished Engineer, and co-author of Design Patterns

“One of the funniest and smartest books on software design I’ve ever read.”
— Aaron LaBerge, VP Technology, ESPN.com

“What used to be a long trial and error learning process has now been reduced neatly into an engaging paperback.”
— Mike Davidson, CEO, Newsvine, Inc.

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of pragmatism and wit.”
— Ken Goldstein, Executive Vice President, Disney Online

“Usually when reading through a book or article on design patterns, I’d have to occasionally stick myself in the eye with something
just to make sure I was paying attention. Not with this book. Odd as it may sound, this book makes learning about design patterns
fun.
“While other books on design patterns are saying ‘Bueller... Bueller... Bueller...’ this book is on the float belting out ‘Shake it up,
baby!’”

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”
— Satish Kumar

Other related books from O’Reilly
Programming C# 4.0
C# 4.0 in a Nutshell
C# Essentials
C# Language Pocket Reference

Other books in O’Reilly’s Head First series
Head First HTML5 Programming
Head First iPhone and iPad Development
Head First Mobile Web
Head First Python

Head First Web Design
Head First WordPress
Head First Java
Head First Object-Oriented Analysis and Design (OOA&D)
Head Rush Ajax
Head First HTML with CSS and XHTML
Head First Design Patterns
Head First Servlets and JSP
Head First EJB
Head First PMP
Head First SQL
Head First Software Development
Head First JavaScript
Head First Ajax
Head First Statistics
Head First Physics
Head First Programming
Head First Ruby on Rails

Andrew Stellman, despite being raised a New Yorker, has lived in Minneapolis, Geneva, and
Pittsburgh... twice. The first time was when he graduated from Carnegie Mellon’s School of
Computer Science, and then again when he and Jenny were starting their consulting business and
writing their first book for O’Reilly.
Andrew’s first job after college was building software at a record company, EMI-Capitol Records —
which actually made sense, as he went to LaGuardia High School of Music & Art and the Performing
Arts to study cello and jazz bass guitar. He and Jenny first worked together at a company on Wall
Street that built financial software, where he was managing a team of programmers. Over the years
he’s been a Vice President at a major investment bank, architected large-scale real-time back end
systems, managed large international software teams, and consulted for companies, schools, and
organizations, including Microsoft, the National Bureau of Economic Research, and MIT. He’s had
the privilege of working with some pretty amazing programmers during that time, and likes to think
that he’s learned a few things from them.
When he’s not writing books, Andrew keeps himself busy writing useless (but fun) software, playing
both music and video games, practicing taiji and aikido, and owning a Pomeranian.
Jennifer Greene studied philosophy in college but, like everyone else in the field, couldn’t find a
job doing it. Luckily, she’s a great software engineer, so she started out working at an online service,
and that’s the first time she really got a good sense of what good software development looked like.
She moved to New York in 1998 to work on software quality at a financial software company. She’s
managed a teams of developers, testers and PMs on software projects in media and finance since
then.
She’s traveled all over the world to work with different software teams and build all kinds of cool
projects.
She loves traveling, watching Bollywood movies, reading the occasional comic book, playing PS3

games, and hanging out with her huge siberian cat, Sascha.

NOTE

Jenny and Andrew have been building software and writing about software engineering together since they first met in 1998. Their
first book, Applied Software Project Management, was published by O’Reilly in 2005. Other Stellman and Greene books for O’Reilly
include Beautiful Teams (2009), and their first book in the Head First series, Head First PMP (2007), now in its third edition.

They founded Stellman & Greene Consulting in 2003 to build a really neat software project for scientists studying herbicide exposure
in Vietnam vets. In addition to building software and writing books, they’ve consulted for companies and spoken at conferences and
meetings of software engineers, architects and project managers.

Check out their blog, Building Better Software: http://www.stellman-greene.com

Follow @AndrewStellman and @JennyGreene on Twitter

http://www.stellman-greene.com

How to Use this Book: Intro

NOTE

In this section, we answer the burning question: “So why DID they put that in a C# programming book?”

Who is this book for?
If you can answer “yes” to all of these:

➊ Do you want to learn C#?
Do you know another programming language, and now you need to ramp up on C#?
➋ Do you like to tinker — do you learn by doing, rather than just reading?
Are you already a good C# developer, but you want to learn more about XAML, Model-
View-ViewModel (MVVM), or Windows Store app development?
➌ Do you prefer stimulating dinner party conversation to dry, dull, academic lectures?
Do you want to get practice writing lots of code?

this book is for you.

Who should probably back away from this book?
If you can answer “yes” to any of these:

➊ Does the idea of doing projects and building programs make you bored and a little twitchy?
➋ Are you a really advanced C++ programmer looking for a dry reference book?
➌ Are you afraid to try something different? Would you rather have a root canal than mix
stripes with plaid? Do you believe that a technical book can’t be serious if C# concepts are
anthropomorphized?
If so, then lots of people just like you have used this book to do exactly those things!

NOTE

No programming experience is required to use this book... just curiosity and interest! Thousands of beginners with no
programming experience have already used Head First C# to learn to code. That could be you!

this book is not for you.

READ THIS!

ARE YOU USING WINDOWS 7 OR EARLIER? THEN THIS BOOK IS FOR YOU!

We need to keep our book up to date with the latest technology, so we based many projects in this book on Windows 8.1, the latest
version of Microsoft Windows available at press time. However, we worked really hard to support previous versions of
Windows . We included a special appendix with replacement pages for some of the book’s projects. We did our best to minimize the
amount of page flipping required. There’s a complete replacement for most of Chapter 1, so you won’t need to flip back to the book at
all for the first project. Then there are just five replacement pages for Chapter 2. After that, the you’ll be able to use any version of
Windows (and even old versions of Visual Studio!) until you get to Chapter 10.

NOTE

Many readers have used this book Windows 7, Windows 2003, or other versions of Windows. We’ll give you all the information you
need to use any version of Windows at the end of this introduction.

We know what you’re thinking.
“How can this be a serious C# programming book?”
“What’s with all the graphics?”
“Can I actually learn it this way?”

And we know what your brain is thinking
Your brain craves novelty. It’s always searching, scanning, waiting for something unusual. It was built
that way, and it helps you stay alive.
So what does your brain do with all the routine, ordinary, normal things you encounter? Everything it
can to stop them from interfering with the brain’s real job — recording things that matter. It doesn’t
bother saving the boring things; they never make it past the “this is obviously not important” filter.
How does your brain know what’s important? Suppose you’re out for a day hike and a tiger jumps in
front of you, what happens inside your head and body?
Neurons fire. Emotions crank up. Chemicals surge.
And that’s how your brain knows...

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone. You’re studying. Getting
ready for an exam. Or trying to learn some tough technical topic your boss thinks will take a week, ten
days at the most.
Just one problem. Your brain’s trying to do you a big favor. It’s trying to make sure that this obviously
non-important content doesn’t clutter up scarce resources. Resources that are better spent storing the
really big things. Like tigers. Like the danger of fire. Like how you should never have posted those
“party” photos on your Facebook page.
And there’s no simple way to tell your brain, “Hey brain, thank you very much, but no matter how dull
this book is, and how little I’m registering on the emotional Richter scale right now, I really do want
you to keep this stuff around.”

WE THINK OF A “HEAD FIRST” READER AS A LEARNER.

So what does it take to learn something? First, you have to get it, then make sure you don’t forget it. It’s not about pushing facts into
your head. Based on the latest research in cognitive science, neurobiology, and educational psychology, learning takes a lot more than
text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning much more effective (up to 89% improvement
in recall and transfer studies). It also makes things more understandable. Put the words within or near the graphics they relate to,
rather than on the bottom or on another page, and learners will be up to twice as likely to solve problems related to the content.

Use a conversational and personalized style. In recent studies, students performed up to 40% better on post-learning tests if the
content spoke directly to the reader, using a first-person, conversational style rather than taking a formal tone. Tell stories instead of
lecturing. Use casual language. Don’t take yourself too seriously. Which would you pay more attention to: a stimulating dinner party
companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your neurons, nothing much happens in your head.
A reader has to be motivated, engaged, curious, and inspired to solve problems, draw conclusions, and generate new knowledge. And

for that, you need challenges, exercises, and thought-provoking questions, and activities that involve both sides of the brain and
multiple senses.

Get — and keep — the reader’s attention. We’ve all had the “I really want to learn this but I can’t stay awake past page one”
experience. Your brain pays attention to things that are out of the ordinary, interesting, strange, eye-catching, unexpected. Learning a
new, tough, technical topic doesn’t have to be boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely dependent on its emotional content. You
remember what you care about. You remember when you feel something. No, we’re not talking heart-wrenching stories about a boy
and his dog. We’re talking emotions like surprise, curiosity, fun, “what the...?”, and the feeling of “I Rule!” that comes when you solve
a puzzle, learn something everybody else thinks is hard, or realize you know something that “I’m more technical than thou” Bob from
engineering doesn’t.

Metacognition: thinking about thinking
If you really want to learn, and you want to learn more quickly and more deeply, pay attention to how
you pay attention. Think about how you think. Learn how you learn.
Most of us did not take courses on metacognition or learning theory when we were growing up. We
were expected to learn, but rarely taught to learn.
But we assume that if you’re holding this book, you really want to learn how to build programs in C#.
And you probably don’t want to spend a lot of time. If you want to use what you read in this book, you
need to remember what you read. And for that, you’ve got to understand it. To get the most from this
book, or any book or learning experience, take responsibility for your brain. Your brain on this
content.
The trick is to get your brain to see the new material you’re learning as Really Important. Crucial to
your well-being. As important as a tiger. Otherwise, you’re in for a constant battle, with your brain
doing its best to keep the new content from sticking.

So just how DO you get your brain to treat C# like it was a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way. The slow way is about sheer
repetition. You obviously know that you are able to learn and remember even the dullest of topics if
you keep pounding the same thing into your brain. With enough repetition, your brain says, “This
doesn’t feel important to him, but he keeps looking at the same thing over and over and over, so I
suppose it must be.”
The faster way is to do anything that increases brain activity, especially different types of brain
activity. The things on the previous page are a big part of the solution, and they’re all things that have
been proven to help your brain work in your favor. For example, studies show that putting words

within the pictures they describe (as opposed to somewhere else in the page, like a caption or in the
body text) causes your brain to try to makes sense of how the words and picture relate, and this
causes more neurons to fire. More neurons firing = more chances for your brain to get that this is
something worth paying attention to, and possibly recording.
A conversational style helps because people tend to pay more attention when they perceive that
they’re in a conversation, since they’re expected to follow along and hold up their end. The amazing
thing is, your brain doesn’t necessarily care that the “conversation” is between you and a book! On
the other hand, if the writing style is formal and dry, your brain perceives it the same way you
experience being lectured to while sitting in a roomful of passive attendees. No need to stay awake.
But pictures and conversational style are just the beginning.

Here’s what WE did
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s concerned,
a picture really is worth a thousand words. And when text and pictures work together, we embedded
the text in the pictures because your brain works more effectively when the text is within the thing the
text refers to, as opposed to in a caption or buried in the text somewhere.
We used redundancy, saying the same thing in different ways and with different media types, and
multiple senses, to increase the chance that the content gets coded into more than one area of your
brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty, and we
used pictures and ideas with at least some emotional content, because your brain is tuned to pay
attention to the biochemistry of emotions. That which causes you to feel something is more likely to
be remembered, even if that feeling is nothing more than a little humor, surprise, or interest.
We used a personalized, conversational style, because your brain is tuned to pay more attention when
it believes you’re in a conversation than if it thinks you’re passively listening to a presentation. Your
brain does this even when you’re reading.

We included dozens of activities, because your brain is tuned to learn and remember more when you

do things than when you read about things. And we made the paper puzzles and code exercises
challenging-yet-do-able, because that’s what most people prefer.
We used multiple learning styles, because you might prefer step-by-step procedures, while someone
else wants to understand the big picture first, and someone else just wants to see an example. But
regardless of your own learning preference, everyone benefits from seeing the same content
represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you engage, the more
likely you are to learn and remember, and the longer you can stay focused. Since working one side of
the brain often means giving the other side a chance to rest, you can be more productive at learning
for a longer period of time.
And we included stories and exercises that present more than one point of view, because your brain
is tuned to learn more deeply when it’s forced to make evaluations and judgments.

We included challenges, with exercises, and by asking questions that don’t always have a straight
answer, because your brain is tuned to learn and remember when it has to work at something. Think
about it — you can’t get your body in shape just by watching people at the gym. But we did our best
to make sure that when you’re working hard, it’s on the right things. That you’re not spending one
extra dendrite processing a hard-to-understand example, or parsing difficult, jargon-laden, or overly
terse text.
We used people. In stories, examples, pictures, etc., because, well, because you’re a person. And
your brain pays more attention to people than it does to things.

Here’s what You can do to bend your brain into submission
So, we did our part. The rest is up to you. These tips are a starting point; listen to your brain and
figure out what works for you and what doesn’t. Try new things.

Cut this out and stick it on your refrigerator.

➊ Slow down. The more you understand, the less you have to memorize.
Don’t just read. Stop and think. When the book asks you a question, don’t just skip to the answer.
Imagine that someone really is asking the question. The more deeply you force your brain to think,
the better chance you have of learning and remembering.
➋ Do the exercises. Write your own notes.
We put them in, but if we did them for you, that would be like having someone else do your
workouts for you. And don’t just look at the exercises. Use a pencil. There’s plenty of evidence
that physical activity while learning can increase the learning.
➌ Read the “There are No Dumb Questions”
That means all of them. They’re not optional sidebars — they’re part of the core content! Don’t
skip them.
➍ Make this the last thing you read before bed. Or at least the last challenging thing.
Part of the learning (especially the transfer to long-term memory) happens after you put the book
down. Your brain needs time on its own, to do more processing. If you put in something new
during that processing time, some of what you just learned will be lost.
➎ Drink water. Lots of it.
Your brain works best in a nice bath of fluid. Dehydration (which can happen before you ever feel
thirsty) decreases cognitive function.
➏ Talk about it. Out loud.
Speaking activates a different part of the brain. If you’re trying to understand something, or
increase your chance of remembering it later, say it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and you might uncover ideas you hadn’t known were
there when you were reading about it.
➐ Listen to your brain.
Pay attention to whether your brain is getting overloaded. If you find yourself starting to skim the
surface or forget what you just read, it’s time for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and you might even hurt the process.
➑ Feel something.

Your brain needs to know that this matters. Get involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke is still better than feeling nothing at all.
➒ Write a lot of software!
There’s only one way to learn to program: writing a lot of code. And that’s what you’re going to
do throughout this book. Coding is a skill, and the only way to get good at it is to practice. We’re
going to give you a lot of practice: every chapter has exercises that pose a problem for you to
solve. Don’t just skip over them — a lot of the learning happens when you solve the exercises. We
included a solution to each exercise — don’t be afraid to peek at the solution if you get stuck!
(It’s easy to get snagged on something small.) But try to solve the problem before you look at the
solution. And definitely get it working before you move on to the next part of the book.

Read me
This is a learning experience, not a reference book. We deliberately stripped out everything that might
get in the way of learning whatever it is we’re working on at that point in the book. And the first time
through, you need to begin at the beginning, because the book makes assumptions about what you’ve
already seen and learned.
The activities are NOT optional.
The puzzles and activities are not add-ons; they’re part of the core content of the book. Some of them
are to help with memory, some for understanding, and some to help you apply what you’ve learned.
Don’t skip the written problems. The pool puzzles are the only things you don’t have to do, but
they’re good for giving your brain a chance to think about twisty little logic puzzles.

The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get it. And we want you to
finish the book remembering what you’ve learned. Most reference books don’t have retention and
recall as a goal, but this book is about learning, so you’ll see some of the same concepts come up
more than once.

Do all the exercises!
The one big assumption that we made when we wrote this book is that you want to learn how to
program in C#. So we know you want to get your hands dirty right away, and dig right into the code.
We gave you a lot of opportunities to sharpen your skills by putting exercises in every chapter. We’ve
labeled some of them “Do this!” — when you see that, it means that we’ll walk you through all of the
steps to solve a particular problem. But when you see the Exercise logo with the running shoes, then
we’ve left a big portion of the problem up to you to solve, and we gave you the solution that we came
up with. Don’t be afraid to peek at the solution — it’s not cheating! But you’ll learn the most if you

try to solve the problem first.
We’ve also placed all the exercise solutions’ source code on the web so you can download it. You’ll
find it at http://www.headfirstlabs.com/books/hfcsharp/

The “Brain Power” questions don’t have answers.
For some of them, there is no right answer, and for others, part of the learning experience of the Brain
Power activities is for you to decide if and when your answers are right. In some of the Brain Power
questions you will find hints to point you in the right direction.

What version of Windows are you using?
We wrote this book using Visual Studio Express 2013 for Windows and Visual Studio Express
2013 for Windows Desktop. All of the screenshots that you see throughout the book were taken from
those two editions, so we recommend that you use them. You can also use Visual Studio 2013
Professional, Premium, Ultimate or Test Professional editions, but you’ll see some small differences
(but nothing that will cause problems with the coding exercises).
We built this book using Windows 8.1, the latest version of Windows available when we went to
press. We’ll refer to it as “Windows 8” throughout the book. Visual Studio 2013 requires Windows
8.1, which is available as a free Windows Store update to Windows 8.

Visual Studio 2013 can be installed on the same computer as other editions or older versions of Visual Studio without
causing any problems.

Using Windows 8 or later? Then you’ll start with Windows Store
apps
Windows Store apps are programs built with the latest Microsoft technology. They get their name
because they can be downloaded and sold through the Windows Store.

In the first two chapters, you’ll build Windows Store apps, starting with a game called Save the
Humans. This will be your first experience with Visual Studio, and will teach you the basic
mechanics of creating a user interface and entering code — core skills that you’ll use throughout the
book as you use it to build many different projects.

NOTE

Some of the code in this book may not work with earlier or later editions of Visual Studio! But you can always download Visual Studio
2013 from Microsoft’s website.

The screenshots in this book match Visual Studio 2013 Express Edition, the latest free version available at the time of
this printing. We’ll keep future printings up to date, but Microsoft typically makes older versions available for download.
It’s possible that some of the code for Windows Store apps may not work with future versions of Visual Studio. If the links
on the next page don’t work, search Microsoft.com for “Visual Studio 2013 Express update 3 download” — and also
check the forum on http://headfirstlabs.com/hfcsharp.

http://headfirstlabs.com/hfcsharp

Don’t have Windows 8 or VS2013 yet? No problem — you’ll start
with WPF apps
There’s another technology for building desktop apps called Windows Presentation Foundation
(WPF) that works with previous versions of Windows. It’s very important to us that you can use our
book with Windows 7, Windows 2003, or other previous versions of Windows! If you’re one of
these readers, we worked very hard to make our book easy for you to use. We added an
Appendix with alternate versions of almost every Windows Store project in this book that you’ll
build and run as WPF desktop applications. And if you’re using an older version of Visual Studio,
you’ll be able to use it to build WPF apps too. Here’s what you need to do:

Flip to Appendix B, the WPF Learner’s Guide to Head First C#. You’ll find a complete
replacement for the Save the Humans project in Chapter 1 and five replacement pages for
Chapter 2 (which are all you need!).
After that, Chapter 3 through Chapter 9 the first two labs do not require Windows 8 at all, because
Windows Forms and Console applications work on all versions of Windows. You’ll even be able
to build them using Visual Studio 2012 (and even 2010 or 2008), although the Visual Studio
screenshots may differ a bit from the book.
For the rest of the book, you’ll use the replacement pages in the Appendix to build WPF desktop
apps instead of Windows Store apps. That way you’ll still build lots of projects and learn the
same important C# concepts.
You can download a PDF of the appendix from the book’s website
(http://headfirstlabs.com/hfcsharp) in case you want to print out the replacement pages.
And even if you’re running the latest version of Windows, you should still have a look at the WPF
Learner’s Guide! Building the same projects with two different technologies is an excellent way to
get C# into your brain.

If you’re running Windows 7 or earlier, you can still build all of the Windows Forms, Console, and WPF applications in
this book.

If these download links don’t work, go to microsoft.com and search for “Visual Studio Express
2013 Download”

http://headfirstlabs.com/hfcsharp

Microsoft regularly releases updates to Visual Studio, and sometimes they make minor changes to its look and feel
between updates. The screenshots in this book were taken from Visual Studio 2013 with Update 3. Here are direct links
to the download pages for Visual Studio 2013 Express with Update 3:

VS2013 Express for Windows with Update 3: http://www.microsoft.com/en-us/download/details.aspx?id=43729

VS2013 Express for Windows Desktop with Update 3: http://www.microsoft.com/en-us/download/details.aspx?id=43733

The Visual Studio home page also has many useful download links: http://www.microsoft.com/visualstudio

http://www.microsoft.com/en-us/download/details.aspx?id=43729
http://www.microsoft.com/en-us/download/details.aspx?id=43733
http://www.microsoft.com/visualstudio

You’ll move on to create desktop applications
Chapter 1 and Chapter 2 focus on creating Windows Store (or WPF) apps. After that, you’ll switch
gears and create two different kinds of desktop applications. In the following few chapters you’ll
build Windows Forms applications and design user interfaces that are based on desktop windows.
And later in the book you’ll create console applications that use a command window for input and
output. You’ll mix Windows Store (or WPF) apps back in starting in Chapter 10.

SETTING UP VISUAL STUDIO 2013 EXPRESS EDITIONS

You can download Visual Studio Express 2013 for Windows for free from Microsoft’s website. It installs cleanly alongside
other editions of VS2013, as well as previous versions. You can download the edition from the Visual Studio home page .

NOTE

You’ll also need to generate a product key, which is free for the Express editions (but requires
you to create a Microsoft.com account).

Once you’ve got it installed, you’ll need to do the same thing for Visual Studio Express 2013 for Windows Desktop. You’ll
use this version to create Windows Forms Application and Console Application projects.
If you have Visual Studio 2013 Professional, Premium, or Ultimate installed, then you can create all of the different types of
applications with any of those editions. But you’ll be able to do all of the projects in this book using the free editions.

The technical review team

Lisa Kellner

Rebeca Dunn-Krahn

Chris Burrows

Johnny Halife

David Sterling

NOTE

Not pictured (but just as awesome are the reviewers from previous editions): Joe Albahari, Jay Hilyard, Aayam Singh, Theodore,
Peter Ritchie, Bill Meitelski Andy Parker, Wayne Bradney, Dave Murdoch, Bridgette Julie Landers, Nick Paldino, David Sterling.
Special thanks to readers Alan Ouellette, Terry Graham, and our other readers who let us know about issues that slipped through QC.
Thanks!!

Technical Reviewers:
The book you’re reading has very few errors in it, and give a lot of credit for its high quality to some
great technical reviewers. We’re really grateful for the work that they did for this book — we would
have gone to press with errors (including one or two big ones) had it not been for the most kick-ass
review team EVER....
First of all, we really want to thank Lisa Kellner — this is our ninth (!) book that she’s reviewed for
us, and she made a huge difference in the readability of the final product. Thanks, Lisa! And special
thanks to Chris Burrows, Rebeca Dunn-Krahn, and David Sterling for their enormous amount of
technical guidance, and to Joe Albahari and Jon Skeet for their really careful and thoughtful review
of the first edition, and Nick Paladino who did the same for the second edition.
Chris Burrows is a developer at Microsoft on the C# Compiler team who focused on design and
implementation of language features in C# 4.0, most notably dynamic.
Rebeca Dunn-Krahn is a founding partner at Semaphore Solutions, a custom software shop in
Victoria, Canada, that specializes in .NET applications. She lives in Victoria with her husband
Tobias, her children, Sophia and Sebastian, a cat, and three chickens.

David Sterling has worked on the Visual C# Compiler team for nearly three years.
Johnny Halife is a Chief Architect & Co-Founder of Mural.ly (http://murally.com), a web start-up
that allows people to create murals: collecting any content inside them and organizing it in a flexible
and organic way in one big space. Johnny’s a specialist on cloud and high-scalability solutions. He’s
also a passionate runner and sports fan.

http://murally.com

Acknowledgments
Our editor:
We want to thank our editor, Courtney Nash, for editing this book. Thanks!

The O’Reilly team:

There are so many people at O’Reilly we want to thank that we hope we don’t forget anyone. Special
Thanks to production editor Melanie Yarbrough, indexer Ellen Troutman-Zaig, Rachel Monaghan
for her sharp proofread, Ron Bilodeau for volunteering his time and preflighting expertise, and for
offering one last sanity check — all of whom helped get this book from production to press in record
time. And as always, we love Mary Treseler, and can’t wait to work with her again! And a big shout
out to our other friends and editors, Andy Oram, Mike Hendrickson, Laurie Petryki, Tim
O’Reilly, and Sanders Kleinfeld. And if you’re reading this book right now, then you can thank the
greatest publicity team in the industry: Marsee Henon, Sara Peyton, and the rest of the folks at
Sebastopol.

Safari® Books Online

Safari Books Online is an on-demand digital library that lets you easily search over 7,500 technology
and creative reference books and videos to find the answers you need quickly.
With a subscription, you can read any page and watch any video from our library online. Read books
on your cell phone and mobile devices. Access new titles before they are available for print, and get
exclusive access to manuscripts in development and post feedback for the authors. Copy and paste
code samples, organize your favorites, download chapters, bookmark key sections, create notes, print
out pages, and benefit from tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital
access to this book and others on similar topics from O’Reilly and other publishers, sign up for free
at http://safaribooksonline.com.

http://safaribooksonline.com

Chapter 1. Start Building with C#: Build
something cool, fast!

Want to build great apps really fast?
With C#, you’ve got a great programming language and a valuable tool at your fingertips. With the
Visual Studio IDE, you’ll never have to spend hours writing obscure code to get a button working
again. Even better, you’ll be able to build really cool software, rather than remembering which bit of
code was for the name of a button, and which one was for its label. Sound appealing? Turn the page,
and let’s get programming.

Why you should learn C#
C# and the Visual Studio IDE make it easy for you to get to the business of writing code, and writing
it fast. When you’re working with C#, the IDE is your best friend and constant companion.

NOTE

The IDE — or Visual Studio Integrated Development Environment — is an important part of working in C#. It’s a program that helps
you edit your code, manage your files, and submit your apps to the Windows Store.

Here’s what the IDE automates for you...
Every time you want to get started writing a program, or just putting a button on a page, your program
needs a whole bunch of repetitive code.

What you get with Visual Studio and C#...
With a language like C#, tuned for Windows programming, and the Visual Studio IDE, you can focus
on what your program is supposed to do immediately:

C# and the Visual Studio IDE make lots of things easy
When you use C# and Visual Studio, you get all of these great features, without having to do any extra
work. Together, they let you:

➊ Build an application, FAST. Creating programs in C# is a snap. The language is flexible and
easy to learn, and the Visual Studio IDE does a lot of work for you automatically. You can leave
mundane coding tasks to the IDE and focus on what your code should accomplish.
➋ Design a great-looking user interface. The Visual Designer in the Visual Studio IDE is one of
the easiest-to-use design tools out there. It does so much for you that you’ll find that creating user
interfaces for your programs is one of the most satisfying parts of developing a C# application.
You can build full-featured professional programs without having to spend hours writing a
graphical user interface entirely from scratch.
➌ Build visually stunning programs. When you combine C# with XAML, the visual markup
language for designing user interfaces, you’re using one of the most effective tools around for
creating visual programs... and you’ll use it to build software that looks as great as it acts.
➍ Focus on solving your REAL problems. The IDE does a lot for you, but you are still in
control of what you build with C#. The IDE lets you just focus on your program, your work (or
fun!), and your users. It handles all the grunt work for you:
Keeping track of all your project files
Making it easy to edit your project’s code
Keeping track of your project’s graphics, audio, icons, and other resources
Helping you manage and interact with your data

All this means you’ll have all the time you would’ve spent doing this routine programming to put
into building and sharing killer apps.

NOTE

You’re going to see exactly what we mean next.

What you do in Visual Studio...
Go ahead and start up Visual Studio 2013 for Windows, if you haven’t already. Skip over the start
page and select New Project from the File menu. There are several project types to choose from.
Expand Visual C#→Windows Store→Windows App, and select Blank App (Windows). The IDE
will create a folder called Visual Studio 2013 in your Documents folder, and put your applications in
a Projects folder under it (you can use the Location box to change this).

NOTE

If you don’t see this option, you might be running Visual Studio 2013 for Windows Desktop. You’ll need to exit that IDE and launch
Visual Studio Express 2013 for Windows.

WATCH IT!

Things may look a bit different in your IDE.

This is what the New Project window looks like in Visual Studio 2013 Express for Windows. If you’re using the Professional
or Team Foundation edition, it might be a bit different. But don’t worry, everything still works exactly the same.

What Visual Studio does for you...
As soon as you save the project, the IDE creates a bunch of files, including MainPage.xaml,
MainPage.Xaml.cs, and App.xaml.cs, when you create a new project. It adds these to the Solution
Explorer window, and by default, puts those files in the Projects\App1\App1 folder.

NOTE

Make sure that you save your project as soon as you create it by selecting Save All from the File menu — that’ll save all of the
project files out to the folder. If you select Save, it just saves the one you’re working on.

SHARPEN YOUR PENCIL

Just a couple more steps and your screen will match the picture below. First, open MainPage.xaml by double-clicking on it in the
Solution Explorer window. Next, select the Light color theme from the Options menu. Finally, make sure you open the Toolbox
and Error List windows by choosing them from the View menu. You should be able to figure out the purpose of many of these
windows and files based on what you already know. Then, in each of the blanks, try to fill in an annotation saying what that part of the
IDE does. We’ve done one to get you started. See if you can guess what all of these things are for.

SHARPEN YOUR PENCIL SOLUTION

We’ve filled in the annotations about the different sections of the Visual Studio C# IDE. You may have some different things written
down, but you should have been able to figure out the basics of what each window and section of the IDE is used for.

THERE ARE NO DUMB QUESTIONS

Q: Q: So if the IDE writes all this code for me, is learning C# just a matter of learning how to use the IDE?

A: A: No. The IDE is great at automatically generating some code for you, but it can only do so much. There are some things it’s really good at, like setting
up good starting points for you, and automatically changing properties of controls on your pages. But the hard part of programming — figuring out
what your program needs to do and making it do it — is something that no IDE can do for you. Even though the Visual Studio IDE is one of the most
advanced development environments out there, it can only go so far. It’s you — not the IDE — who writes the code that actually does the work.

Q: Q: What if the IDE creates code I don’t want in my project?

A: A: You can change it. The IDE is set up to create code based on the way the element you dragged or added is most commonly used. But sometimes
that’s not exactly what you wanted. Everything the IDE does for you — every line of code it creates, every file it adds — can be changed, either
manually by editing the files directly or through an easy-touse interface in the IDE.

Q: Q: Is it OK that I downloaded and installed Visual Studio Express? Or do I need to use one of the versions of Visual Studio that isn’t free in
order to do everything in this book?

A: A: There’s nothing in this book that you can’t do with the free version of Visual Studio (which you can download from Microsoft’s website). The main
differences between Express and the other editions aren’t going to get in the way of writing C# and creating fully functional, complete applications.

Q: Q: You said something about combining C# and XAML. What is XAML, and how does it combine with C#?

A: A: XAML (the X is pronounced like Z, and it rhymes with “camel”) is a markup language that you’ll use to build your user interfaces for your full-
page Windows Store apps. XAML is based on XML (which you’ll also learn about later in the book), so if you’ve ever worked with HTML you have a
head start. Here’s an example of a XAML tag to draw a gray ellipse:

<Ellipse Fill="Gray"
 Height="100" Width="75"/>

You can tell that that’s a tag because it starts with a < followed by a word (“Ellipse”), which makes it a start tag. This particular Ellipse tag has three
properties: one to set its fill color to gray, and two to set its height and width. This tag ends with />, but some XAML tags can contain other tags. We
can turn this tag into a container tag by replacing /> with a >, adding other tags (which can also contain additional tags), and closing it with an end tag
that looks like this: </Ellipse>.
You’ll learn a lot more about how XAML works and the different XAML tags throughout the book.

Q: Q: I’m looking at the IDE right now, but my screen doesn’t look like yours! It’s missing some of the windows, and others are in the wrong
place. What gives?

A: A: If you click on the Reset Window Layout command under the Window menu, the IDE will restore the default window layout for you. Then you can
use the View→Other Windows menu to make your screen look just like the ones in this chapter.

Visual Studio will generate code you can use as a starting point for your applications.
Making sure the app does what it’s supposed to do is entirely up to you.

Aliens attack!
Well, there’s a surprise: vicious aliens have launched a full-scale attack on planet Earth, abducting
humans for their nefarious and unspeakable gastronomical experiments. Didn’t see that coming!

Only you can help save the Earth
The last hopes of humanity rest on your shoulders! The people of planet Earth need you to build an
awesome C# app to coordinate their escape from the alien menace. Are you up to the challenge?

Here’s what you’re going to build
You’re going to need an application with a graphical user interface, objects to make the game work,
and an executable to run. It sounds like a lot of work, but you’ll build all of this over the rest of the
chapter, and by the end you’ll have a pretty good handle on how to use the IDE to design a page and
add C# code.
Here’s the structure of the app we’re going to create:

Save the Humans is a Windows Store app — you need Windows 8 to build and run it. Don’t have
Windows 8? The WPF Learner’s Guide to Head First C# appendix at the end of this book shows
you how to build this project as a desktop app.

You’ll be building an app with two different kinds of code. First you’ll design the user interface using XAML (Extensible
Application Markup Language), a really flexible design language. Then you’ll add C# code to make the game actually
work. You’ll learn a lot more about XAML throughout the second half of the book.

NOTE

It’s not unusual for computers in an office to be running an operating system as old as Windows 2003, and may have an old version of
Visual Studio. With WPF you can still do the projects in the book.

RELAX

No Windows 8? No problem.

The first two chapters and the last half of this book have many projects that are built with Visual Studio 2013 for Windows, but
many readers aren’t running Windows 8 yet. Luckily, almost all of the Windows Store apps in this book can also be built as desktop
apps using Windows Presentation Foundation (WPF), which is compatible with earlier operating systems. Flip back to the last few
pages of the Introduction, to the section called “What version of Windows are you using?” to learn more.

NOTE

The WPF Guide appendix contiains complete replacement pages for the rest of this chapter, and then just five replacement pages for
Chapter 2. After that, you won’t need to use the WPF Learner’s Guide appendix again until Chapter 10.

We worked really hard to build the WPF Learner’s Guide appendix so that you keep page
flipping to a minimum, while still letting you use an earlier version of Windows and even a

previous edition of Visual Studio to learn all of the same important C# concepts.

Start with a blank application
Every great app starts with a new project. Choose New Project from the File menu. Make sure you
have Visual C#→Window Store selected and choose Blank App (XAML) as the project type. Type
Save the Humans as the project name.

NOTE

If your code filenames don’t end in “.cs” you may have accidentally created a JavaScript, Visual Basic, or Visual C++ program. You
can fix this by closing the solution and starting over. If you want to keep the project name “Save the Humans,” then you’ll need to
delete the previous project folder.

➊ Your starting point is the Designer window. Double-click on MainPage.xaml in the Solution
Explorer to bring it up. Find the zoom drop-down in the lower-left corner of the designer and
choose “Fit all” to zoom it out.

The bottom half of the Designer window shows you the XAML code. It turns out your “blank”
page isn’t blank at all — it contains a XAML grid. The grid works a lot like a table in an HTML
page or Word document. We’ll use it to lay out our pages in a way that lets them grow or shrink to
different screen sizes and shapes.

LOOKING TO LEARN WPF? LOOK NO FURTHER!

Most of the Windows Store apps in this book can be built with WPF (Windows Presentation Foundation), which is compatible
with Windows 7 and earlier operating systems and Visual Studio versions. Flip back to the last few pages of the Introduction, to
the section called “What version of Windows are you using?” to learn more.

This part of the project has steps numbered to . Flip the page to keep going!
➋ Your page is going to need a title, right? And it’ll need margins, too. You can do this all by
hand with XAML, but there’s an easier way to get your app to look like a normal Windows Store
app.
Go to the Solution Explorer window and find . Right-click on it and choose Delete
to delete the MainPage.xaml page:

When you start a Windows Store app, you’ll often replace the main page with one of the templates that Visual
Studio provides.

➌ Now you’ll need to replace the main page. Go back to the Solution Explorer and right-click on
 (it should be the second item in the Solution Explorer) to select the

project. Then choose Add→New Item... from the menu:

NOTE

If you chose a different name when you created your project, you’ll see that name instead of “Save the Humans” in the Solution
Explorer.

The IDE will pop up the Add New Item window for your project. Choose Basic Page and give it
the name MainPage.xaml. Then click the Add button to add the replacement page to your project.

The IDE will prompt you to add missing files — choose Yes to add them. Wait for the designer to
finish loading. It might display either or . Choose Rebuild Solution
from the Build menu to bring the IDE’s Designer window up to date. Now you’re ready to roll!

NOTE

When you replace MainPage.xaml with the new Basic Page item, the IDE needs to add additional files. Rebuilding the solution
brings everything up to date so it can display the page in the designer.

Let’s explore your newly added MainPage.xaml file. Scroll through the XAML pane in the
designer window until you find this XAML code. This is the grid you’ll use as the basis for your
program:

➍ Your app will be a grid with two rows and three columns (plus the header row that came with
the blank page template), with one big cell in the middle that will contain the play area. Start
defining rows by hovering over the border until a line and triangle appear:

Windows Store apps need to look right on any screen, from tablets to laptops to giant monitors, in portrait or
landscape.

Laying out the page using a grid’s columns and rows allows your app to automatically adjust to the display.

THERE ARE NO DUMB QUESTIONS

Q: Q: But it looks like I already have many rows and and columns in the grid. What are those gray lines?

A: A: The gray lines were just Visual Studio giving you a grid of guidelines to help you lay your controls out evenly on the page. You can turn them on and
off with the button. None of the lines you see in the designer show up when you run the app outside of Visual Studio. But when you clicked and
created a new row, you actually altered the XAML, which will change the way the app behaves when it’s compiled and executed.

Q: Q: Wait a minute. I wanted to learn about C#. Why am I spending all this time learning about XAML?

A: A: Because Windows Store apps built in C# almost always start with a user interface that’s designed in XAML. That’s also why Visual Studio has such
a good XAML editor — to give you the tools you need to build stunning user interfaces. Throughout this book, you’ll learn how to build two other
types of programs with C#, desktop applications and console applications, neither of which use XAML. Seeing all three of these will give you a deeper
understanding of programming with C#.

➎ Do the same thing along the top border of the page — except this time create two columns, a
small one on the lefthand side and another small one on the righthand side. Don’t worry about the
row heights or column widths — they’ll vary depending on where you click. We’ll fix them in a
minute.

When you’re done, look in the XAML window and go back to the same grid from the previous
page. Now the column widths and row heights match the numbers on the top and side of your page.

Your grid rows and columns are now added!
XAML grids are container controls, which means they hold other controls. Grids consist of rows and
columns that define cells, and each cell can hold other XAML controls that show buttons, text, and
shapes. A grid is a great way to lay out a page, because you can set its rows and columns to resize
themselves based on the size of the screen.

Set up the grid for your page
Your app needs to be able to work on a wide range of devices, and using a grid is a great way to do
that. You can set the rows and columns of a grid to a specific pixel height. But you can also use the
Star setting, which keeps them the same size proportionally — to each other and also to the page —
no matter how big the display or what its orientation is.

➊ SET THE WIDTH OF THE LEFT COLUMN.
Hover over the number above the first column until a drop-down menu appears. Choose Pixel to
change the star to a lock, then click on the number to change it to 160. Your column’s number
should now look like this:

➋ REPEAT FOR THE RIGHT COLUMN AND THE BOTTOM ROW.
Make the right column and the bottom row 160 by choosing Pixel and typing 160 into the box.

Set your columns or rows to Pixel to give them a fixed width or height. The Star setting lets a row or column grow
or shrink proportionally to the rest of the grid. Use this setting in the designer to alter the Width or Height
property in the XAML. If you remove the Width or Height property, it’s the same as setting the property to 1*.

RELAX

It’s OK if you’re not a pro at app design...yet.

We’ll talk a lot more about what goes into designing a good app later on. For now, we’ll walk you through building this game. By
the end of the book, you’ll understand exactly what all of these things do!

➌ MAKE THE CENTER COLUMN AND CENTER ROW THE DEFAULT SIZE 1* (IF
THEY AREN’T ALREADY).
Click on the number above the center column and enter 1. Don’t use the drop-down (leave it Star)
so it looks like the picture below. Then make sure to look back at the other columns to make sure
the IDE didn’t resize them. If it did, just change them back to 160.

XAML and C# are case sensitive! Make sure your uppercase and lowercase letters match example code.

➍ LOOK AT YOUR XAML CODE!
Click on the grid to make sure it’s selected, then look in the XAML window to see the code that
you built.

Add controls to your grid
Ever notice how apps are full of buttons, text, pictures, progress bars, sliders, drop-downs, and
menus? Those are called controls, and it’s time to add some of them to your app — inside the cells
defined by your grid’s rows and columns.

➊ Expand the section of the toolbox and drag a into the bottom-left
cell of the grid.

Then look at the bottom of the Designer window and have a look at the XAML tag that the IDE
generated for you. You’ll see something like this — your margin numbers will be different
depending on where in the cell you dragged it, and the properties might be in a different order.

➋ Drag a into the lower-right cell of the grid. Your XAML will look something like
this. See if you can figure out how it determines which row and column the controls are placed in.

NOTE

We added line breaks to make the XAML easier to read. You can add line breaks too. Give it a try!

➌ Next, expand the section of the toolbox. Drag a into the bottom-center
cell, a into the bottom-right cell (make sure it’s below the TextBlock you already
put in that cell), and a into the center cell. Your page should now have controls on it
(don’t worry if they’re placed differently than the picture below; we’ll fix that in a minute):

➍ You’ve got the Canvas control currently selected, since you just added it. (If not, use the pointer
to select it again.) Look in the XAML window:

It’s showing you the XAML tag for the Canvas control. It starts with <Canvas and ends with />,
and between them it has properties like Grid.Column="1" (to put the Canvas in the center
column) and Grid.Row="1" (to put it in the center row). Try clicking in both the grid and the
XAML window to select different controls.

When you drag a control out of the toolbox and onto your page, the IDE automatically generates XAML to put it
where you dragged it.

Use properties to change how the controls look
The Visual Studio IDE gives you fine control over your controls. The Properties window in the IDE
lets you change the look and even the behavior of the controls on your page.

➊ Change the text of the button.
Right-click on the button control that you dragged onto the grid and choose Edit Text from the
menu. Change the text to: Start! and see what you did to the button’s XAML:

NOTE

When you’re editing text, use the Escape key to finish. This works for other things in the IDE, too.

➋ Use the Properties window to modify the button.
Make sure the button is selected in the IDE, then look at the Properties window in the lower-right
corner of the IDE. Use it to change the name of the control to startButton and center the control
in the cell. Once you’ve got the button looking right, right-click on it and choose View Source to
jump straight to the <Button> tag in the XAML window.

You can use Edit→Undo (or Ctrl-Z) to undo the last change. Do it several times to undo the last few changes. If you
selected the wrong thing, you can choose Select None from the Edit menu to deselect. You can also hit Escape to
deselect the control. If it’s living inside a container like a StackPanel or Grid, hitting Escape will select the container,
so you may need to hit it a few times.

➌ Change the page header text.
Right-click on the page header (“My Application”) and choose View Source to jump to the XAML
for the text block. Scroll in the XAML window until you find the Text property:

Wait a minute! That’s not text that says “My Application” — what’s going on here?
The Blank Page template uses a static resource called AppName for the name that it displays at the
top of the page. Scroll to the top of the XAML code until you find a <Page.Resources> section
that has this XAML code in it:

Replace “My Application” with the name of your application:

Now you should see the correct text at the top of the page:

➍ Update the TextBlock to change its text and its style.
Use the Edit Text right-mouse menu option to change the TextBlock so it says Avoid These (hit
Escape to finish editing the text). Then right-click on it, choose the menu item, and
then choose the submenu and select SubheaderTextBlockStyle to make its text

bigger.
➎ Use a StackPanel to group the TextBlock and ContentControl.
Make sure that the TextBlock is near the top of the cell, and the ContentControl is near the bottom.
Click and drag to select both the TextBlock and ContentControl, and then right-click. Choose

 from the pop-up menu, then choose . This adds a new control to your page: a
StackPanel control. You can select the StackPanel by clicking between the two controls.
The StackPanel is a lot like the Grid and Canvas: its job is to hold other controls (it’s called a
“container”), so it’s not visible on the page. But since you dragged the TextBlock to the top of the
cell and the ContentControl to the bottom, the IDE created the StackPanel so it fills up most of the
cell. Click in the middle of the StackPanel to select it, then right-click and choose and

 to quickly reset its properties, which will set its vertical and horizontal alignment to
Stretch. Finally, right-click on the TextBox and ContentControl to reset their layouts as well. While
you have the ContentControl selected, set its vertical and horizontal alignments to Center.

Controls make the game work
Controls aren’t just for decorative touches like titles and captions. They’re central to the way your
game works. Let’s add the controls that players will interact with when they play your game. Here’s
what you’ll build next:

➊ Update the ProgressBar.
Right-click on the ProgressBar in the bottom-center cell of the grid, choose the Layout menu
option, and then choose Reset All to reset all of the properties to their default values. Use the
Height box in the Layout section of the Properties window to set the Height to 20. The IDE
stripped all of the layout-related properties from the XAML, and then added the new Height:

➋ Turn the Canvas control into the gameplay area.
Remember that Canvas control that you dragged into the center square? It’s hard to see it right now
because a Canvas control is invisible when you first drag it out of the toolbox, but there’s an easy
way to find it. Click the very small button above the XAML window to bring up the Document
Outline. Click on to select the Canvas control.
Make sure the Canvas control is selected, then use the Name box in the Properties window to set
the name to playArea.

NOTE

Once you change the name, it’ll show up as playArea instead of [Canvas] in the Document Outline window.

After you’ve named the Canvas control, you can close the Document Outline window. Then use the
 and buttons in the Properties window to set its vertical and horizontal alignments to Stretch,

reset the margins, and click both buttons to set the Width and Height to Auto. Then set its
Column to 0, and its ColumnSpan (next to Column) to 3.
Finally, open the Brush section of the Properties window and use the button to give it a
gradient. Choose the starting and ending colors for the gradient by clicking each of the tabs at the
bottom of the color editor and then clicking on a color.

➌ Create the enemy template.
Your game will have a lot of enemies bouncing around the screen, and you’re going to want them
to all look the same. Luckily, XAML gives us templates, which are an easy way to make a bunch
of controls look alike.
Next, right-click on the ContentControl in the Document Outline window. Choose Edit Template,
then choose Create Empty... from the menu. Name it EnemyTemplate. The IDE will add the
template to the XAML.

NOTE

You’re “flying blind” for this next bit — the designer won’t display anything for the template until you add a control and set its
height and width so it shows up. Don’t worry; you can always undo and try again if something goes wrong.

NOTE

You can also use the Document Outline window to select the grid if it gets deselected.

Your newly created template is currently selected in the IDE. Collapse the Document Outline
window so it doesn’t overlap the Toolbox. Your template is still invisible, but you’ll change that
in the next step. If you accidentally click out of the control template, you can always get back
to it by opening the Document Outline, right-clicking on the Content Control, and choosing
Edit Template→Edit Current.
➍ Edit the enemy template.
Add a red circle to the template:
Double-click on in the toolbox to add an ellipse.

NOTE

— Make sure you don’t click anywhere else in the designer until you see the ellipse. That will keep the template selected.

Set the ellipse’s Height and Width properties to 100, which will cause the ellipse to be displayed
in the cell.
Reset the HorizontalAlignment, VerticalAlignment, and Margin properties by clicking on
their squares and choosing Reset.
Go to the Brush section of the Properties window and click on to select a solid-color brush.
Color your ellipse red by clicking in the color bar and dragging to the top, then clicking in the
color sector and dragging to the upper-right corner.

The XAML for your ContentControl now looks like this:

➎ Use the Document Outline to modify the StackPanel and TextBlock controls.
Go back to the Document Outline (if you see at the top of the
Document Outline window, just click to get back to the Page outline). Select the StackPanel
control, make sure its vertical and horizontal alignments are set to center, and clear the margins.
Then do the same for the TextBlock.
You’re almost done laying out the page! Flip the page for the last steps...
➏ Add the human to the Canvas.
You’ve got two options for adding the human. The first option is to follow the next three
paragraphs. The second, quicker option is to just type the four lines of XAML into the IDE. It’s
your choice!
Select the Canvas control, then open the All XAML Controls section of the toolbox and double-
click on Ellipse to add an Ellipse control to the Canvas. Select the Canvas control again and
double-click on Rectangle. The Rectangle will be added right on top of the Ellipse, so drag the
Rectangle below it.
Hold down the Shift key and click on the Ellipse so both controls are selected. Right-click on the
Ellipse, choose Group Into, and then StackPanel. Select the Ellipse, use the solid brush property
to change its color to white, and set its Width and Height properties to 10. Then select the
Rectangle, make it white as well, and change its Width to 10 and its Height to 25.
Use the Document Outline window to select the Stack Panel (make sure you see at
the top of the Properties window). Click both buttons to set the Width and Height to Auto.
Then use the Name box at the top of the window to set its name to human. Here’s the XAML you
generated:

NOTE

If you choose to type this into the XAML window of the IDE, make sure you do it directly above the </Canvas> tag. That’s how
you indicate that the human is contained in the Canvas.

You might also see a Stroke property on the Ellipse and Rectangle set to "Black". (If you don’t
see one, try adding it. What happens?)
Go back to the Document Outline window to see how your new controls appear:

If human isn’t indented underneath playArea, click and drag human onto it.
➐ Add the Game Over text.
When your player’s game is over, the game will need to display a Game Over message. You’ll do
it by adding a TextBlock, setting its font, and giving it a name:
Select the Canvas, then drag a TextBlock out of the toolbox and onto it.
Use the Name box in the Properties window to change the TextBlock’s name to gameOverText.
Use the Text section of the Properties window to change the font to Arial Black, change the size to
100 px, and make it Bold and Italic.
Click on the TextBlock and drag it to the middle of the Canvas.
Edit the text so it says Game Over.

When you drag a control around a Canvas, its Left and Top properties are changed to set its position. If you change
the Left and Top properties, you move the control.

➑ Add the target portal that the player will drag the human onto.
There’s one last control to add to the Canvas: the target portal that your player will drag the human
into. (It doesn’t matter where in the Canvas you drag it.)
Select the Canvas control, then drag a Rectangle control onto it. Use the button in the Brushes
section of the Properties window to give it a gradient. Set its Height and Width properties to 50.
Turn your rectangle into a diamond by rotating it 45 degrees. Open the Transform section of the
Properties window to rotate the Rectangle 45 degrees by clicking on and setting the angle to
45.

Finally, use the Name box in the Properties window to give it the name target.
➒ Take a minute and double-check a few things.
Open the Document Outline window and make sure that the human StackPanel, gameOverText
TextBlock, and target Rectangle are indented underneath the playArea Canvas control, which is
indented under the second [Grid]. (If you see at the top of the
Document Outline window, just click to get back to the Page outline, which has pageRoot at the
top.) Select the playArea Canvas control and make sure its Height and Width are set to Auto.
These are all things that could cause bugs in your game that will be difficult to track down.

Congratulations — you’ve finished building the main page for your app!

WHO DOES WHAT?

Now that you’ve built a user interface, you should have a sense of what some of the controls do, and you’ve used a lot of different
properties to customize them. See if you can work out which property does what, and where in the Properties window in the IDE you
find it.

Solution in Who Does What? Solution

Here’s a hint: you can use the Search box in the Properties window to find properties — but some of these properties
aren’t on every type of control.

You’ve set the stage for the game
Your page is now all set for coding. You set up the grid that will serve as the basis of your page, and
you added controls that will make up the elements of the game.

Visual Studio gave you useful tools for laying out your page, but all it really did was help you create XAML code.
You’re the one in charge!

What you’ll do next
Now comes the fun part: adding the code that makes your game work. You’ll do it in three stages: first
you’ll animate your enemies, then you’ll let your player interact with the game, and finally you’ll add
polish to make the game look better.

Add a method that does something
It’s time to start writing some C# code, and the first thing you’ll do is add a method — and the IDE
can give you a great starting point by generating code.
When you’re editing a page in the IDE, double-clicking on any of the controls on the page causes the
IDE to automatically add code to your project. Make sure you’ve got the page designer showing in the
IDE, and then double-click on the Start button. The IDE will add code to your project that gets run any
time a user clicks on the button. You should see some code pop up that looks like this:

Use the IDE to create your own method
Click between the { } brackets and type this, including the parentheses and semicolon:
Notice the red squiggly line underneath the text you just typed? That’s the IDE telling you that
something’s wrong. If you click on the squiggly line, a blue box appears, which is the IDE’s way of
telling you that it might be able to help you fix the error.
Hover over the blue box and click the icon that pops up. You’ll see a box asking you to generate a
method stub. What do you think will happen if you click it? Go ahead and click it to find out!

THERE ARE NO DUMB QUESTIONS

Q: Q: What’s a method?

A: A: A method is just a named block of code. We’ll talk a lot more about methods in Chapter 2.

Q: Q: And the IDE generated it for me?

A: A: Yes...for now. A method is one of the basic building blocks of programs — you’ll write a lot of them, and you’ll get used to writing them by hand.

WATCH IT!

C# code must be added exactly as you see it here.

It’s really easy to throw off your code. When you’re adding C# code to your program, the capitalization has to be exactly
right, and make sure you get all of the parentheses, commas, and semicolons. If you miss one, your program won’t work!

Fill in the code for your method
It’s time to make your program do something, and you’ve got a good starting point. The IDE
generated a method stub for you: the starting point for a method that you can fill in with code.

➊ Delete the contents of the method stub that the IDE generated for you.

➋ Start adding code. Type the word Content into the method body. The IDE will pop up a window
called an IntelliSense Window with suggestions. Choose ContentControl from the list.

➌ Finish adding the first line of code. You’ll get another IntelliSense window after you type new.

Make sure each XAML control has the right name, and all properties (like Width and
Height) are correct! If not, your program might crash.
➍ Before you fill in the AddEnemy() method, you’ll need to add a line of code near the top of the
file. Find the line that starts with public sealed partial class MainPage and add this line
after the bracket ({) and before the first line of code ():

➎ Finish adding the method. You’ll see some squiggly red underlines. The ones under
AnimateEnemy() will go away when you generate its method stub.

➏ Use the blue box and the button to generate a method stub for AnimateEnemy(), just like
you did for AddEnemy(). This time it added four parameters called enemy, p1, p2, and p3. Edit
the top line of the method to change the last three parameters. Change the parameter p1 to from, the
parameter p2 to to, and the parameter p3 to propertyToAnimate. Then change any int types to
double.

Flip the page to see your program run!

Finish the method and run your program
Your program is almost ready to run! All you need to do is finish your AnimateEnemy() method.
Don’t panic if things don’t quite work yet. You may have missed a comma or some parentheses —
when you’re programming, you need to be really careful about those things!

RELAX

Still seeing red? The IDE helps you track down problems.

If you still have some of those red squiggly lines, don’t worry! You probably just need to track down a typo or two. If you’re still
seeing squiggly red underlines, it just means you didn’t type in some of the code correctly. We’ve tested this chapter with a lot of
different people, and we didn’t leave anything out. All of the code you need to get your program working is in these pages.

➊ Add a using statement to the top of the file.
Scroll all the way to the top of the file. The IDE generated several lines that start with using. Add
one more to the bottom of the list:

➋ Add code that creates an enemy bouncing animation.
You generated the method stub for the AnimateEnemy() method on the previous page. Now you’ll
add its code. It makes an enemy start bouncing across the screen.

➌ Look over your code.
You shouldn’t see any errors, and your Error List window should be empty. If not, double-click on
the error in the Error List. The IDE will jump your cursor to the right place to help you track down
the problem.

NOTE

If you can’t see the Error List window, choose Error List from the View menu to show it. You’ll learn more about using the error
window and debugging your code in Chapter 2.

Here’s a hint: if you move too many windows around your IDE, you can always reset by choosing Reset Window
Layout from the Window menu.

➍ Start your program.
Find the button at the top of the IDE. This starts your program running.

➎ Now your program is running!
First, a big X will be displayed for a few seconds, and then your main page will be displayed.
Click the “Start!” button a few times. Each time you click it, a circle is launched across your
canvas.

➏ Stop your program.
Press Alt-Tab to switch back to the IDE. The button in the toolbar has been replaced with
to break, stop, and restart your program. Click the square to stop the program running.

Do you see numbers in the upper corners of the page? Those are frame rate counters.

NOTE

You’ll learn more about them in Chapter 10.

Here’s what you’ve done so far
Congratulations! You’ve built a program that actually does something. It’s not quite a playable game,
but it’s definitely a start. Let’s look back and see what you built.

Visual Studio can generate code for you, but you need to know what you want to build BEFORE you start building it. It
won’t do that for you!

Here’s the solution for the “Who Does What” exercise in Who Does What?. We’ll give you the anwers to the pencil-and-
paper puzzles and exercises, but they won’t always be on the next page.

WHO DOES WHAT? SOLUTION

Now that you’ve built a user interface, you should have a sense of what some of the controls do, and you’ve used a lot of different
properties to customize them. See if you can work out which property does what, and where in the Properties window in the IDE you
find it.

Add timers to manage the gameplay
Let’s build on that great start by adding working gameplay elements. This game adds more and more
enemies, and the progress bar slowly fills up while the player drags the human to the target. You’ll
use timers to manage both of those things.

➊ ADD MORE LINES TO THE TOP OF YOUR C# CODE.

NOTE

The MainPage.Xaml.cs file you’ve been editing contains the code for a class called MainPage. You’ll learn about classes in
Chapter 3.

Go up to the top of the file where you added that Random line. Add three more lines:

➋ ADD A METHOD FOR ONE OF YOUR TIMERS.
Find this code that the IDE generated:

Put your cursor right after the last semicolon, hit Enter two times, and type enemyTimer.
(including the period). As soon as you type the dot, an IntelliSense window will pop up. Choose
Tick from the IntelliSense window and type the following text. As soon as you enter += the IDE
pops up a box:

Press the Tab key. The IDE will pop up another box:

Press Tab one more time. Here’s the code the IDE generated for you:

Timers “tick” every time interval by calling methods over and over again. You’ll use one timer to add enemies
every few seconds, and the other to end the game when time expires.

➌ FINISH THE MAINPAGE() METHOD.
You’ll add another Tick event handler for the other timer, and you’ll add two more lines of code.
Here’s what your finished MainPage() method and the two methods the IDE generated for you
should look like:

B RAIN POWER

Right now your Start button adds bouncing enemies to the play area. What do you think you’ll need to do to make it start the
game instead?

➍ ADD THE ENDTHEGAME() METHOD.
Go to the new targetTimer_Tick() method, delete the line that the IDE generated, and add the
following code. The IntelliSense window might not seem quite right:

Notice how progressBar has an error? That’s OK. We did this on purpose (and we’re not even
sorry about it!) to show you what it looks like when you try to use a control that doesn’t have a
name, or has a typo in the name. Go back to the XAML code (it’s in the other tab in the IDE), find
the ProgressBar control that you added to the bottom row, and change its name to progressBar.

NOTE

If you closed the Designer tab that had the XAML code, double-click on MainPage. xaml in the Solution Explorer window to
bring it up.

Next, go back to the code window and generate a method stub for EndTheGame(), just like you did
a few pages ago for AddEnemy(). Here’s the code for the new method:

This method ends the game by stopping the timers, making the Start button visible again, and adding the GAME
OVER text to the play area.

Make the Start button work
Remember how you made the Start button fire circles into the Canvas? Now you’ll fix it so it actually
starts the game.

➊ Make the Start button start the game.
Find the code you added earlier to make the Start button add an enemy. Change it so it looks like
this:

➋ Add the StartGame() method.

NOTE

It’s normal to add parentheses () when writing about a method.

Generate a method stub for the StartGame() method. Here’s the code to fill into the stub method
that the IDE added:

➌ Make the enemy timer add the enemies.
Find the enemyTimer_Tick() method that the IDE added for you and replace its contents with
this:

READY B AKE CODE

We’re giving you a lot of code to type in.

By the end of the book, you’ll know what all of this code does — in fact, you’ll be able to write code just like it on your own.

For now, your job is to make sure you enter each line accurately, and to follow the instructions exactly. This will get you used to
entering code, and will help give you a feel for the ins and outs of the IDE.

NOTE

Once you’re used to working with code, you’ll be good at spotting those missing parentheses, semicolons, etc.

Are you seeing errors in the Error List window that don’t make sense? One misplaced comma
or semicolon can cause two, three, four, or more errors to show up. Double check your code.

Run the program to see your progress
Your game is coming along. Run it again to see how it’s shaping up.

NOTE

When you press the “Start!” button, it disappears, clears the enemies, and starts the progress bar filling up.

B RAIN POWER

What do you think you’ll need to do to get the rest of your game working?

Flip the page to find out!

Add code to make your controls interact with the player
Make sure you switch back to the IDE and stop the app before you make more changes to the
code.
You’ve got a human that the player needs to drag to the target, and a target that has to sense when the
human’s been dragged to it. It’s time to add code to make those things work.

➊ Go to the XAML designer and use the Document Outline window to select human (remember,
it’s the StackPanel that contains a Circle and a Rectangle). Then go to the Properties window and
press the button to switch it to show event handlers. Find the PointerPressed row and double-
click in the empty box.

NOTE

You’ll learn more about the event handlers in the Properties window in Chapter 4.

The Document Outline may have collapsed [Grid], playArea, and other lines. If it did, just expand them to find the human control.

Now go back and check out what the IDE added to your XAML for the StackPanel:

It also generated a method stub for you. Right-click on human_PointerPressed in the XAML and
choose “Navigate to Event Handler” to jump straight to the C# code:

➋ Fill in the C# code:

➌ Use the Document Outline window to select the Rectangle named target, then use the event
handlers view of the Properties window to add a PointerEntered event handler. Here’s the code
for the method:

NOTE

Make sure you add the right event handler! You added a PointerPressed event handler to the human, but now you’re adding a
PointerEntered event handler to the target.

When the Properties window is in the mode where it displays event handlers, double-clicking on an empty event
handler box causes the IDE to add a method stub for it.

➍ Now you’ll add two more event handlers, this time to the playArea Canvas control. You’ll
need to find the right [Grid] in the Document Outline (there are two of them — use the child grid
that’s indented under the main grid for the page) and set its name to grid. Then you can add these

event handlers to playArea:

NOTE

You’ll need to switch your Properties window back to show properties instead of event handlers.

Dragging humans onto enemies ends the game
When the player drags the human into an enemy, the game should end. Let’s add the code to do that.
Go to your AddEnemy() method and add one more line of code to the end. Use the IntelliSense
window to fill in enemy.PointerEntered from the list:

Choose PointerEntered from the list. (If you choose the wrong one, don’t worry — just backspace
over it to delete everything past the dot. Then enter the dot again to bring up the IntelliSense window.)
Next, add an event handler, just like you did before. Type += and then press Tab:

Then press Tab again to generate the stub for your event handler:

Now you can go to the new method that the IDE generated for you and fill in the code:

Your game is now playable
Run your game — it’s almost done! When you click the Start button, your play area is cleared of any
enemies, and only the human and target remain. You have to get the human to the target before the
progress bar fills up. Simple at first, but it gets harder as the screen fills with dangerous alien
enemies!

Make your enemies look like aliens
WATCH IT!

Seeing events instead of properties?

You can toggle the Properties window between displaying properties or events for the selected control by clicking the wrench
or lightning bolt icons.

Red circles aren’t exactly menacing. Luckily, you used a template. All you need to do is update it.
➊ Go to the Document Outline, right-click on the ContentControl, choose Edit Template, and then
Edit Current to edit the template. You’ll see the template in the XAML window. Edit the XAML
code for the ellipse to set the width to 75 and the fill to Gray. Then add to add a
black outline (if it’s not already there), and reset its vertical and horizontal alignments. Here’s
what it should look like (you can delete any additional properties that may have inadvertently been
added while you worked on it):

➋ Drag another Ellipse control out of the toolbox on top of the existing ellipse. Change its Fill to
black, set its width to 25, and its height to 35. Set the alignment and margins like this:

➌ Use the button in the Transforms section of the Properties window to add a Skew transform:

➍ Drag one more Ellipse control out of the toolbox on top of the existing ellipse. Change its fill to
Black, set its width to 25, and set its height to 35. Set the alignment and margins like this:

and add a skew like this:

Add a splash screen and a tile
That big X that appears when you start your program is a splash screen. And when you go back to the
Windows Start page, there it is again in the tile. Let’s change these things.

Expand the folder in the Solution Explorer window and you’ll see four files. Double-click
each of them to edit them in the Visual Studio graphics editor. Edit SplashScreen.scale-100.png to
create a splash screen that’s displayed when the game starts. Logo.scale-100.png and
SmallLogo.scale-100.png are displayed in the Start screen. And when your app is displayed in the
search results (or in the Windows Store!), it displays StoreLogo.scale-100.png.

Publish your app
You should be pretty pleased with your app! Now it’s time to deploy it. When you publish your app to
the Windows Store, you make it available to millions of potential users. The IDE can help guide you
through the steps to publish your app to the Windows Store.

Here’s what it takes to get your app out there:
➊ Open a Windows Store developer account.
➋ Choose your app’s name, set an age rating, write a description, and choose a business model to
determine if your app is free, ad-supported, or has a price.
➌ Test your app using the Windows App Certification Kit to identify and fix any problems.
➍ Submit your app to the Store! Once it’s accepted, millions of people around the world can
find and download it.

NOTE

Throughout the book we’ll show you where to find more information from MSDN, the Microsoft Developer Network. This is a really
valuable resource that helps you keep expanding your knowledge.

You can learn more about how to publish apps to the Windows Store here: http://msdn.microsoft.com/en-
us/library/windows/apps/jj657972.aspx

http://msdn.microsoft.com/en-us/library/windows/apps/jj657972.aspx

Use the Remote Debugger to sideload your app
Sometimes you want to run your app on a remote machine without publishing it to the Windows Store.
When you install your app on a machine without going through the Windows Store it’s called
sideloading, and one of the easiest ways to do it is to install the Visual Studio Remote Debugger on
another computer.
Here’s how to get your app loaded using the Remote Debugger:

Make sure the remote machine is running Windows 8.
Go to the Microsoft Download Center (http://www.microsoft.com/en-hk/download/default.aspx)
on the remote machine and search for “Remote Tools for Visual Studio” to find the download
page.

NOTE

At the time this is being written, you’ll find “Remote Tools for Visual Studio 2013,” but you may find future updates.

Download the installer for your machine’s architecture (x86, x64, ARM) and run it to install the
remote tools.
Go to the Start page and launch the Remote Debugger. (You may need to search for the app if
there’s no icon.)

If your computer’s network configuration needs to change, it may pop up a wizard to help with
that. Once it’s running, you’ll see the Visual Studio Remote Debugging Monitor window:

Your remote computer is now running the Visual Studio Remote Debugging Monitor and waiting
for incoming connections from Visual Studio on your development machine.

If you have an odd network setup, you may have trouble running the remote debugger. This MDSN page can help you get
it set up: http://msdn.microsoft.com/en-us/library/vstudio/bt727f1t.aspx

Flip to get your app up and running on the remote computer!

http://www.microsoft.com/en-hk/download/default.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bt727f1t.aspx

Start remote debugging
Once you’ve got a remote computer running the remote debugging monitor, you can launch the app
from Visual Studio to install and run it. This will automatically sideload your app on the computer,
and you’ll be able to run it again from the Start page any time you want.

➊ CHOOSE “REMOTE MACHINE” FROM THE DEBUG DROP-DOWN.
You can use the Debug drop-down to tell the IDE to run your program on a remote machine. Take a
close look at the button you’ve been using to run your program — you’ll see a
drop-down (). Click it to show the drop-down and choose Remote Machine:

➋ RUN YOUR PROGRAM ON THE REMOTE MACHINE.
Now run your program by clicking the button. The IDE will pop up a window asking for the
machine to run on. If it doesn’t detect it in your subnet, you can enter the machine name manually:

➌ ENTER YOUR CREDENTIALS.
You’ll be prompted to enter the username and password of the user on the remote machine. You
can turn off authentication in the Remote Debugging Monitor if you want to avoid this (but that’s
not a great idea, because then anyone can run programs on your machine remotely!).

➍ GET YOUR DEVELOPER LICENSE.
You already obtained a free developer license from Microsoft when you installed Visual Studio.
You need that license in order to sideload apps onto a machine. Luckily, the Remote Debugging
Monitor will pop up a wizard to get it automatically.

➎ NOW...SAVE SOME HUMANS!
Once you get through that setup, your program will start running on the remote machine. Since it’s
sideloaded, if you want to run it again you can just run it from the Windows Start page.
Congratulations, you’ve built your first Windows Store app and loaded it onto another computer!

Chapter 2. It’s all Just Code: Under the hood

You’re a programmer, not just an IDE user.
You can get a lot of work done using the IDE. But there’s only so far it can take you. Sure, there are a
lot of repetitive tasks that you do when you build an application. And the IDE is great at doing those
things for you. But working with the IDE is only the beginning. You can get your programs to do so
much more — and writing C# code is how you do it. Once you get the hang of coding, there’s nothing
your programs can’t do.

When you’re doing this...
The IDE is a powerful tool — but that’s all it is, a tool for you to use. Every time you change your
project or drag and drop something in the IDE, it creates code automatically. It’s really good at
writing boilerplate code, or code that can be reused easily without requiring much customization.
Let’s look at what the IDE does in a typical application development, when you’re...

➊ CREATING A WINDOWS STORE PROJECT
There are several kinds of applications the IDE lets you build. We’ll be concentrating on Windows
Store applications for now — you’ll learn about other kinds of applications in the next chapter.

➋ DRAGGING A CONTROL OUT OF THE TOOLBOX AND ONTO YOUR PAGE, AND
THEN DOUBLE-CLICKING IT
Controls are how you make things happen in your page. In this chapter, we’ll use Button controls
to explore various parts of the C# language.

➌ SETTING A PROPERTY ON YOUR PAGE
The Properties window in the IDE is a really powerful tool that you can use to change attributes

of just about everything in your program: all visual and functional properties for the controls on
your page, and even options on your project itself.

...the IDE does this
Every time you make a change in the IDE, it makes a change to the code, which means it changes the
files that contain that code. Sometimes it just modifies a few lines, but other times it adds entire files
to your project.

➊ ...THE IDE CREATES THE FILES AND FOLDERS FOR THE PROJECT.

➋ ...THE IDE ADDS CODE TO MAINPAGE.XAML THAT ADDS A BUTTON, AND THEN
ADDS A METHOD TO MAINPAGE.XAML.CS THAT GETS RUN ANY TIME THE BUTTON
IS CLICKED.

➌ ...THE IDE OPENS THE MAINPAGE.XAML FILE AND UPDATES A LINE OF XAML
CODE.

Where programs come from
A C# program may start out as statements in a bunch of files, but it ends up as a program running in
your computer. Here’s how it gets there.

Every program starts out as source code files

You’ve already seen how to edit a program, and how the IDE saves your program to files in a folder.
Those files are your program — you can copy them to a new folder and open them up, and everything
will be there: pages, resources, code, and anything else you added to your project.
You can think of the IDE as a kind of fancy file editor. It automatically does the indenting for you,
changes the colors of the keywords, matches up brackets for you, and even suggests what words might
come next. But in the end, all the IDE does is edit the files that contain your program.

NOTE

There’s no reason you couldn’t build your programs in Notepad, but it’d be a lot more time-consuming.

The IDE bundles all of the files for your program into a solution by creating a solution (.sln) file and
a folder that contains all of the other files for the program. The solution file has a list of the project
files (which end in .csproj) in the solution, and the project files contain lists of all the other files
associated with the program. In this book, you’ll be building solutions that only have one project in
them, but you can easily add other projects to your solution using the IDE’s Solution Explorer.

Build the program to create an executable
When you select Build Solution from the Build menu, the IDE compiles your program. It does this by
running the compiler, which is a tool that reads your program’s source code and turns it into an
executable. The executable is a file on your disk that ends in .exe — that’s the actual program that
Windows runs. When you build the program, it creates the executable inside the bin folder, which is
inside the project folder. When you publish your solution, it copies the executable (and any other files
necessary) into a package that can be uploaded to the Windows Store or sideloaded.
When you select Start Debugging from the Debug menu, the IDE compiles your program and runs the
executable. It’s got some more advanced tools for debugging your program, which just means running
it and being able to pause (or “break”) it so you can figure out what’s going on.

The .NET Framework gives you the right tools for the job

C# is just a language — by itself, it can’t actually do anything. And that’s where the .NET
Framework comes in. Those controls you dragged out of the toolbox? Those are all part of a library
of tools, classes, methods, and other useful things. It’s got visual tools like the XAML toolbox
controls you used, and other useful things like the DispatcherTimer that made your Save the Humans
game work.
All of the controls you used are part of .NET for Windows Store apps, which contains an API with
grids, buttons, pages, and other tools for building Windows Store apps. But for a few chapters starting
with Chapter 3, you’ll learn all about writing desktop applications, which are built using tools from
the .NET for Windows Desktop (which some people call “WinForms”). It’s got tools to build
desktop applications from windows that hold forms with checkboxes, buttons, and lists. It can draw
graphics, read and write files, manage collections of things...all sorts of tools for a lot of jobs that
programmers have to do every day. The funny thing is that Windows Store apps need to do those
things, too! One of the things you’ll learn by the end of this book is how Windows Store and Windows
Desktop apps do some of those things differently. That’s the kind of insight and understanding that
helps good programmers become great programmers.

NOTE

An API, or Application Programming Interface, is a collection of code tools that you use to access or control a system. Many systems
have APIs, but they’re especially important for operating systems like Windows.

The tools in both the Windows Runtime and the .NET Framework are divided up into namespaces.
You’ve seen these namespaces before, at the top of your code in the “using” lines. One namespace is
called Windows.UI.Xaml.Conrols — it’s where your buttons, checkboxes, and other controls come
from. Whenever you create a new Windows Store project, the IDE will add the necessary files so that
your project contains a page, and those files have the line “using Windows.UI.Xaml.Controls;” at
the top.

You can see an overview of .NET for Windows Store apps here: http://msdn.microsoft.com/en-
us/library/windows/apps/br230302.aspx

http://msdn.microsoft.com/en-us/library/windows/apps/br230302.aspx

Your program runs inside the Common Language Runtime

Every program in Windows 8 runs on an architecture called the Windows Runtime. But there’s an
extra “layer” between the Windows Runtime and your program called the Common Language
Runtime, or CLR. Once upon a time, not so long ago (but before C# was around), writing programs
was harder, because you had to deal with hardware and low-level machine stuff. You never knew
exactly how someone was going to configure his computer. The CLR — often referred to as a virtual
machine — takes care of all that for you by doing a sort of “translation” between your program and
the computer running it.

NOTE

You don’t really have to worry about the CLR much right now. It’s enough to know it’s there, and takes care of running your program
for you automatically. You’ll learn more about it as you go.

You’ll learn about all sorts of things the CLR does for you. For example, it tightly manages your
computer’s memory by figuring out when your program is finished with certain pieces of data and
getting rid of them for you. That’s something programmers used to have to do themselves, and it’s
something that you don’t have to be bothered with. You won’t know it at the time, but the CLR will
make your job of learning C# a whole lot easier.

The IDE helps you code
You’ve already seen many of the things that the IDE can do. Let’s take a closer look at some of the
tools it gives you, to make sure you’re starting off with all the tools you need.

THE SOLUTION EXPLORER SHOWS YOU EVERYTHING IN YOUR PROJECT
You’ll spend a lot of time going back and forth between classes, and the easiest way to do that is
to use the Solution Explorer. Here’s what the Solution Explorer looked like after creating a blank
Windows Application called App1:

USE THE TABS TO SWITCH BETWEEN OPEN FILES
Since your program is split up into more than one file, you’ll usually have several code files open
at once. When you do, each one will be in its own tab in the code editor. The IDE displays an
asterisk (*) next to a filename if it hasn’t been saved yet.

THE IDE HELPS YOU WRITE CODE
Did you notice little windows popping up as you typed code into the IDE? That’s a feature called
IntelliSense, and it’s really useful. One thing it does is show you possible ways to complete your
current line of code. If you type random and then a period, it knows that there are three valid ways
to complete that line:

If you select Next and type (, the IDE’s IntelliSense will show you information about how you can
complete the line.
THE ERROR LIST HELPS YOU TROUBLESHOOT COMPILER ERRORS
If you haven’t already discovered how easy it is to make typos in a C# program, you’ll find out
very soon! Luckily, the IDE gives you a great tool for troubleshooting them. When you build your
solution, any problems that keep it from compiling will show up in the Error List window at the
bottom of the IDE:

Double-click on an error, and the IDE will jump to the problem in the code:

Anatomy of a program
Every C# program’s code is structured in exactly the same way. All programs use namespaces,
classes, and methods to make your code easier to manage.

Let’s take a closer look at your code
Open up the code from your Save the Humans project’s MainPage.xaml.cs so we can have a closer
look at it.

➊ THE CODE FILE STARTS BY USING THE .NET FRAMEWORK TOOLS
You’ll find a set of using lines at the top of every program file. They tell C# which parts of the
.NET Framework or Windows Store API to use. If you use other classes that are in other
namespaces, then you’ll add using lines for them, too. Since apps often use a lot of different tools
from the .NET Framework and Windows Store API, the IDE automatically adds a bunch of using
lines when it creates a page (which isn’t quite as “blank” as it appeared) and adds it to your
project.

One thing to keep in mind: you don’t actually have to use a using statement. You can always use
the fully qualified name. Back in your Save the Humans app, you added this line:

using Windows.UI.Xaml.Media.Animation;

Try commenting out that line by adding // in front of it, then have a look at the errors that show up
in the error list. You can make one of them go away. Find a Storyboard that the IDE now tells you
has an error, and change it to Windows.UI.Xaml.Media.Animation.Storyboard (but you should
undo the comment you added to make your program work again).
➋ C# PROGRAMS ARE ORGANIZED INTO CLASSES
Every C# program is organized into classes. A class can do anything, but most classes do one
specific thing. When you created the new program, the IDE added a class called MainPage that
displays the page.

➌ CLASSES CONTAIN METHODS THAT PERFORM ACTIONS
When a class needs to do something, it uses a method. A method takes input, performs some
action, and sometimes produces an output. The way you pass input into a method is by using
parameters. Methods can behave differently depending on what input they’re given. Some
methods produce output. When they do, it’s called a return value. If you see the keyword void in
front of a method, that means it doesn’t return anything.

➍ A STATEMENT PERFORMS ONE SINGLE ACTION
When you filled in the StartGame() method, you added a bunch of statements. Every method is
made up of statements. When your program calls a method, it executes the first statement in the
method, then the next, then the next, etc. When the method runs out of statements or hits a return
statement, it ends, and the program resumes after the statement that originally called the method.

THERE ARE NO DUMB QUESTIONS

Q: Q: What’s with all the curly brackets?

A: A: C# uses curly brackets (or “braces”) to group statements together into blocks. Curly brackets always come in pairs. You’ll only see a closing curly
bracket after you see an opening one. The IDE helps you match up curly brackets — just click on one, and you’ll see it and its match get shaded darker.

Q: Q: How come I get errors in the Error List window when I try to run my program? I thought that only happened when I did “Build
Solution.”

A: A: Because the first thing that happens when you choose Start Debugging from the menu or press the toolbar button to start your program running is
that it saves all the files in your solution and then tries to compile them. And when you compile your code — whether it’s when you run it, or when
you build the solution — if there are errors, the IDE will display them in the Error List instead of running your program.

NO TE

A lot of the errors that show up when you try to run your program also show up in the Error List window and as
red squiggles under your code.

The IDE helps you build your code right.
A long time ago, programmers had to use simple text editors like Notepad to edit their code. (In fact,
they would have been envious of some of the features of Notepad, like search and replace or ^G for
“go to line number.”) We had to use a lot of complex command-line applications to build, run, debug,
and deploy our code.
Over the years, Microsoft (and, let’s be fair, a lot of other companies, and a lot of individual
developers) figured out a lot of helpful things like error highlighting, IntelliSense, WYSIWYG click-
and-drag page editing, automatic code generation, and many other features.
After years of evolution, Visual Studio is now one of the most advanced code-editing tools ever built.
And lucky for you, it’s also a great tool for learning and exploring C# and app development.

WHAT’S MY PURPOSE?

Match each of these fragments of code generated by the IDE to what it does. (Some of these are new — take a guess and see if you
got it right!)

Set properties for a TextBlock control

Nothing — it’s a comment that the programmer added to explain the code to anyone who’s reading it

Disable the maximize icon () in the title bar of the Form1 window

A special kind of comment that the IDE uses to explain what an entire block of code does

Change the background color of a Grid control named myGrid

A method that executes whenever a program displays its main page

WHAT’S MY PURPOSE?

Match each of these fragments of code generated by the IDE to what it does. (Some of these are new — take a guess and see if you
got it right!)

Two classes can be in the same namespace
Take a look at these two class files from a program called PetFiler2. They’ve got three classes: a
Dog class, a Cat class, and a Fish class. Since they’re all in the same PetFiler2 namespace,
statements in the Dog.Bark() method can call Cat.Meow() and Fish.Swim(). It doesn’t matter how
the various namespaces and classes are divided up between files. They still act the same when
they’re run.

There’s more to namespaces and class declarations, but you won’t need them for the work
you’re doing right now. Flip to #3 in the “Leftovers” appendix to read more.

Your programs use variables to work with data
When you get right down to it, every program is basically a data cruncher. Sometimes the data is in
the form of a document, or an image in a video game, or an instant message. But it’s all just data. And
that’s where variables come in. A variable is what your program uses to store data.

WATCH IT!

Are you already familiar with another language?

If so, you might find that a few things in this chapter seem really familiar. Still, it’s worth taking the time to run through the
exercises anyway, because there may be a few ways that C# is different from what you’re used to.

Declare your variables
Whenever you declare a variable, you tell your program its type and its name. Once C# knows your
variable’s type, it’ll keep your program from compiling if you make a mistake and try to do something
that doesn’t make sense, like subtract “Fido” from 48353.

Variables vary
A variable is equal to different values at different times while your program runs. In other words, a
variable’s value varies. (Which is why “variable” is such a good name.) This is really important,
because that idea is at the core of every program that you’ve written or will ever write. So if your
program sets the variable myHeight equal to 63:

int myHeight = 63;

any time myHeight appears in the code, C# will replace it with its value, 63. Then, later on, if you
change its value to 12:

myHeight = 12;

C# will replace myHeight with 12 — but the variable is still called myHeight.
Whenever your program needs to work with numbers, text, true/false values, or any other kind of data, you’ll use
variables to keep track of them.

You have to assign values to variables before you use them
Try putting these statements into a C# program:

string z;
string message = "The answer is " + z;

Go ahead, give it a shot. You’ll get an error, and the IDE will refuse to compile your code. That’s
because the compiler checks each variable to make sure that you’ve assigned it a value before you
use it. The easiest way to make sure you don’t forget to assign your variables values is to combine the
statement that declares a variable with a statement that assigns its value:

If you write code that uses a variable that hasn’t been assigned a value, your code won’t compile. It’s easy to avoid
that error by combining your variable declaration and assignment into a single statement.

NOTE
Once you’ve assigned a value to your variable, that value can change. So there’s no disadvantage to assigning a variable an
initial value when you declare it.

A few useful types
Every variable has a type that tells C# what kind of data it can hold. We’ll go into a lot of detail about
the many different types in C# in Chapter 4. In the meantime, we’ll concentrate on the three most
popular types. int holds integers (or whole numbers), string holds text, and bool holds Boolean
true/false values.

NOTE

var-i-a-ble, noun.

an element or feature likely to change. Predicting the weather would be a whole lot easier if meterologists didn’t have to take so
many variables into account.

To programmers, the word “string” almost always means a string of text, and “int” is almost
always short for integer.

C# uses familiar math symbols
Once you’ve got some data stored in a variable, what can you do with it? Well, if it’s a number, you’ll
probably want to add, subtract, multiply, or divide it. And that’s where operators come in. You
already know the basic ones. Let’s talk about a few more. Here’s a block of code that uses operators
to do some simple math:

RELAX

Don’t worry about memorizing these operators now.

You’ll get to know them because you’ll see ’em over and over again.

Use the debugger to see your variables change
The debugger is a great tool for understanding how your programs work. You can use it to see the
code on the previous page in action.
Debug this!

➊ CREATE A NEW VISUAL C# WINDOWS STORE BLANK APP (XAML) PROJECT.
Drag a TextBlock onto your page and give it the name output. Then add a Button and double-click
it to add a method called Button_Click(). The IDE will automatically open that method in the
code editor. Enter all of the code on the previous page into the method.
➋ INSERT A BREAKPOINT ON THE FIRST LINE OF CODE.
Right-click on the first line of code (int number = 15;) and choose Insert Breakpoint from the
Breakpoint menu. (You can also click on it and choose Debug→Toggle Breakpoint or press F9.)

Creating a new Blank App project will tell the IDE to create a new project with a blank page. You might want to name
it something like UseTheDebugger (to match the header of this page). You’ll be building a whole lot of programs
throughout the book, and you may want to go back to them later.

 Flip the page and keep going!

➌ START DEBUGGING YOUR PROGRAM.
Run your program in the debugger by clicking the Start Debugging button (or by pressing F5, or by
choosing Debug→Start Debugging from the menu). Your program should start up as usual and
display the page.
➍ CLICK ON THE BUTTON TO TRIGGER THE BREAKPOINT.
As soon as your program gets to the line of code that has the breakpoint, the IDE automatically
brings up the code editor and highlights the current line of code in yellow.

IDE TIP:

When you’re debugging a Windows Store app, you can return to the debugger by pressing the Windows logo key+D. If you’re
using a touch screen, swipe from the left edge of the screen to the right. Then you can pause or stop the debugger using the
Debug toolbar or menu items.

➎ ADD A WATCH FOR THE number VARIABLE.
Right-click on the number variable (any occurrence of it will do!) and choose from
the menu. The Watch window should appear in the panel at the bottom of the IDE:

➏ STEP THROUGH THE CODE.
Press F10 to step through the code. (You can also choose Debug→Step Over from the menu, or
click the Step Over button in the Debug toolbar.) The current line of code will be executed, setting
the value of number to 15. The next line of code will then be highlighted in yellow, and the Watch
window will be updated:

➐ CONTINUE RUNNING THE PROGRAM.
When you want to resume, just press F5 (or Debug→Continue), and the program will resume
running as usual.

Adding a watch can help you keep track of the values of the variables in your program. This will really come in handy
when your programs get more complex.

NOTE
You can also hover over a variable while you’re debugging to see its value displayed in a tooltip...and you can pin it so it stays
open!

Loops perform an action over and over
Here’s a peculiar thing about most large programs: they almost always involve doing certain things
over and over again. And that’s what loops are for — they tell your program to keep executing a
certain set of statements as long as some condition is true (or false!).

NOTE

That’s a big part of why Booleans are so important. A loop uses a test to figure out if it should keep looping.

IDE TIP: B RACKETS

If your brackets (or braces — either name will do) don’t match up, your program won’t build, which leads to frustrating bugs. Luckily,
the IDE can help with this! Put your cursor on a bracket, and the IDE highlights its match:

Use a code snippet to write simple for loops
You’ll be typing for loops in just a minute, and the IDE can help speed up your coding a little. Type
for followed by two tabs, and the IDE will automatically insert code for you. If you type a new
variable, it’ll automatically update the rest of the snippet. Press Tab again, and the cursor will jump
to the length.

if/else statements make decisions
Use if/else statements to tell your program to do certain things only when the conditions you set up
are (or aren’t) true. A lot of if/else statements check if two things are equal. That’s when you use the
== operator. That’s different from the single equals sign (=) operator, which you use to set a value.

WATCH IT!

Don’t confuse the two equals sign operators!

You use one equals sign (=) to set a variable’s value, but two equals signs (==) to compare two variables. You won’t believe
how many bugs in programs — even ones made by experienced programmers! — are caused by using = instead of ==. If you
see the IDE complain that you “cannot implicitly convert type ‘int’ to ‘bool’, that’s probably what happened.

NOTE

Make sure you choose a sensible name for this project, because you’ll refer back to it later in the book.

Build an app from the ground up

When you see these sneakers, it means that it’s time for you to come up with code on your own.

The real work of any program is in its statements. You’ve already seen how statements fit into a page.
Now let’s really dig into a program so you can understand every line of code. Start by creating a
new Visual C# Windows Store Blank App project. This time, don’t delete the MainPage.xaml file
created by the Blank App template. Instead, use the IDE to modify it by adding three rows and two
columns to the grid, then adding four Button controls and a TextBlock to the cells.
Build this page

EXERCISE SOLUTION

NOTE

Here’s our solution to the exercise. Does your solution look similar? Are the line breaks different, or
the properties in a different order? If so, that’s OK!

A lot of programmers don’t use the IDE to create their XAML — they build it by hand. If we asked you to type in the XAML by
hand instead of using the IDE, would you be able to do it?

B RAIN POWER

Why do you think the left column and top row are given the number 0, not 1? Why is it OK to leave out the Grid.Row and
Grid.Column properties for the top-left cell?

Make each button do something
Here’s how your program is going to work. Each time you press one of the buttons, it will update the
TextBlock at the bottom (which you named myLabel) with a different message. The way you’ll do it
is by adding code to each of the four event handler methods that you had the IDE generate for you.
Let’s get started!

DO THIS!

When you see a “Do this!”, pop open the IDE and follow along. We’ll tell you exactly what to do, and point out what to look for
to get the most out of the example we show you.

➊ MAKE BUTTON1 UPDATE THE LABEL.
Go to the code for the button1_Click() method and fill in the code below. This is your chance to really understand what every
statement does, and why the program will show this output:

Here’s the code for the button:

A FEW HELPFUL TIPS

Don’t forget that all your statements need to end in a semicolon:

name = "Joe";

You can add comments to your code by starting them with two slashes:

// this text is ignored

Variables are declared with a name and a type (there are plenty of types that you’ll learn about in Chapter 4):

int weight;
// weight is an integer

The code for a class or a method goes between curly braces:

public void Go() {
 // your code here
}

Most of the time, extra whitespace is fine:

int j = 1234 ;

is the same as:

int j = 1234;

Run your program and make sure the output matches the screenshot on this page.
Flip the page to finish your program!

Set up conditions and see if they’re true
Use if/else statements to tell your program to do certain things only when the conditions you set up
are (or aren’t) true.

Use logical operators to check conditions
You’ve just looked at the == operator, which you use to test whether two variables are equal. There
are a few other operators, too. Don’t worry about memorizing them right now — you’ll get to know
them over the next few chapters.

The != operator works a lot like ==, except it’s true if the two things you’re comparing are not
equal.
You can use > and < to compare numbers and see if one is bigger or smaller than the other.
The ==, !=, >, and < operators are called conditional operators. When you use them to test two
variables or values, it’s called performing a conditional test.
You can combine individual conditional tests into one long test using the && operator for AND and
the || operator for OR. So to check if i equals 3 or j is less than 5, do (i == 3) || (j < 5).
When you use a conditional operator to compare two numbers, it’s called a conditional test.

➋ SET A VARIABLE AND THEN CHECK ITS VALUE.
Here’s the code for the second button. It’s an if/else statement that checks an integer variable
called x to see if it’s equal to 10.

NOTE

Make sure you stop your program before you do this — the IDE won’t let you edit the code while the program’s running. You
can stop it by closing the window, using the stop button on the toolbar, or selecting Stop Debugging from the Debug menu.

➌ ADD ANOTHER CONDITIONAL TEST.
The third button makes this output. Then change it so someValue is set to 3 instead of 4. The code
inside the if block doesn’t get run — can ypou figure out why? Put a breakpoint on the first
statement and step through the method, using Alt-Tab to switch to the app and back to make sure
the TextBlock gets updated.

➍ ADD LOOPS TO YOUR PROGRAM.
Here’s the code for the last button. It’s got two loops. The first is a while loop, which repeats the
statements inside the brackets as long as the condition is true — do something while this is true.
The second one is a for loop. Take a look and see how it works.

Before you click on the button, read through the code and try to figure out what the TextBlock
will show. Then click the button and see if you were right!

SHARPEN YOUR PENCIL

Let’s get a little more practice with conditional tests and loops. Take a look at the code below. Circle the conditional tests, and fill in
the blanks so that the comments correctly describe the code that’s being run.

MORE AB OUT CONDITIONAL TESTS

You can do simple conditional tests by checking the value of a variable using a comparison operator. Here’s how you compare two
ints, x and y:

x < y (less than)
x > y (greater than)
x == y (equals - and yes, with two equals signs)

These are the ones you’ll use most often.

Then your loop runs forever!
Every time your program runs a conditional test, the result is either true or false. If it’s true, then
your program goes through the loop one more time. Every loop should have code that, if it’s run
enough times, should cause the conditional test to eventually return false. But if it doesn’t, then the
loop will keep running until you kill the program or turn the computer off !

NOTE

This is sometimes called an infinite loop, and there are actually times when you’ll want to use one in your program.

SHARPEN YOUR PENCIL

Here are a few loops. Write down if each loop will repeat forever or eventually end. If it’s going to end, how many times will it loop?

NOTE

Remember, a for loop always runs the conditional test at the beginning of the block, and the iterator at the end of the block.

B RAIN POWER

Can you think of a reason that you’d want to write a loop that never stops running?

SHARPEN YOUR PENCIL SOLUTION

Let’s get a little more practice with conditional tests and loops. Take a look at the code below. Circle the conditional tests, and fill in
the blanks so that the comments correctly describe the code that’s being run.

SHARPEN YOUR PENCIL SOLUTION

Here are a few loops. Write down if each loop will repeat forever or eventually end. If it’s going to end, how many times will it loop?

THERE ARE NO DUMB QUESTIONS

Q: Q: Is every statement always in a class?

A: A: Yes. Any time a C# program does something, it’s because statements were executed. Those statements are a part of classes, and those classes are a
part of namespaces. Even when it looks like something is not a statement in a class — like when you use the designer to set a property on a control on
your page — if you search through your code you’ll find that the IDE added or changed statements inside a class somewhere.

Q: Q: Are there any namespaces I’m not allowed to use? Are there any I have to use?

A: A: Yes, there are a few namespaces that will technically work, but which you should avoid. Notice how all of the using lines at the top of your C# class
files always said System? That’s because there’s a System namespace that’s used by the Windows Store API and the .NET Framework. It’s where you
find all of your important tools to add power to your programs, like System.Linq, which lets you manipulate sequences of data, and System.IO, which
lets you work with files and data streams. But for the most part, you can choose any name you want for a namespace (as long as it only has letters,
numbers, and underscores). When you create a new program, the IDE will automatically choose a namespace for you based on the program’s name.

Q: Q: I still don’t get why I need this partial class stuff.

A: A: Partial classes are how you can spread the code for one class between more than one file. The IDE does that when it creates a page — it keeps the
code you edit in one file (like MainPage. xaml), and the code it modifies automatically for you in another file (MainPage.xaml.cs). You don’t need to do
that with a namespace, though. One namespace can span two, three, or a dozen or more files. Just put the namespace declaration at the top of the file,
and everything within the curly brackets after the declaration is inside the same namespace. One more thing: you can have more than one class in a file.
And you can have more than one namespace in a file. You’ll learn a lot more about classes in the next few chapters.

Q: Q: Let’s say I drag something onto my page, so the IDE generates a bunch of code automatically. What happens to that code if I click Undo?

A: A: The best way to answer this question is to try it! Give it a shot — do something where the IDE generates some code for you. Drag a button on a
page, change properties. Then try to undo it. What happens? For most simple things, you’ll see that the IDE is smart enough to undo it itself. (For
some more complex things, like working with databases, you might be given a warning message that you’re about to make a change that the IDE can’t
undo. You won’t see any of those in this book.)

Q: Q: So exactly how careful do I have to be with the code that’s automatically generated by the IDE?

A: A: You should generally be pretty careful. It’s really useful to know what the IDE is doing to your code, and once in a while you’ll need to know what’s
in there in order to solve a serious problem. But in almost all cases, you’ll be able to do everything you need to do through the IDE.

B ULLET POINTS

You tell your program to perform actions using statements. Statements are always part of classes, and every class is in a
namespace.
Every statement ends with a semicolon (;).
When you use the visual tools in the Visual Studio IDE, it automatically adds or changes code in your program.
Code blocks are surrounded by curly braces { }. Classes, while loops, if/else statements, and lots of other kinds of statements
use those blocks.
A conditional test is either true or false. You use conditional tests to determine when a loop ends, and which block of code to
execute in an if/else statement.
Any time your program needs to store some data, you use a variable. Use = to assign a variable, and == to test if two variables
are equal.
A while loop runs everything within its block (defined by curly braces) as long as the conditional test is true.
If the conditional test is false, the while loop code block won’t run, and execution will move down to the code immediately after
the loop block.

CODE MAGNETS

Part of a C# program is all scrambled up on the fridge. Can you rearrange the code snippets to make a working C# program that
produces the output? Some of the curly braces fell on the floor and they were too small to pick up, so feel free to add as many of
those as you need! (Hint: you’ll definitely need to add a couple. Just write them in!)

 Answers in Code Magnets Solution.

NOTE

We’ll give you a lot of exercises like this throughout the book. We’ll give you the answer in a couple of pages. If you get stuck, don’t
be afraid to peek at the answer — it’s not cheating!

You’ll be creating a lot of applications throughout this book, and you’ll need to give each one a different name. We recommend
naming this one “PracticeUsingIfElse”. It helps to put programs from a chapter in the same folder.

EXERCISE

Time to get some practice using if/else statements. Can you build this program?

Here’s the conditional test to see if the checkbox is checked:

enableCheckbox.IsChecked == true

If that test is NOT true, then your program should execute two statements:

If the user clicks the button and the box IS checked, change the TextBlock so it either shows on the lefthand side or
 on the righthand side.

If the label’s Text property is currently equal to "Right" then the program should change the text to "Left" and set its
HorizontalAlignment property to HorizontalAlignment.Left. Otherwise, set its text to "Right" and its HorizontalAlignment
property to HorizontalAlignment.Right. This should cause the program to flip the label back and forth when the user presses the
button — but only if the checkbox is checked.

POOL PUZZLE

Your job is to take code snippets from the pool and place them into the blank lines in the code. You may not use the same snippet
more than once, and you won’t need to use all the snippets. Your goal is to make a class that will compile and run. Don’t be fooled —
this one’s harder than it looks.

NOTE

We included these Pool Puzzle exercises throughout the book to give your brain an extra-tough
workout. If you’re the kind of person who loves twisty little logic puzzles, then you’ll love this one. If
you’re not, give it a shot anyway — but don’t be afraid to look at the answer to figure out what’s
going on. And if you’re stumped by a pool puzzle, definitely move on.

Output

int x = 0;
string poem = "";

while (__________) {

 if (x < 1) {

 }

 if (__________) {

 }
 if (x == 1) {

 }
 if (___________) {

 }

}

Note: each snippet from the pool can only be used once!

EXERCISE SOLUTION

Time to get some practice using if/else statements. Can you build this program?

Here’s the XAML code for the grid:

NOTE

We added line breaks as usual to make it easier to read on the page.

And here’s the C# code for the button’s event handler method:

private void changeText_Click(object sender, RoutedEventArgs e)
{
 if (enableCheckbox.IsChecked == true)
 {
 if (labelToChange.Text == "Right")
 {
 labelToChange.Text = "Left";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Left;
 }
 else
 {
 labelToChange.Text = "Right";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Right;
 }
 }
 else
 {
 labelToChange.Text = "Text changing is disabled";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Center;
 }
}

CODE MAGNETS SOLUTION

POOL PUZZLE SOLUTION

int x = 0;
string poem = "";

while (x < 4) {

 poem = poem + "a";
 if (x < 1) {
 poem = poem + " ";
 }
 poem = poem + "n";

 if (x > 1) {

 poem = poem + " oyster";

 x = x + 2;
 }
 if (x == 1) {

 poem = poem + "noys ";
 }
 if (x < 1) {

 poem = poem + "oise ";
 }

 x = x + 1;
}
output.Text = poem;

Did you get a different solution? Type it into the IDE and see if it works! There’s more than one
correct solution to the pool puzzle.

NOTE

If you want a real challenge, see if you can figure out what that other solution is! Here’s a hint: there’s another solution that keeps the
word fragments in order. If you came up with that solution instead of the one on this page, see if you can figure out why this one
works too.

Windows Desktop apps are easy to build
Windows 8 brought Windows Store apps, and that gave everyone a totally new way to use software
on Windows. But that’s not the only kind of program that you can create with Visual Studio. You can
use Visual Studio for Windows Desktop to build Windows Desktop applications that run in windows
on your Windows 8 desktop.

Windows Desktop apps are an effective learning tool
We’ll spend the next several chapters building programs using Visual Studio for Windows Desktop
before coming back to Windows Store apps. The reason is that in many ways, Windows Desktop apps
are simpler. They may not look as slick, and more importantly, they don’t integrate with Windows 8
or provide the great, consistent user interface that you get with Windows Store apps. But there are a
lot of important, fundamental concepts that you need to understand in order to build Windows Store
apps effectively. Windows Desktop programming is a great tool for exploring those fundamental
concepts. We’ll return to programming Windows Store apps once we’ve laid down that foundation.

NOTE

Another great reason to learn Windows Desktop programming is that you get to see the same thing done more than one way. That’s a
really quick way to get concepts into your brain. Flip the page to see what we mean...

Rebuild your app for Windows Desktop
Start up Visual Studio 2013 for Windows Desktop and create a new project. This time, you’ll see
different options than before. Click on Visual C# and Windows, and create a new Windows Forms
Application project.

DO THIS!

➊ WINDOWS FORMS APPS START WITH A FORM THAT YOU CAN RESIZE.
Your Windows Forms Application has a main window that you design using the designer in the
IDE. Start by resizing it to 500x130. Find the handle on the form in the Designer window and drag
to resize it. As you drag it, keep an eye on the changing numbers in the status bar in the IDE that
show you the new size. Keep dragging until you see in the status bar.

➋ CHANGE THE TITLE OF YOUR FORM.

Right now the form has the default title (“Form1”). You can change that by clicking on the form to
select it, and then changing the Text property in the Properties window.

➌ ADD A BUTTON, CHECKBOX, AND LABEL.
Open up the toolbox and drag a Button, CheckBox, and Label control onto your form.

Hint: you’ll need to use the AutoSize property to get the Label control to look right.

WATCH IT!

Make sure you’re using the right Visual Studio

If you’re using the Express edition of Visual Studio 2013, you’ll need to install two editions. You’ve been using Visual
Studio 2013 for Windows to build Windows Store apps. Now you’ll need to use Visual Studio 2013 for Windows Desktop.
Luckily, both Express editions are available for free from Microsoft.

➍ USE THE PROPERTIES WINDOW TO SET UP THE CONTROLS.
Click on the Button control to select it. Then go to the Properties window and set its Text
property:

Change the Text property for the CheckBox control and the Label control so they match the
screenshot on the next page, and set the CheckBox’s Checked property to True. Then select the
Label control and set the TextAlign control to MiddleCenter. Use the Properties window to set
the names of your controls. Name the Button changeText, set the CheckBox control’s name to
enableCheckbox, and name the Label control labelToChange. Look at the code below carefully
and see if you can see how those names are used in the code.

Change the AutoSize property on the Label control to False. Labels normally resize themselves
based on their contents. Disabling AutoSize to true causes the drag handles to show up. Drag it
so it’s the entire width of the window.
➎ ADD THE EVENT HANDLER METHOD FOR YOUR BUTTON.
Double-click on the button to make the IDE add an event handler method. Here’s the code:

Debug your program in the IDE.
When you do, the IDE will build your program and run it, which pops up the main window that you
built. Try clicking the button and checkbox.

NOTE

When label changing is enabled, the label shows either Left or Right with matching alignment. If it’s disabled, it shows a message
that’s centered.

SHARPEN YOUR PENCIL

Fill in the annotations so they describe the lines in this C# file that they’re pointing to. We’ve filled in the first one for you. Can you
guess what the last annotation should say?

Solution in So what happened?

RELAX

Desktop apps are different, and that’s good for learning.

Windows Desktop applications are a lot less slick than Windows Store apps because it’s much harder (but not impossible) to build the
kinds of advanced user interfaces that Windows Store apps give you. And that’s a good thing for now! Because they’re simple and
straightforward, desktop apps are a great tool for learning the core C# concepts, and that will make it much easier for you to
understand Windows Store apps when we return to them later.

Your desktop app knows where to start
When you created the new Windows Forms Application project, one of the files the IDE added was
called Program.cs. Go to the Solution Explorer and double-click on it. It’s got a class called
Program, and inside that class is a method called Main(). That method is the entry point, which
means that it’s the very first thing that’s run in your program.

NOTE

Here’s some code the IDE built for you automatically in the last chapter. You’ll find it in Program.cs.

YOUR CODE UP CLOSE

These are some of the “nuts and bolts” of desktop apps. You’ll play with them on the next few pages
so you can see what’s going on behind the scenes. But most of the work you do on desktop apps will
be done by dragging controls out of the toolbox and onto a form — and, obviously, editing C# code.

➊ C# AND .NET HAVE LOTS OF BUILT-IN FEATURES.
You’ll find lines like this at the top of almost every C# class file. System.Windows.Forms is a
namespace. The using System.Windows.Forms line makes everything in that namespace
available to your program. In this case, that namespace has lots of visual elements in it, like
buttons and forms.

NOTE

Your programs will use more and more namespaces like this one as you learn about C# and .NET’s other built-in features
throughout the book.

If you didn’t specify the “using” line, you’d have to explicitly type out System. Windows.Forms every time you use anything in
that namespace.

➋ THE IDE CHOSE A NAMESPACE FOR YOUR CODE.
Here’s the namespace the IDE created for you — it chose a namespace based on your project’s
name. All of the code in your program lives in this namespace.

NOTE

Namespaces let you use the same name in different programs, as long as those programs aren’t also in the same namespace.

➌ YOUR CODE IS STORED IN A CLASS.
This particular class is called Program. The IDE created it and added the code that starts the
program and brings up the form called Form1.

NOTE

You can have multiple classes in a single namespace.

➍ THIS CODE HAS ONE METHOD, AND IT CONTAINS SEVERAL STATEMENTS.
A namespace has classes in it, and classes have methods. Inside each method is a set of statements.
In this program, the statements handle starting up the form. You already know that methods are
where the action happens — every method does something.
➎ EACH DESKTOP APP HAS A SPECIAL KIND OF METHOD CALLED THE ENTRY
POINT.
Every desktop app must have exactly one method called Main. Even though your program has a lot
of methods, only one can be the first one that gets executed, and that’s your Main method. C#
checks every class in your code for a method that reads static void Main(). Then, when the
program is run, the first statement in this method gets executed, and everything else follows from
that first statement.

NOTE

Technically, a program can have more than one Main() method, and you can tell C# which one is the entry point... but you won’t need
to do that now.

Every desktop app must have exactly one method called Main. That method is the entry point for your code.
When you run your code, the code in your Main() method is executed FIRST.

You can change your program’s entry point
As long as your program has an entry point, it doesn’t matter which class your entry point method is
in, or what that method does. There’s nothing magical or mysterious about how it works, or how your
desktop app runs. You can prove it to yourself by changing your program’s entry point.

DO THIS!

➊ Go back to the program you just wrote. Edit Program.cs and change the name of the Main() method to NotMain(). Now try
to build and run your program. What happens? Can you guess why it happened?
➋ Now let’s create a new entry point. Add a new class called AnotherClass.cs. You add a class to your program by right-
clicking on the project name in the Solution Explorer and selecting “Add→Class...”. Name your class file AnotherClass.cs. The
IDE will add a class to your program called AnotherClass. Here’s the file the IDE added:

NOTE

Right-click on the project in Properties and select “Add” and “Class...”

➌ Add a new using line to the top of the file: using System.Windows.Forms; Don’t forget to end the line with a semicolon!
➍ Add this method to the AnotherClass class by typing it in between the curly brackets:

C# is case-sensitive! Make sure your upper- and lowercase letters match the example code.

Desktop apps use MessageBox.Show() to pop up windows with messages and alerts.

Now run it!

➎ Figure out how to fix your program so it pops up the app again.

NOTE

Hint: you only have to change two lines in two files to do it.

So what happened?
Instead of popping up the app you wrote, your program now shows this message box. When you made
the new Main() method, you gave your program a new entry point. Now the first thing the program
does is run the statements in that method — which means running that MessageBox.Show() statement.
There’s nothing else in that method, so once you click the OK button, the program runs out of
statements to execute and then it ends.

SHARPEN YOUR PENCIL SOLUTION

Fill in the annotations so they describe the lines in this C# file that they’re pointing to. We’ve filled in the first one for you.

When you change things in the IDE, you’re also changing your
code
The IDE is great at writing visual code for you. But don’t take our word for it. Open up Visual Studio,
create a new Windows Forms Application project, and see for yourself.

DO THIS!

➊ OPEN UP THE DESIGNER CODE.
Open the Form1.Designer.cs file in the IDE. But this time, instead of opening it in the Form Designer, open up its code by right-
clicking on it in the Solution Explorer and selecting View Code. Look for the Form1 class declaration:

➋ OPEN UP THE FORM DESIGNER AND ADD A PICTUREBOX TO YOUR FORM.
Get used to working with more than one tab. Go to the Solution Explorer and open up the Form designer by double-clicking on
Form1.cs. Drag a new PictureBox control out of the toolbox and onto the form. A PictureBox control displays a picture, which
you can import from an image file.

➌ FIND AND EXPAND THE DESIGNER-GENERATED CODE FOR THE PICTUREBOX.
Then go back to the Form1.Designer.cs tab in the IDE. Scroll down and look for this line in the code:

Click on the + on the lefthand side of the line to expand the code. Scroll down and find these lines:

Wait, wait! What did that say?
Scroll back up for a minute. There it is, at the top of the Windows Form Designer–generated code
section:

There’s nothing more attractive to a kid than a big sign that says, “Don’t touch this!” Come on, you
know you’re tempted...let’s go modify the contents of that method with the code editor! Add a button
to your form called button1 (you’ll need to switch back to the designer), and then go ahead and do
this:

➊ CHANGE THE CODE THAT SETS THE BUTTON1.TEXT PROPERTY. WHAT DO
YOU THINK IT WILL DO TO THE PROPERTIES WINDOW IN THE IDE?
Give it a shot — see what happens! Now go back to the form designer and check the Text
property. Did it change?
➋ STAY IN THE DESIGNER, AND USE THE PROPERTIES WINDOW TO CHANGE
THE NAME PROPERTY TO SOMETHING ELSE.
See if you can find a way to get the IDE to change the Name property. It’s in the Properties window
at the very top, under “(Name)”. What happened to the code? What about the comment in the code?
➌ CHANGE THE CODE THAT SETS THE LOCATION PROPERTY TO (0,0) AND THE
SIZE PROPERTY TO MAKE THE BUTTON REALLY BIG.
Did it work?
➍ GO BACK TO THE DESIGNER, AND CHANGE THE BUTTON’S BACKCOLOR
PROPERTY TO SOMETHING ELSE.
Look closely at the Form1.Designer.cs code. Were any lines added?

NOTE

You don’t have to save the form or run the program to see the changes. Just make the change in the code editor, and then click
on the tab labeled “Form1.cs [Design]” to flip over to the form designer — the changes should show up immediately.

It’s always easier to use the IDE to change your form’s designer-generated code. But when you
do, any change you make in the IDE ends up as a change to your project’s code.

THERE ARE NO DUMB QUESTIONS

Q: Q: I don’t quite get what the entry point is. Can you explain it one more time?

A: A: Your program has a whole lot of statements in it, but they’re not all run at once. The program starts with the first statement in the program, executes
it, and then goes on to the next one, and the next one, etc. Those statements are usually organized into a bunch of classes. So when you run your
program, how does it know which statement to start with?
That’s where the entry point comes in. The compiler will not build your code unless there is exactly one method called Main(), which we call the
entry point. The program starts running with the first statement in Main().

EXERCISE

Desktop apps aren’t nearly as easy to animate as Windows Store apps, but it’s definitely possible! Let’s build something flashy to
prove it. Start by creating a new Windows Forms Application.

NOTE

Remember, to create a Windows Forms Application you need to be using Visual Studio for Windows
Desktop.

➊ HERE’S THE FORM TO BUILD.
Here’s a hint for this exercise: if you declare a variable inside a for loop — for (int c = 0; ...) — then that variable’s only valid
inside the loop’s curly brackets. So if you have two for loops that both use the variable, you’ll either declare it in each loop or have
one declaration outside the loop. And if the variable c is already declared outside of the loops, you can’t use it in either one.

➋ MAKE THE FORM BACKGROUND GO ALL PSYCHEDELIC!
When the button’s clicked, make the form’s background color cycle through a whole lot of colors! Create a loop that has a
variable c go from 0 to 253. Here’s the block of code that goes inside the curly brackets:

I’M TICKLED PINK!

The .NET Framework has a bunch of predefined colors like Blue and Red, but it also lets you
make your own colors using the Color. FromArgb() method, by specifying three numbers: a red
value, a green value, and a blue value.

➌ MAKE IT SLOWER.
Slow down the flashing by adding this line after the Application.DoEvents() line:

➍ MAKE IT SMOOTHER.
Let’s make the colors cycle back to where they started. Add another loop that has c go from 254 down to 0. Use the same block
of code inside the curly brackets.
➎ KEEP IT GOING.
Surround your two loops with another loop that continuously executes and doesn’t stop, so that when the button is pressed, the
background starts changing colors and then keeps doing it. (Hint: the while (true) loop will run forever!)

NOTE

When one loop is inside another one, we call it a “nested” loop.

UH OH! THE PROGRAM DOESN’T STOP!

Run your program in the IDE. Start it looping. Now close the window. Wait a minute — the IDE
didn’t go back into edit mode! It’s acting like the program is still running. You need to actually
stop the program using the square stop button in the IDE (or select Stop Debugging from the
Debug menu).

➏ MAKE IT STOP.
Make the loop you added in step #5 stop when the program is closed. Change your outer loop to this:

Now run the program and click the X box in the corner. The window closes, and then the program stops! Except...there’s a delay
of a few seconds before the IDE goes back to edit mode.

Can you figure out what’s causing that delay? Can you fix it so the program ends immediately when you close the
window?

NOTE

Hint: the && operator means “AND.” It’s how you string a bunch of conditional tests together into
one big test that’s true only if the first test is true AND the second is true AND the third, etc. And
it’ll come in handy to solve this problem.

EXERCISE SOLUTION

Can you figure out what’s causing that delay? Can you fix it so the program ends immediately when you close the
window?

The delay happens because the for loops need to finish before the while loop can check if Visible is still true. You can fix it by
adding && Visible to the conditional test in each for loop.

Was your code a little different than ours? There’s more than one way to solve any programming problem (e.g., you
could have used while loops instead of for loops). If your program works, then you got the exercise right!

Chapter 3. Objects: Get Oriented!: Making
code make sense

Every program you write solves a problem.
When you’re building a program, it’s always a good idea to start by thinking about what problem your
program’s supposed to solve. That’s why objects are really useful. They let you structure your code
based on the problem it’s solving, so that you can spend your time thinking about the problem you
need to work on rather than getting bogged down in the mechanics of writing code. When you use
objects right, you end up with code that’s intuitive to write, and easy to read and change.

How Mike thinks about his problems
Mike’s a programmer about to head out to a job interview. He can’t wait to show off his C# skills, but
first he has to get there — and he’s running late!

How Mike’s car navigation system thinks about his problems
Mike built his own GPS navigation system, which he uses to help him get around town.

Mike’s navigation system solves the street navigation problem the same way he does.

Mike’s Navigator class has methods to set and modify routes
Mike’s Navigator class has methods, which are where the action happens. But unlike the
button_Click() methods in the forms you’ve built, they’re all focused around a single problem:
navigating a route through a city. That’s why Mike stuck them together into one class, and called that
class Navigator.
Mike designed his Navigator class so that it’s easy to create and modify routes. To get a route,
Mike’s program calls the SetDestination() method to set the destination, and then uses the
GetRoute() method to put the route into a string. If he needs to change the route, his program calls
the ModifyRouteToAvoid() method to change the route so that it avoids a certain street, and then
calls the GetRoute() method to get the new directions.

Some methods have a return value
Every method is made up of statements that do things. Some methods just execute their statements and
then exit. But other methods have a return value, or a value that’s calculated or generated inside the
method, and sent back to the statement that called that method. The type of the return value (like
string or int) is called the return type.
The return statement tells the method to immediately exit. If your method doesn’t have a return value
— which means it’s declared with a return type of void — then the return statement doesn’t need
any values or variables (“return;”), and you don’t always have to have one in your method. But if
the method has a return type, then it must use the return statement.

Here’s a statement that calls a method to multiply two numbers. It returns an int:

B ULLET POINTS

Classes have methods that contain statements that perform actions. You can design a class that is easy to use by choosing
methods that make sense.
Some methods have a return type . You set a method’s return type in its declaration. A method with a declaration that starts
“public int” returns an int value. Here’s an example of a statement that returns an int value: return 37;
When a method has a return type, it must have a return statement that returns a value that matches a return type. So if you’ve
got a method that’s declared “public string” then you need a return statement that returns a string.
As soon as a return statement in a method executes, your program jumps back to the statement that called the method.
Not all methods have a return type. A method with a declaration that starts “public void” doesn’t return anything at all. You can
still use a return statement to exit a void method: if (finishedEarly) { return; }

Use what you’ve learned to build a program that uses a class
Let’s hook up a form to a class, and make its button call a method inside that class.

DO THIS!

➊ Create a new Windows Forms Application project in the IDE. Then add a class file to it called Talker.cs by right-clicking
on the project in the Solution Explorer and selecting “Class...” from the Add menu. When you name your new class file
“Talker.cs,” the IDE will automatically name the class in the new file Talker. Then it’ll pop up the new class in a new tab inside
the IDE.
➋ Add using System.Windows.Forms; to the top of the class file. Then add code to the class:

Flip the page to keep going!

So what did you just build?
The new class has one method called BlahBlahBlah() that takes two parameters. The first
parameter is a string that tells it something to say, and the second is the number of times to say it.
When it’s called, it pops up a message box with the message repeated a number of times. Its return
value is the length of the string. The method needs a string for its thingToSay parameter and a
number for its numberOfTimes parameter. It’ll get those parameters from a form that lets the user
enter text using a TextBox control and a number using a NumericUpDown control.
Now add a form that uses your new class!

➌ Make your project’s form look like this.
Then double-click on the button and have it run this code that calls BlahBlahBlah() and assigns
its return value to an integer called len:

private void button1_Click(object sender, EventArgs e)
{
 int len = Talker.BlahBlahBlah(textBox1.Text, (int)numericUpDown1.Value);
 MessageBox.Show("The message length is " + len);
}

➍ Now run your program! Click the button and watch it pop up two message boxes. The class
pops up the first message box, and the form pops up the second one.

You can add a class to your project and share its methods with the other classes in the project.

Mike gets an idea
The interview went great! But the traffic jam this morning got Mike thinking about how he could
improve his navigator.

He could create three different Navigator classes...
Mike could copy the Navigator class code and paste it into two more classes. Then his program
could store three routes at once.

Right! Maintaining three copies of the same code is really messy. A lot of problems you have to
solve need a way to represent one thing a bunch of different times. In this case, it’s a bunch of routes.
But it could be a bunch of people, or aliens, or music files, or anything. All of those programs have
one thing in common: they always need to treat the same kind of thing in the same way, no matter how
many of the thing they’re dealing with.

Mike can use objects to solve his problem
Objects are C#’s tool that you use to work with a bunch of similar things. Mike can use objects to
program his Navigator class just once, but use it as many times as he wants in a program.

You use a class to build an object
A class is like a blueprint for an object. If you wanted to build five identical houses in a suburban
housing development, you wouldn’t ask an architect to draw up five identical sets of blueprints.
You’d just use one blueprint to build five houses.

An object gets its methods from its class
Once you build a class, you can create as many objects as you want from it using the new statement.
When you do, every method in your class becomes part of the object.

When you create a new object from a class, it’s called an instance of
that class
Guess what...you already know this stuff ! Everything in the toolbox is a class: there’s a Button class,
a TextBox class, a Label class, etc. When you drag a button out of the toolbox, the IDE automatically
creates an instance of the Button class and calls it button1. When you drag another button out of the
toolbox, it creates another instance called button2. Each instance of Button has its own properties
and methods. But every button acts exactly the same way, because they’re all instances of the same
class.

Check it out for yourself!

DO THIS!

Open any project that uses a button called button1, and use the IDE to search the entire project for the text “button1 = new”. You’ll
find the code that the IDE added to the form designer to create the instance of the Button class.

NOTE

in-stance, noun.

an example or one occurrence of something. The IDE search-and-replace feature finds every instance of a word and changes it
to another.

A better solution...brought to you by objects!
Mike came up with a new route comparison program that uses objects to find the shortest of three
different routes to the same destination. Here’s how he built his program.

➊ Mike set up a GUI with a textbox — textBox1 contains the destination for the three routes.
Then he added textBox2, which has a street that one of the routes should avoid; and textBox3,
which contains a different street that the third route has to include.

NOTE

GUI stands for Graphical User Interface, which is what you’re building when you make a form in the form designer.

➋ He created a Navigator object and set its destination.

string destination = textBox1.Text;
Navigator navigator1 = new Navigator();
navigator1.SetDestination(destination);
route = navigator1.GetRoute();

➌ Then he added a second Navigator object called navigator2. He called its
SetDestination() method to set the destination, and then he called its ModifyRouteToAvoid()
method.

NOTE

The SetDestination(), ModifyRouteToAvoid(), and ModifyRouteToInclude() methods all take a string as a parameter.

➍ The third Navigator object is called navigator3. Mike set its destination, and then called its
ModifyRouteToInclude() method.

➎ Now Mike can call each object’s TotalDistance() method to figure out which route is the

shortest. And he only had to write the code once, not three times!
Any time you create a new object from a class, it’s called creating an instance of that class.

That’s right, we didn’t. A geographic navigation program is a really complicated thing to build. But
complicated programs follow the same patterns as simple ones. Mike’s navigation program is an
example of how someone would use objects in real life.

Theory and practice
Speaking of patterns, here’s a pattern that you’ll see over and over again throughout the book. We’ll
introduce a concept or idea (like objects) over the course of a few pages, using pictures and short
code excerpts to demonstrate the idea. This is your opportunity to take a step back and try to
understand what’s going on without having to worry about getting a program to work.

After we’ve introduced a concept, we’ll give you a chance to get it into your brain. Sometimes we’ll
follow up the theory with a writing exercise — like the Sharpen your pencil exercise on the next
page. Other times, we’ll jump straight into code. This combination of theory and practice is an
effective way to get these concepts off of the page and stuck in your brain.

A little advice for the code exercises
If you keep a few simple things in mind, it’ll make the code exercises go smoothly:

It’s easy to get caught up in syntax problems, like missing parentheses or quotes. One missing
bracket can cause many build errors.
It’s much better to look at the solution than to get frustrated with a problem. When you’re
frustrated, your brain doesn’t like to learn.
All of the code in this book is tested and definitely works in Visual Studio 2012! But it’s easy to
accidentally type things wrong (like typing a one instead of a lowercase L).

SHARPEN YOUR PENCIL

Follow the same steps that Mike followed earlier in the chapter to write the code to create Navigator objects and call their methods.

1. Create the navigator2 object, set its destination, call its ModifyRouteToAvoid() method, and use its TotalDistance() method to set an integer
variable called distance2.

Navigator navigator2 = __________________________________
navigator2. ___
navigator2. ___
int distance2 = ___

2. Create the navigator3 object, set its destination, call its ModifyRouteToInclude() method, and use its TotalDistance() method to set an integer
variable called distance3.

__

__

__

__

SHARPEN YOUR PENCIL SOLUTION

Follow the same steps that Mike followed earlier in the chapter to write the code to create Navigator objects and call their methods.

1. Create the navigator2 object, set its destination, call its ModifyRouteToAvoid() method, and use its TotalDistance() method to set an integer
variable called distance2.

Navigator navigator2 = __new Navigator()__________________________
navigator2. ___SetDestination(destination);_______________________
navigator2. __ModifyRouteToAvoid(route2StreetToAvoid);____________
int distance2 = __navigator2.TotalDistance();_____________________

2. Create the navigator3 object, set its destination, call its ModifyRouteToInclude() method, and use its TotalDistance() method to set an integer
variable called distance3.

NO TE

Navigator navigator3 = new Navigator()

navigator3.SetDestination(destination);

navigator3.ModifyRouteToInclude(route3StreetToInclude);

int distance3 = navigator3.TotalDistance();

Yes! That’s why you used the static keyword in your methods.
Take another look at the declaration for the Talker class you built a few pages ago:

class Talker
{
 public static int BlahBlahBlah(string thingToSay, int numberOfTimes)
 {
 string finalString = "";

When you called the method, you didn’t create a new instance of Talker. You just did this:
Talker.BlahBlahBlah("Hello hello hello", 5);

That’s how you call static methods, and you’ve been doing that all along. If you take away the
static keyword from the BlahBlahBlah() method declaration, then you’ll have to create an
instance of Talker in order to call the method. Other than that distinction, static methods are just like
object methods. You can pass parameters, they can return values, and they live in classes.
There’s one more thing you can do with the static keyword. You can mark your whole class as
static, and then all of its methods must be static too. If you try to add a nonstatic method to a static
class, it won’t compile.

THERE ARE NO DUMB QUESTIONS

Q: Q: When I think of something that’s “static,” I think of something that doesn’t change. Does that mean nonstatic methods can change, but
static methods don’t? Do they behave differently?

A: A: No, both static and nonstatic methods act exactly the same. The only difference is that static methods don’t require an instance, while nonstatic
methods do. A lot of people have trouble remembering that, because the word “static” isn’t really all that intuitive.

Q: Q: So I can’t use my class until I create an instance of an object?

A: A: You can use its static methods. But if you have methods that aren’t static, then you need an instance before you can use them.

Q: Q: Then why would I want a method that needs an instance? Why wouldn’t I make all my methods static?

A: A: Because if you have an object that’s keeping track of certain data — like Mike’s instances of his Navigator class that each kept track of a different
route — then you can use each instance’s methods to work with that data. So when Mike called his ModifyRouteToAvoid() method in the navigator2
instance, it only affected the route that was stored in that particular instance. It didn’t affect the navigator1 or navigator3 objects. That’s how he was
able to work with three different routes at the same time — and his program could keep track of all of it.

Q: Q: So how does an instance keep track of data?

A: A: Turn the page and find out!

An instance uses fields to keep track of things
You change the text on a button by setting its Text property in the IDE. When you do, the IDE adds
code like this to the designer:

button1.Text = "Text for the button";

Now you know that button1 is an instance of the Button class. What that code does is modify a field
for the button1 instance. You can add fields to a class diagram — just draw a horizontal line in the
middle of it. Fields go above the line, methods go underneath it.

NOTE

Technically, it’s setting a property. A property is very similar to a field — but we’ll get into all that a little later on.

Methods are what an object does. Fields are what the object knows.
When Mike created three instances of Navigator classes, his program created three objects. Each of
those objects was used to keep track of a different route. When the program created the navigator2
instance and called its SetDestination() method, it set the destination for that one instance. But it
didn’t affect the navigator1 instance or the navigator3 instance.

An object’s behavior is defined by its methods, and it uses fields to keep track of its state.

Let’s create some instances!
It’s easy to add fields to your class. Just declare variables outside of any methods. Now every
instance gets its own copy of those variables.

SHARPEN YOUR PENCIL

Write down the contents of each message box that will be displayed after the statement next to it is executed.

NOTE

Remember, the *= operator tells C# to take whatever’s on the left of the operator and multiply it by
whatever’s on the right.

Clown oneClown = new Clown();
oneClown.Name = "Boffo";
oneClown.Height = 14;
oneClown.TalkAboutYourself();

“My name is _______ and I’m ______ inches tall.”

Clown anotherClown = new Clown();
anotherClown.Name = "Biff";
anotherClown.Height = 16;
anotherClown.TalkAboutYourself();

“My name is _______ and I’m ______ inches tall.”

Clown clown3 = new Clown();
clown3.Name = anotherClown.Name;
clown3.Height = oneClown.Height - 3;
clown3.TalkAboutYourself();

“My name is _______ and I’m ______ inches tall.”

anotherClown.Height *= 2;
anotherClown.TalkAboutYourself();

“My name is _______ and I’m ______ inches tall.”

Thanks for the memory
When your program creates an object, it lives in a part of the computer’s memory called the heap.
When your code creates an object with a new statement, C# immediately reserves space in the heap so
it can store the data for that object.

SHARPEN YOUR PENCIL SOLUTION

Write down the contents of each message box that will be displayed after the statement next to it is executed.

Let’s take a closer look at what happened here

When your program creates a new object, it gets added to the heap.

What’s on your program’s mind
Here’s how your program creates a new instance of the Clown class:

Clown myInstance = new Clown();

That’s actually two statements combined into one. The first statement declares a variable of type
Clown (Clown myInstance;). The second statement creates a new object and assigns it to the
variable that was just created (myInstance = new Clown();). Here’s what the heap looks like after
each of these statements:

You can use class and method names to make your code intuitive
When you put code in a method, you’re making a choice about how to structure your program. Do you
use one method? Do you split it into more than one? Or do you even need a method at all? The
choices you make about methods can make your code much more intuitive — or, if you’re not careful,
much more convoluted.

Great developers write code that’s easy to understand. Comments can help, but nothing beats choosing intuitive
names for your methods, classes, variables, and fields.

➊ Here’s a nice, compact chunk of code. It’s from a control program that runs a machine that
makes candy bars.

Take a second and look at that code. Can you figure out what it does?
➋ Those statements don’t give you any hints about why the code’s doing what it’s doing. In this
case, the programmer was happy with the results because she was able to get it all into one
method. But making your code as compact as possible isn’t really useful! Let’s break it up into
methods to make it easier to read, and make sure the classes are given names that make sense. But
we’ll start by figuring out what the code is supposed to do.

➌ That page from the manual made it a lot easier to understand the code. It also gave us some
great hints about how to make our code easier to understand. Now we know why the conditional
test checks the variable t against 160 — the manual says that any temperature above 160°C means
the nougat is too hot. And it turns out that m was a class that controlled the candy maker, with static

methods to check the nougat temperature and check the air system. So let’s put the temperature
check into a method, and choose names for the class and the methods that make the purpose
obvious.

➍ What does the specification say to do if the nougat is too hot? It tells us to perform the candy
isolation cooling system (or CICS) vent procedure. So let’s make another method, and choose an
obvious name for the T class (which turns out to control the turbine) and the ics class (which
controls the isolation cooling system, and has two static methods to fill and vent the system):

➎ Now the code’s a lot more intuitive! Even if you don’t know that the CICS vent procedure
needs to be run if the nougat is too hot, it’s a lot more obvious what this code is doing:

if (IsNougatTooHot() == true) {
 DoCICSVentProcedure();
}

You can make your code easier to read and write by thinking about the problem your code was built to solve. If you
choose names for your methods that make sense to someone who understands that problem, then your code will be a
lot easier to decipher...and develop!

Give your classes a natural structure
Take a second and remind yourself why you want to make your methods intuitive: because every
program solves a problem or has a purpose. It might not be a business problem — sometimes a
program’s purpose (like FlashyThing) is just to be cool or fun! But no matter what your program does,
the more you can make your code resemble the problem you’re trying to solve, the easier your
program will be to write (and read, and repair, and maintain...).

USE CLASS DIAGRAMS TO PLAN OUT YOUR CLASSES

A class diagram is a simple way to draw your classes out on paper. It’s a really valuable tool for designing your code BEFORE you
start writing it.

Write the name of the class at the top of the diagram. Then write each method in the box at the bottom. Now you can see all of the
parts of the class at a glance!

Let’s build a class diagram
Take another look at the if statement in #5 on the previous page. You already know that statements
always live inside methods, which always live inside classes, right? In this case, that if statement
was in a method called DoMaintenanceTests(), which is part of the CandyController class. Now
take a look at the code and the class diagram. See how they relate to each other?

SHARPEN YOUR PENCIL

The code for the candy control system we built on the previous page called three other classes. Flip back and look through the code,
and fill in their class diagrams.

Class diagrams help you organize your classes so they make sense
Writing out class diagrams makes it a lot easier to spot potential problems in your classes before you
write code. Thinking about your classes from a high level before you get into the details can help you
come up with a class structure that will make sure your code addresses the problems it solves. It lets
you step back and make sure that you’re not planning on writing unnecessary or poorly structured
classes or methods, and that the ones you do write will be intuitive and easy to use.

SHARPEN YOUR PENCIL SOLUTION

The code for the candy control system we built on the previous page called three other classes. Flip back and look through the code,
and fill in their class diagrams.

SHARPEN YOUR PENCIL

Each of these classes has a serious design flaw. Write down what you think is wrong with each class, and how you’d fix it.

This class is part of the candy manufacturing system from earlier.

__

__

__

__

These two classes are part of a system that a pizza parlor uses to track the pizzas that are out for delivery.

__

__

__

__

The CashRegister class is part of a program that’s used by an automated convenience store checkout system.

__

__

__

__

SHARPEN YOUR PENCIL SOLUTION

Here’s how we corrected the classes. We show just one possible way to fix the problems — but there are plenty of other ways
you could design these classes depending on how they’ll be used.

This class is part of the candy manufacturing system from earlier.

The class name doesn’t describe what the class does. A programmer

who sees a line of code that calls Class23.Go() will have no idea what

that line does. We’d also rename the method to something that’s more

descriptive — we chose MakeTheCandy(), but it could be anything.

These two classes are part of a system that a pizza parlor uses to track the pizzas that are out for delivery.

It looks like the DeliveryGuy class and the DeliveryGirl class

both do the same thing — they track a delivery person who’s out

delivering pizzas to customers. A better design would replace

them with a single class that adds a field for gender.

The CashRegister class is part of a program that’s used by an automated convenience store checkout system.

All of the methods in the class do stuff that has to do with

a cash register — making a sale, getting a list of transactions,

adding cash...except for one: pumping gas. It’s a good idea to pull

that method out and stick it in another class.

POOL PUZZLE

Your job is to take code snippets from the pool and place them into the blank lines in the code. You may use the same snippet more
than once, and you won’t need to use all the snippets. Your goal is to make classes that will compile and run and produce the output
listed.

public partial class Form1 : Form {
 public Form1() {
 InitializeComponent();
 }
 private void button1_Click(object sender, EventArgs e) {
 string result = "";
 Echo e1 = new Echo();

 int x = 0;
 while (___________) {
 result = result + e1.Hello() + "\n";

 if (____________) {
 e2.Count = e2.Count + 1;
 }
 if (____________) {
 e2.Count = e2.Count + e1.Count;
 }
 x = x + 1;
 }
 MessageBox.Show(result + "Count: " + e2.Count);
 }
}
class ____________ {
 public int _________ = 0;
 public string ___________ {

 return "helloooo...";
 }
}

Output

Bonus Question!

If the last line of output was 24 instead of 10, how would you complete the puzzle? You can do it by changing just one statement.

Note: each snippet from the pool can be used more than once!

 Answers in Pool Puzzle Solution.

There are two possible solutions to this puzzle. Can you find them both?

Build a class to work with some guys
Joe and Bob lend each other money all the time. Let’s create a class to keep track of them. We’ll start
with an overview of what we’ll build.

➊ We’ll create a Guy class and add two instances of it to a form.
The form will have two fields, one called joe (to keep track of the first object), and the other
called bob (to keep track of the second object).

➋ We’ll set each Guy object’s cash and name fields.
The two objects represent different guys, each with his own name and a different amount of cash in
his pocket.

➌ We’ll give cash to the guys and take cash from them.
We’ll use each guy’s ReceiveCash() method to increase a guy’s cash, and we’ll use his
GiveCash() method to reduce it.

Create a project for your guys
Create a new Windows Forms Application project (because we’ll be using a form). Then use the
Solution Explorer to add a new class to it called Guy. Make sure to add “using System.
Windows.Forms;” to the top of the Guy class file. Then fill in the Guy class. Here’s the code for it:

DO THIS!

What happens if you pass a negative amount to a Guy object’s ReceiveCash() or GiveCash()
method?

Build a form to interact with the guys
The Guy class is great, but it’s just a start. Now put together a form that uses two instances of the Guy
class. It’s got labels that show you their names and how much cash they have, and buttons to give and
take cash from them. They have to get their money from somewhere before they can lend it to each
other, so we’ll also need to add a bank.

B UILD THIS!

➊ Add two buttons and three labels to your form.
The top two labels show how much cash each guy has. We’ll also add a field called bank to the form — the third label shows
how much cash is in it. We’re going to have you name some of the labels that you drag onto the forms. You can do that by
clicking on each label that you want to name and changing its “(Name)” row in the Properties window. That’ll make your
code a lot easier to read, because you’ll be able to use “joesCashLabel” and “bobsCashLabel” instead of “label1” and “label2”.

➋ Add fields to your form.
Your form will need to keep track of the two guys, so you’ll need a field for each of them. Call them joe and bob. Then add a
field to the form called bank to keep track of how much money the form has to give to and receive from the guys.

➌ Add a method to the form to update the labels.
The labels on the lefthand side of the form show how much cash each guy has and how much is in the bank field. So add the
UpdateForm() method to keep them up to date — make sure the return type is void to tell C# that the method doesn’t return
a value. Type this method into the form right underneath where you added the bank field:

➍ Double-click on each button and add the code to interact with the objects.
Make sure the lefthand button is called button1, and the righthand button is called button2. Then double-click each of the buttons
— when you do, the IDE will add two methods called button1_Click() and button2_Click() to the form. Add this code to
each of them:

EXERCISE

5 Start Joe out with $50 and start Bob out with $100.

It’s up to you to figure out how to get Joe and Bob to start out with their Cash and Name fields set properly. Put it right
underneath InitializeComponent() in the form. That’s part of that designer-generated method that gets run once, when the form is
first initialized. Once you’ve done that, click both buttons a number of times — make sure that one button takes $10 from the bank
and adds it to Joe, and the other takes $5 from Bob and adds it to the bank.

EXERCISE SOLUTION

It’s up to you to figure out how to get Joe and Bob to start out with their Cash and Name fields set properly. Put it right
underneath InitializeComponent() in the form.

NOTE

Make sure you save the project now — we’ll come back to it in a few pages.

THERE ARE NO DUMB QUESTIONS

Q: Q: Why doesn’t the solution start with “Guy bob = new Guy()”? Why did you leave off the first “Guy”?

A: A: Because you already declared the bob field at the top of the form. Remember how the statement “int i = 5;” is the same as the two statements “int
i” and “i = 5;”? This is the same thing. You could try to declare the bob field in one line like this: “Guy bob = new Guy();”. But you already have the first
part of that statement (“Guy bob;”) at the top of your form. So you only need the second half of the line, the part that sets the bob field to create a new
instance of Guy().

Q: Q: OK, so then why not get rid of the “Guy bob;” line at the top of the form?

A: A: Then a variable called bob will only exist inside that special “public Form1()” method. When you declare a variable inside a method, it’s only valid
inside the method — you can’t access it from any other method. But when you declare it outside of your method but inside the form or a class that you
added, then you’ve added a field accessible from any other method inside the form.

Q: Q: What happens if I don’t leave off that first “Guy”? What if it’s Guy bob = new Guy() instead of bob = new Guy()?

A: A: You’ll run into problems — your form won’t work, because it won’t ever set the form’s bob variable. If you have this code at the top of your form:

public partial class Form1 : Form {
 Guy bob;

and then you have this code later on, inside a method:

Guy bob = new Guy();

then you’ve declared two variables. It’s a little confusing, because they both have the same name. But one of them is valid throughout the entire form,
and the other one — the new one you added — is only valid inside the method. The next line (bob.Name = "Bob";) only updates that local variable, and
doesn’t touch the one in the form. So when you try to run your code, it’ll give you a nasty error message (“NullReferenceException not handled”),
which just means you tried to use an object before you created it with new.

There’s an easier way to initialize objects
Almost every object that you create needs to be initialized in some way. And the Guy object is no
exception — it’s useless until you set its Name and Cash fields. It’s so common to have to initialize
fields that C# gives you a shortcut for doing it called an object initializer. And the IDE’s IntelliSense
will help you do it.

Object initializers save you time and make your code more compact and easier to read...and the IDE helps you write
them.

➊ Here’s the original code that you wrote to initialize Joe’s Guy object.
joe = new Guy();
joe.Name = "Joe";
joe.Cash = 50;

➋ Delete the second two lines and the semicolon after “Guy(),” and add a right curly bracket.
joe = new Guy() {

➌ Press space. As soon as you do, the IDE pops up an IntelliSense window that shows you all of
the fields that you’re able to initialize.

joe = new Guy() {

➍ Press Tab to tell it to add the Cash field. Then set it equal to 50.
joe = new Guy() { Cash = 50

➎ Type in a comma. As soon as you do, the other field shows up.
joe = new Guy() { Cash = 50,

➏ Finish the object initializer. Now you’ve saved yourself two lines of code!

You used an object initializer in your “Save the Humans” game. Flip back and see if you can spot it!

A few ideas for designing intuitive classes
You’re building your program to solve a problem.
Spend some time thinking about that problem. Does it break down into pieces easily? How would
you explain that problem to someone else? These are good things to think about when designing
your classes.

What real-world things will your program use?
A program to help a zookeeper track her animals’ feeding schedules might have classes for
different kinds of food and types of animals.

Use descriptive names for classes and methods.
Someone should be able to figure out what your classes and methods do just by looking at their
names.

Look for similarities between classes.
Sometimes two classes can be combined into one if they’re really similar. The candy
manufacturing system might have three or four turbines, but there’s only one method for closing the
trip valve that takes the turbine number as a parameter.

EXERCISE

Add buttons to the “Fun with Joe and Bob” program to make the guys give each other cash.

➊ USE AN OBJECT INITIALIZER TO INITIALIZE BOB’S INSTANCE OF GUY.
You’ve already done it with Joe. Now make Bob’s instance work with an object initializer too.
➋ ADD TWO MORE BUTTONS TO YOUR FORM.
The first button tells Joe to give 10 bucks to Bob, and the second tells Bob to give 5 bucks back to Joe. Before you double-click
on the button, go to the Properties window and change each button’s name using the “(Name)” row — it’s at the top of the list
of properties. Name the first button joeGivesToBob, and the second one bobGivesToJoe.

NOTE

If you already clicked the button, just delete it, add it back to your form, and rename it. Then
delete the old button3_Click() method that the IDE added before, and use the new method it adds
now.

➌ MAKE THE BUTTONS WORK.
Double-click on the joeGivesToBob button in the designer. The IDE will add a method to the form called
joeGivesToBob_Click() that gets run any time the button’s clicked. Fill in that method to make Joe give 10 bucks to Bob. Then
double-click on the other button and fill in the new bobGivesToJoe_Click() method that the IDE creates so that Bob gives 5
bucks to Joe. Make sure the form updates itself after the cash changes hands.

Here’s a tip for designing your forms. You can use these buttons on the IDE’s toolbar in the form designer to align
controls, make them equal sizes, space them evenly, and bring them to the front or back.

EXERCISE SOLUTION

Add buttons to the “Fun with Joe and Bob” program to make the guys give each other cash.

Before you go on, take a minute and flip to #2 in the “Leftovers” appendix, because there’s
some basic syntax that we haven’t covered yet. You won’t need it to move forward, but it’s a
good idea to see what’s there.

OB JECTCROSS

It’s time to give your left brain a break, and put that right brain to work: all the words are object-related and from this chapter.

Across Down

2. If a method’s return type is _____, it
doesn’t return anything

7. An object’s fields define its _______

9. A good method __________ makes it
clear what the method does

10. Where objects live

11. What you use to build an object

13. What you use to pass information into
a method

14. The statement you use to create an
object

15. Used to set an attribute on controls
and other classes

1. This form control lets the user choose a number from a range you set

3. It’s a great idea to create a class ________ on paper before you start writing code

4. An object uses this to keep track of what it knows

5. These define what an object does

6. An object’s methods define its ________

7. Don’t use this keyword in your class declaration if you want to be able to create
instances of it

8. An object is an ______________ of a class

12. This statement tells a method to immediately exit, and can specify the value that
should be passed back to the statement that called the method

POOL PUZZLE SOLUTION

Your job was to take code snippets from the pool and place them into the blank lines in the code. Your goal was to make classes that
will compile and run and produce the output listed.

OB JECTCROSS SOLUTION

Chapter 4. Types and References: It’s 10:00.
Do you know where your data is?

Data type, database, Lieutenant Commander Data... it’s all important stuff. Without data, your
programs are useless. You need information from your users, and you use that to look up or produce
new information to give back to them. In fact, almost everything you do in programming involves
working with data in one way or another. In this chapter, you’ll learn the ins and outs of C#’s data
types, see how to work with data in your program, and even figure out a few dirty secrets about
objects (pssst...objects are data, too).

The variable’s type determines what kind of data it can store

There are a bunch of types built into C#, and each one stores a different kind of data. You’ve already
seen some of the most common ones, and you know how to use them. But there are a few that you
haven’t seen, and they can really come in handy, too.
Types you’ll use all the time
It shouldn’t come as a surprise that int, string, bool, and double are the most common types.

int can store any whole number from –2,147,483,648 to 2,147,483,647.

NOTE

A whole number doesn’t have a decimal point.

string can hold text of any length (including the empty string "").
bool is a Boolean value — it’s either true or false.
double can store real numbers from ±5.0 × 10–324 to ±1.7 × 10308 with up to 16 significant
figures. That range looks weird and complicated, but it’s actually pretty simple. The “significant
figures” part means the precision of the number: 35,048,410,000,000, 1,743,059, 14.43857, and
0.00004374155 all have seven significant figures. The 10308 thing means that you can store any
number as large as 10308 (or 1 followed by 308 zeros) — as long as it only has 16 or fewer
significant figures. On the other end of the range, 10–324 means that you can store any number as
small as 10–324 (or a decimal point followed by 324 zeros followed by 1)...but, you guessed it, as
long as it only has 16 or fewer significant figures.

NOTE

These numbers are called “floating-point”...as opposed to a “fixed point” number, which always has the same number of decimal
places.

More types for whole numbers
Once upon a time, computer memory was really expensive, and processors were really slow. And,
believe it or not, if you used the wrong type, it could seriously slow down your program. Luckily,
times have changed, and most of the time if you need to store a whole number you can just use an int.
But sometimes you really need something bigger...and once in a while, you need something smaller,
too. That’s why C# gives you more options:

NOTE

A lot of times, if you’re using these types it’s because you’re solving a problem where it really helps to have the “wrapping around”
effect that you’ll read about in a few minutes.

byte can store any whole number between 0 and 255.
sbyte can store any whole number from –128 to 127.

NOTE

The “s” in sbyte stands for “signed,” which means it can be negative (the “sign” is a minus sign).

short can store any whole number from –32,768 to 32,767.
ushort can store any whole number from 0 to 65,535.
uint can store any whole number from 0 to 4,294,967,295.

NOTE

The “u” stands for “unsigned.”

long can store any whole number between minus and plus 9 billion billion.
ulong can store any whole number between 0 and about 18 billion billion.

Types for storing really HUGE and really tiny numbers

Sometimes seven significant figures just isn’t precise enough. And, believe it or not, sometimes 1038

isn’t big enough and 10–45 isn’t small enough. A lot of programs written for finance or scientific
research run into these problems all the time, so C# gives us multiple types to handle floating-point
values:

float can store any number from ±1.5 × 10–45 to ±3.4 × 1038 with 7 significant digits.

NOTE

double is a lot more common than float. Many XAML properties use double values.

double can store any number from ±5.0 × 10–324 to ±1.7 × 10308 with 15-16 significant digits.
decimal can store any number from ±1.0 × 10–28 to ±7.9 × 1028 with 28–29 significant digits.

NOTE

When your program needs to deal with currency, you usually want to use a decimal to store the number.

NOTE

When you used the Value property in your numericUpDown control, you were using a decimal.

Literals have types, too

NOTE

A “literal” just means a number that you type into your code. So when you type “int i = 5;”, the 5 is a literal.

When you type a number directly into your C# program, you’re using a literal...and every literal is
automatically assigned a type. You can see this for yourself — just enter this line of code that assigns
the literal 14.7 to an int variable:

int myInt = 14.7;

Now try to build the program. You’ll get this:

That’s the same error you’ll get if you try to set an int equal to a double variable. What the IDE is
telling you is that the literal 14.7 has a type — it’s a double. You can change its type to a float by
sticking an F on the end (14.7F). And 14.7M is a decimal.

NOTE

If you try to assign a float literal to a double or a decimal literal to a float, the IDE will give you a helpful message reminding you to
add the right suffix. Cool!

NOTE

The “M” stands for “money” — seriously!

A few more useful built-in types
Sometimes you need to store a single character like Q or 7 or $, and when you do you’ll use the char
type. Literal values for char are always inside single quotes ('x', '3'). You can include escape
sequences in the quotes, too ('\n' is a line break, '\t' is a tab). You write an escape sequence in
your C# code using two characters, but your program stores each escape sequence as a single
character in memory.

NOTE

You’ll learn a lot more about how char and byte relate to each other in Chapter 9.

And finally, there’s one more important type: object. You’ve already seen how you can create
objects by creating instances of classes. Well, every one of those objects can be assigned to an
object variable. You’ll learn all about how objects and variables that refer to objects work later in
this chapter.

B RAIN POWER

The Windows desktop calculator app has a really neat feature called “Programmer” mode, where you can see binary and
decimal at the same time!

You can use the Windows desktop calculator to convert between decimal (normal, base-10) numbers and binary numbers (base-2
numbers written with only ones and zeros) — put it in Programmer mode, enter a number, and click the Bin radio button to convert to
binary. Then click Dec to convert it back. Now enter some of the upper and lower limits for the whole number types (like –
32,768 and 255) and convert them to binary. Can you figure out why C# gives you those particular limits?

Windows 8 has two different calculators, a Windows Store app and a desktop app. Use Search to find the desktop app, and use
its “View” menu to switch between its modes.

A variable is like a data to-go cup
All of your data takes up space in memory. (Remember the heap from last chapter?) So part of your
job is to think about how much space you’re going to need whenever you use a string or a number in
your program. That’s one of the reasons you use variables. They let you set aside enough space in
memory to store your data.

NOTE

Not all data ends up on the heap. Value types usually keep their data in another part of memory called the stack. You’ll learn all about
that in Chapter 14.

Think of a variable like a cup that you keep your data in. C# uses a bunch of different kinds of cups to
hold different kinds of data. And just like the different sizes of cups at the coffee shop, there are
different sizes of variables, too.

Numbers that have decimal places are stored differently than whole numbers. You can handle most of
your numbers that have decimal places using float, the smallest data type that stores decimals. If you
need to be more precise, use a double. And if you’re writing a financial application where you’ll be
storing currency values, you’ll want to use the decimal type.
It’s not always about numbers, though. (You wouldn’t expect to get hot coffee in a plastic cup or cold
coffee in a paper one.) The C# compiler also can handle characters and non-numeric types. The char
type holds one character, and string is used for lots of characters “strung” together. There’s no set
size for a string object, either. It expands to hold as much data as you need to store in it. The bool
data type is used to store true or false values, like the ones you’ve used for your if statements.

10 pounds of data in a 5-pound bag

When you declare your variable as one type, that’s how your compiler looks at it. Even if the value is
nowhere near the upper boundary of the type you’ve declared, the compiler will see the cup it’s in,
not the number inside. So this won’t work:

int leaguesUnderTheSea = 20000;

short smallerLeagues = leaguesUnderTheSea;

20,000 would fit into a short, no problem. But since leaguesUnderTheSea is declared as an int,
the compiler sees it as int-sized and considers it too big to put in a short container. The compiler
won’t make those translations for you on the fly. You need to make sure that you’re using the right type
for the data you’re working with.

SHARPEN YOUR PENCIL

Three of these statements won’t compile, either because they’re trying to cram too much data into a small variable or because they’re
putting the wrong type of data in. Circle them.

int hours = 24;

short y = 78000;

bool isDone = yes;

short RPM = 33;

int balance = 345667 - 567;

string taunt = "your mother";

byte days = 365;

long radius = 3;

char initial = 'S';

string months = "12";

Even when a number is the right size, you can’t just assign it to any
variable
Let’s see what happens when you try to assign a decimal value to an int variable.

DO THIS

➊ Create a new Windows Forms project and add a button to it. Then add these lines to the button’s Click() method:

decimal myDecimalValue = 10;
int myIntValue = myDecimalValue;

MessageBox.Show("The myIntValue is " + myIntValue);

➋ Try building your program. Uh oh — you got an error that looks like this:

➌ Make the error go away by casting the decimal to an int. Once you change the second line so it looks like this, your
program will compile and run:

So what happened?
The compiler won’t let you assign a value to a variable if it’s the wrong type — even if that variable
can hold the value just fine — because that’s the underlying cause behind an enormous number of
bugs, and the compiler is helping by nudging you in the right direction. When you use casting, you’re
essentially making a promise to the compiler that you know the types are different, and that in this
particular instance it’s OK for C# to cram the data into the new variable.

NOTE

Take a minute to flip back to the beginning of the last chapter and check out how you used casting when you passed the
NumericUpDown. Value to the Talker Tester form.

SHARPEN YOUR PENCIL SOLUTION

Three of these statements won’t compile, either because they’re trying to cram too much data into a small variable or because they’re
putting the wrong type of data in. Circle them.

You can read more about the value types in C# here: http://msdn.microsoft.com/en-us/library/s1ax56ch.aspx

http://msdn.microsoft.com/en-us/library/s1ax56ch.aspx

When you cast a value that’s too big, C# will adjust it
automatically

WRAP IT YOURSELF!

There’s no mystery to how casting “wraps” the numbers — you can do it yourself. Just pop up the Windows desktop calculator,
switch it to Scientific mode, and calculate 365 Mod 256 (using the Mod button, which does a modulo calculation). You’ll get 109.

You’ve already seen that a decimal can be cast to an int. It turns out that any number can be cast to
any other number. But that doesn’t mean the value stays intact through the casting. If you cast an int
variable that’s set to 365 to a byte variable, 365 is too big for the byte. But instead of giving you an
error, the value will just wrap around: for example, 256 cast to a byte will have a value of 0. 257
would be converted to 1, 258 to 2, etc., up to 365, which will end up being 109. And once you get
back to 255 again, the conversion value “wraps” back to zero.

Yes! The + operator converts for you.
What you’ve been doing is using the + operator, which does a lot of converting for you
automatically — but it’s especially smart about it. When you use + to add a number or Boolean to a
string, then it’ll automatically convert that value to a string, too. If you use + (or *, /, or -) with two
different types, it automatically converts the smaller type to the bigger one. Here’s an example:

Since an int can fit into a float but a float can’t fit into an int, the + operator converts myInt to a
float before adding it to myFloat.

SHARPEN YOUR PENCIL

You can’t always cast any type to any other type. Create a new project, drag a button onto a form, double-click on it, and type
these statements in. Then build your program — it will give lots of errors. Cross out the ones that give errors. That’ll help you figure
out which types can be cast, and which can’t!

int myInt = 10;

byte myByte = (byte)myInt;

double myDouble = (double)myByte;

bool myBool = (bool)myDouble;

string myString = "false";

myBool = (bool)myString;

myString = (string)myInt;

myString = myInt.ToString();

myBool = (bool)myByte;

myByte = (byte)myBool;

short myShort = (short)myInt;

char myChar = 'x';

myString = (string)myChar;

long myLong = (long)myInt;

decimal myDecimal = (decimal)myLong;

myString = myString + myInt + myByte

+ myDouble + myChar;

C# does some casting automatically
There are two important conversions that don’t require you to do the casting. The first is done
automatically any time you use arithmetic operators, like in this example:

The other way C# converts types for you automatically is when you use the + operator to
concatenate strings (which just means sticking one string on the end of another, like you’ve been
doing with message boxes). When you use + to concatenate a string with something that’s another
type, it automatically converts the numbers to strings for you. Here’s an example. The first two lines
are fine, but the third one won’t compile.

long x = 139401930;

MessageBox.Show("The answer is " + x);

MessageBox.Show(x);

The C# compiler spits out an error that mentions something about invalid arguments (an argument is
what C# calls the value that you’re passing into a method’s parameter). That’s because the parameter
for MessageBox.Show() is a string, and this code passed a long, which is the wrong type for the
method. But you can convert it to a string really easily by calling its ToString() method. That
method is a member of every value type and object. (All of the classes you build yourself have a
ToString() method that returns the class name.) That’s how you can convert x to something that
MessageBox.Show() can use:

MessageBox.Show(x.ToString());

SHARPEN YOUR PENCIL SOLUTION

You can’t always cast any type to any other type. Create a new project, drag a button onto a form, and type these statements into
its method. Then build your program — it will give lots of errors. Cross out the ones that give errors. That’ll help you figure out which
types can be cast, and which can’t!

int myInt = 10;

byte myByte = (byte)myInt;

double myDouble = (double)myByte;

bool myBool = (bool)myDouble;

string myString = "false";

myBool = (bool)myString;

myString = (string)myInt;

myString = myInt.ToString();

myBool = (bool)myByte;

myByte = (byte)myBool;

short myShort = (short)myInt;

char myChar = 'x';

myString = (string)myChar;

long myLong = (long)myInt;

decimal myDecimal = (decimal)myLong;

myString = myString + myInt + myByte

+ myDouble + myChar;

When you call a method, the arguments must be compatible with
the types of the parameters

NOTE

A parameter is what you define in your method. An argument is what you pass to it. A method with an int parameter can take a byte
argument.

Try calling MessageBox.Show(123) — passing MessageBox.Show() a literal (123) instead of a
string. The IDE won’t let you build your program. Instead, it’ll show you an error in the IDE:
“Argument ‘1’: cannot convert from ‘int’ to ‘string’.” Sometimes C# can do the conversion
automatically — like if your method expects an int, but you pass it a short — but it can’t do that for
ints and strings.
But MessageBox.Show() isn’t the only method that will give you compiler errors if you try to pass it
a variable whose type doesn’t match the parameter. All methods will do that, even the ones you write
yourself. Go ahead and try typing this completely valid method into a class:

It works just fine if you pass it what it expects (a bool) — call MyMethod(true) or
MyMethod(false), and it compiles just fine.
But what happens if you pass it an integer or a string instead? The IDE gives you a similar error to the
one that you got when you passed 123 to MessageBox.Show(). Now try passing it a Boolean, but
assigning the return value to a string or passing it on to MessageBox.Show(). That won’t work, either
— the method returns an int, not a long or the string that MessageBox.Show() expects.

NOTE

You can assign anything to a variable, parameter, or field with the type object.

When the compiler gives you an “invalid arguments” error, it means that you tried to call a method with variables
whose types didn’t match the method’s parameters.

IF STATEMENTS ALWAYS TEST TO SEE IF SOMETHING’S TRUE

You did this in the code you wrote in “Save the Humans” — go back and have a look; see if you can spot it.

Did you notice how we wrote our if statement like this:

if (yesNo) {

We didn’t have to explicitly say “if (yesNo == true)”. That’s because an if statement always checks if something’s true. You check if
something’s false using ! (an exclamation point, or the NOT operator). “if (!yesNo)” is the same thing as “if (yesNo == false)”. In our
code examples from now on, you’ll usually just see us do “if (yesNo)” or “if (!yesNo)”, and not explicitly check to see if a Boolean is
true or false.

EXERCISE

NOTE

If you really want to use reserved keywords as variable names, you can put @ in front of it, but
that’s as close as the compiler will let you get to the reserved keyword. You can do that with
nonreserved names too, if you want to.

There are about 77 reserved words called keywords in C#. These are words reserved by the C# compiler; you can’t use them for
variable names. You’ll know a lot of them really well by the time you finish the book. Here are some you’ve already used. Write down
what you think these words do in C#.

 Answers in Exercise Solution.

EXERCISE

Create a reimbursement calculator for a business trip. It should allow the user to enter a starting and ending mileage reading from the
car’s odometer. From those two numbers, it will calculate how many miles she’s traveled and figure out how much she should be
reimbursed if her company pays her $.39 for every mile she puts on her car.

➊ START WITH A NEW WINDOWS FORMS PROJECT.
Make the form look like this:

When you’re done with the form, double-click on the button to add some code to the project.
➋ CREATE THE FIELDS YOU’LL NEED FOR THE CALCULATOR.
Put the fields in the class definition at the top of Form1. You need two whole number values to track the starting odometer reading
and the ending odometer reading. Call them startingMileage and endingMileage. You need three numbers that can hold
decimal places. Make them doubles and call them milesTraveled, reimburseRate, and amountOwed. Set the value for
reimburseRate to .39.
➌ MAKE YOUR CALCULATOR WORK.
Add code in the button1_Click() method to:

Make sure that the number in the startingMileage field is smaller than the number in the endingMileage field. If not, show a
message box that says “The starting mileage must be less than the ending mileage.” Make the title for the message box “Cannot
Calculate Mileage.”
Subtract the starting number from the ending number and then multiply it by the reimburse rate using these lines:

milesTraveled = endingMileage -= startingMileage;

amountOwed = milesTraveled *= reimburseRate;

label4.Text = "$" + amountOwed;

➍ RUN IT.
Make sure it’s giving the right numbers. Try changing the starting value to be higher than the ending value, and make sure it’s
giving you the message box.

EXERCISE SOLUTION

You were asked to create a reimbursement calculator for a business trip. Here’s the code for the first part of the exercise.

This button seems to work, but it has a pretty big problem. Can you spot it?

Debug the mileage calculator
There’s something wrong with the mileage calculator. Whenever your code doesn’t work the way you
expect it to, there’s always a reason for it, and your job is to figure out what that reason is. Let’s
figure out what went wrong here and see if we can fix it.

DO THIS

➊ NOW ADD ANOTHER BUTTON TO THE FORM.
Let’s track down that problem by adding a button to your form that shows the value of the milesTraveled field. (You could also
use the debugger for this!)

When you’re done with the form, double-click on the Display Miles button to add some code to the project.
➋ ONE LINE SHOULD DO IT.
All we need to do is get the form to display the milesTraveled variable, right? So this line should do that:

private void button2_Click(object sender, EventArgs e) {
 MessageBox.Show(milesTraveled + " miles", "Miles Traveled");
}

➌ RUN IT.
Type in some values and see what happens. First enter a starting mileage and ending mileage, and click the Calculate button.
Then click the Display Miles button to see what’s stored in the milesTraveled field.

➍ UM, SOMETHING’S NOT RIGHT...
No matter what numbers you use, the number of miles always matches the amount owed. Why?

Combining = with an operator
Take a good look at the operator we used to subtract ending mileage from starting mileage (-=). The
problem is it doesn’t just subtract, it also assigns a value to the variable on the left side of the
subtraction sign. The same thing happens in the line where we multiply the number of miles traveled
by the reimbursement rate. We should replace the -= and the *= with just - and *:

So can good variable names help you out here? Definitely! Take a close look at what each variable
is supposed to do. You already get a lot of clues from the name milesTraveled — you know that’s
the variable that the form is displaying incorrectly, and you’ve got a good idea of how that value
ought to be calculated. So you can take advantage of that when you’re looking through your code to try
to track down the bug. It’d be a whole lot harder to find the problem if the incorrect lines looked like
this instead:

Objects use variables, too
So far, we’ve looked at objects separate from other types. But an object is just another data type.
Your code treats objects exactly like it treats numbers, strings, and Booleans. It uses variables to
work with them:

Using an int
➊ Write a statement to declare the integer.

int myInt;

➋ Assign a value to the new variable.
myInt = 3761;

➌ Use the integer in your code.
while (i < myInt) {

Using an object
➊ Write a statement to declare the object.

➋ Assign a value to the object.
spot = new Dog();

➌ Check one of the object’s fields.
while (spot.IsHappy) {

Objects are just one more type of variable your program can use.
If your program needs to work with a whole number that’s really big, use a long. If it needs a whole
number that’s small, use a short. If it needs a yes/no value, use a boolean. And if it needs something
that barks and sits, use a Dog. No matter what type of data your program needs to work with, it’ll use
a variable.

Refer to your objects with reference variables
When you create a new object, you use code like new Guy(). But that’s not enough; even though that
code creates a new Guy object on the heap, it doesn’t give you a way to access that object. You need
a reference to the object. So you create a reference variable: a variable of type Guy with a name,
like joe. So joe is a reference to the new Guy object you created. Any time you want to use that
particular guy, you can reference it with the reference variable called joe.

NOTE

That’s called instantiating the object.

So when you have a variable that is an object type, it’s a reference variable: a reference to a
particular object. Take a look:

References are like labels for your object
In your kitchen, you probably have containers of salt and sugar. If you switched their labels, it would
make for a pretty disgusting meal — even though the labels changed, the contents of the containers
stayed the same. References are like labels. You can move labels around and point them at different
things, but it’s the object that dictates what methods and data are available, not the reference itself.

When your code needs to work with an object in memory, it uses a reference, which is a variable whose type is a class
of the object it’s going to point to. A reference is like a label that your code uses to talk about a specific object.

You never refer to your object directly. For example, you can’t write code like Guy.GiveCash() if
Guy is your object type. The C# compiler doesn’t know which Guy you’re talking about, since you
might have several instances of Guy on the heap. So you need a reference variable, like joe, that you
assign to a specific instance, like Guy joe = new Guy().
Now you can call (non-static) methods like joe.GiveCash(). joe refers to a specific instance of the
Guy class, and your C# compiler knows exactly which instance to use. And, as you saw above, you
might have multiple labels pointing to the same instance. So you could say Guy dad = joe, and
then call dad.GiveCash(). That’s OK, too — that’s what Joe’s kid does every day.

If there aren’t any more references, your object gets garbage-
collected
If all of the labels come off of an object, programs can no longer access that object. That means C#
can mark the object for garbage collection. That’s when C# gets rid of any unreferenced objects, and
reclaims the memory those objects took up for your program’s use.

➊ Here’s some code that creates an object.
Guy joe = new Guy()
 { Name = "Joe", Cash = 50 };

➋ Now let’s create a second object.
Guy bob = new Guy()
 { Name = "Bob", Cash = 75 };

➌ Let’s take the reference to the first object, and change it to point at the second object.

For an object to stay in the heap, it has to be referenced. Some time after the last reference to the object disappears,
so does the object.

TYPECROSS

Take a break, sit back, and give your right brain something to do. It’s your standard crossword; all of the solution words are from this
chapter.

When you’re done, turn the page and take on the rest of the chapter.

Across Down

1. The second part of a variable declaration

4. namespace, for, while, using, and new are examples of _____________ words

6. What (int) is doing in this line of code: x = (int) y;

8. When an object no longer has any references pointing to it, it’s removed
from the heap using ____________ collection

10. What you’re doing when you use the + operator to stick two strings
together

14. The numeric type that holds the biggest numbers

15. The type that stores a single letter or number

16. \n and \r are _______ sequences

17. The four whole-number types that only hold positive numbers

2. You can combine the variable declaration and the
_________ into one statement

3. A variable that points to an object

5. What your program uses to work with data that’s
in memory

7. If you want to store a currency value, use this
type

9. += and -= are this kind of operator

11. A variable declaration always starts with this

12. Every object has this method that converts it to a
string

13. When you’ve got a variable of this type, you can
assign any value to it

 Answers in Typecross Solution.

Multiple references and their side effects
You’ve got to be careful when you start moving around reference variables. Lots of times, it might
seem like you’re simply pointing a variable to a different object. But you could end up removing all
references to another object in the process. That’s not a bad thing, but it may not be what you
intended. Take a look:

➊

Dog rover = new Dog();
rover.Breed = "Greyhound";

Objects:_1____
References:_1___

➋

Dog fido = new Dog();
fido.Breed = "Beagle";
Dog spot = rover;

Objects:_2____
References:_3___

➌

Dog lucky = new Dog();
lucky.Breed = "Dachshund";
fido = rover;

Objects:_2____

References:_4___

SHARPEN YOUR PENCIL

Now it’s your turn. Here’s one long block of code. Figure out how many objects and references there are at each stage. On the
righthand side, draw a picture of the objects and labels in the heap.

➊

Dog rover = new Dog();
rover.Breed = "Greyhound";
Dog rinTinTin = new Dog();
Dog fido = new Dog();
Dog quentin = fido;

Objects:______
References:_____
➋

Dog spot = new Dog();
spot.Breed = "Dachshund";
spot = rover;

Objects:______
References:_____
➌

Dog lucky = new Dog();
lucky.Breed = "Beagle";
Dog charlie = fido;
fido = rover;

Objects:______
References:_____
➍

rinTinTin = lucky;
Dog laverne = new Dog();
laverne.Breed = "pug";

Objects:______
References:_____
➎

charlie = laverne;
lucky = rinTinTin;

Objects:______
References:_____

SHARPEN YOUR PENCIL SOLUTION

Now it’s your turn. Here’s one long block of code. Figure out how many objects and references there are at each stage. On the
righthand side, draw a picture of the objects and labels in the heap.

EXERCISE

Create a program with an Elephant class. Make two Elephant instances and then swap the reference values that point to them,
without getting any Elephant instances garbage-collected.

➊ Start with a new Windows Forms Application project.
Make the form look like this:

➋ Create the Elephant class.
Add an Elephant class to the project. Have a look at the Elephant class diagram — you’ll need an int field called EarSize and
a String field called Name. (Make sure both are public.) Then add a method called WhoAmI() that displays a message box that
tells you the name and ear size of the elephant.
➌ Create two Elephant instances and a reference.
Add two Elephant fields to the Form1 class (in the area right below the class declaration) named Lloyd and Lucinda. Initialize
them so they have the right name and ear size. Here are the Elephant object initializers to add to your form:

lucinda = new Elephant() { Name = "Lucinda", EarSize = 33 };
lloyd = new Elephant() { Name = "Lloyd", EarSize = 40 };

➍ Make the Lloyd and Lucinda buttons work.
Have the Lloyd button call lloyd.WhoAmI() and the Lucinda button call lucinda.WhoAmI().
➎ Hook up the swap button.
Here’s the hard part. Make the Swap button exchange the two references, so that when you click Swap, the Lloyd and
Lucinda variables swap objects and a “Objects swapped” box is displayed. Test out your program by clicking the Swap button
and then clicking the other two buttons. The first time you click Swap, the Lloyd button should pop up Lucinda’s message box,
and the Lucinda button should pop up Lloyd’s message box. If you click the Swap button again, everything should go back.

C# garbage-collects any object with no references to it. So here’s your hint: If you want to pour a glass of beer into
another glass that’s currently full of water, you’ll need a third glass to pour the water into....

EXERCISE SOLUTION

Create a program with an Elephant class. Make two Elephant instances and then swap the reference values that point to them,
without getting any Elephant instances garbage-collected.

B RAIN POWER

Why do you think we didn’t add a Swap() method to the Elephant class?

Two references means TWO ways to change an object’s data
Besides losing all the references to an object, when you have multiple references to an object, you
can unintentionally change an object. In other words, one reference to an object may change that
object, while another reference to that object has no idea that something has changed. Watch:

DO THIS

➊ Add another button to your form.

➋ Add this code for the button. Can you guess what’s going to happen when you click it?

➌ OK, go ahead and click the new button. Wait a second, that’s the Lucinda message box. Didn’t we call the WhoAmI() method
from Lloyd?

A special case: arrays
If you have to keep track of a lot of data of the same type, like a list of heights or a group of dogs, you
can do it in an array. What makes an array special is that it’s a group of variables that’s treated as
one object. An array gives you a way of storing and changing more than one piece of data without
having to keep track of each variable individually. When you create an array, you declare it just like
any other variable, with a name and a type:

Strings and arrays are different from the other data types you’ve seen so far, because they’re the only ones without a set
size (think about that for a bit).

Use each element in an array like it is a normal variable
When you use an array, first you need to declare a reference variable that points to the array. Then
you need to create the array object using the new statement, specifying how big you want the array
to be. Then you can set the elements in the array. Here’s an example of code that declares and fills
up an array — and what’s happening on the heap when you do it. The first element in the array has an
index of zero.

Arrays can contain a bunch of reference variables, too
You can create an array of object references just like you create an array of numbers or strings.
Arrays don’t care what type of variable they store; it’s up to you. So you can have an array of ints, or
an array of Duck objects, with no problem.
Here’s code that creates an array of seven Dog variables. The line that initializes the array only
creates reference variables. Since there are only two new Dog() lines, only two actual instances of
the Dog class are created.

When you set or retrieve an element from an array, the number inside the brackets is called the index. The first
element in the array has an index of zero.

AN ARRAY’S LENGTH

You can find out how many elements are in an array using its Length property. So if you’ve got an array called heights, then you can
use heights. Length to find out how long it is. If there are seven elements in the array, that’ll give you 7 — which means the array
elements are numbered 0 to 6.

Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!
Sloppy Joe has a pile of meat, a whole lotta bread, and more condiments than you can shake a stick at.
But what he doesn’t have is a menu! Can you build a program that makes a new random menu for him
every day?

DO THIS

➊ Start a new project and add a MenuMaker class.
If you need to build a menu, you need ingredients. And arrays would be perfect for those lists. We’ll also need some way of
choosing random ingredients to combine together into a sandwich. Luckily, the .NET Framework has a built-in class called Random
that generates random numbers. So we’ll have four fields in our class: a Randomizer field that holds a reference to a Random
object, and three arrays of strings to hold the meats, condiments, and breads.

➋ Add a GetMenuItem() method to the class that generates a random sandwich.
The point of the class is to generate sandwiches, so let’s add a method to do exactly that. It’ll use the Random object’s Next()
method to choose a random meat, condiment, and bread from each array. When you pass an int parameter to Next(), the
method returns a random number that’s less than that parameter. So if your Random object is called Randomizer, then calling
Randomizer.Next(7) will return a random number between 0 and 6.
So how do you know what parameter to pass into the Next() method? Well, that’s easy — just pass in each array’s Length. That
will return the index of a random item in the array.

HOW IT WORKS...

➌ Build your form.
Add six labels to the form, label1 through label6. Then add code to set each label’s Text property using a MenuMaker object.
You’ll need to initialize the object using a new instance of the Random class. Here’s the code:

Objects use references to talk to each other
So far, you’ve seen forms talk to objects by using reference variables to call their methods and check
their fields. Objects can call one another’s methods using references, too. In fact, there’s nothing that
a form can do that your objects can’t do, because your form is just another object. And when
objects talk to each other, one useful keyword that they have is this. Any time an object uses the
this keyword, it’s referring to itself — it’s a reference that points to the object that calls it.

➊ HERE’S A METHOD TO TELL AN ELEPHANT TO SPEAK.
Let’s add a method to the Elephant class. Its first parameter is a message from an elephant. Its
second parameter is the elephant that said it:

public void TellMe(string message, Elephant whoSaidIt) {
 MessageBox.Show(whoSaidIt.Name + " says: " + message);
}

Here’s what it looks like when it’s called. You can add to button4_Click(), but add it before
the statement that resets the references! (lloyd = lucinda;)

lloyd.TellMe("Hi", lucinda);

We called Lloyd’s TellMe() method, and passed it two parameters: “Hi” and a reference to
Lucinda’s object. The method uses its whoSaidIt parameter to access the Name parameter of
whatever elephant was passed into TellMe() using its second parameter.
➋ HERE’S A METHOD THAT CALLS ANOTHER METHOD.
Now let’s add this SpeakTo() method to the Elephant class. It uses a special keyword: this.
That’s a reference that lets an object talk about itself.

Let’s take a closer look at how this works.
lloyd.SpeakTo(lucinda, "Hello");

When Lloyd’s SpeakTo() method is called, it uses its whoToTalkTo parameter (which has a
reference to Lucinda) to call Lucinda’s TellMe() method.

So Lucinda acts as if she was called with ("Hello", lloyd), and shows this message:

Where no object has gone before
There’s another important keyword that you’ll use with objects. When you create a new reference and
don’t set it to anything, it has a value. It starts off set to null, which means it’s not pointing to
anything.

THERE ARE NO DUMB QUESTIONS

Q: Q: One more time — my form is an object?

A: A: Yes! That’s why your form’s code starts with a class declaration. Open up code for a form and see for yourself. Then open up Program.cs in any
program you’ve written so far and look inside the Main() method — you’ll find “new Form1()”.

Q: Q: Why would I ever use null?

A: A: There are a few ways you see null used in typical programs. The most common way is testing for it:

if (lloyd == null) {

That test will return true if the lloyd reference is set to null.
Another way you’ll see the null keyword used is when you want your object to get garbage-collected. If you’ve got a reference to an object and you’re
finished with the object, setting the reference to null will immediately mark it for collection (unless there’s another reference to it somewhere).

Q: Q: You keep talking about garbage collecting, but what’s actually doing the collecting?

A: A: Remember how we talked about the Common Language Runtime (or CLR) back at the beginning of Chapter 2? That’s the virtual machine that
runs all .NET programs. A virtual machine is a way for it to isolate running programs from the rest of the operating system. One thing that virtual
machines do is manage the memory that they use. That means that it keeps track of all of your objects, figures out when the last reference to the object
disappears, and frees up the memory that it was using.

THERE ARE NO DUMB QUESTIONS

Q: Q: I’m still not sure I get how references work.

A: A: References are the way you use all of the methods and fields in an object. If you create a reference to a Dog object, you can then use that reference to
access any methods you’ve created for the Dog object. If you have a (nonstatic) method called Dog.Bark() or Dog.Beg(), you can create a reference called
spot. Then you can use that to access spot.Bark() or spot.Beg(). You could also change information in the fields for the object using the reference. So
you could change a Breed field using spot.Breed.

Q: Q: Wait, then doesn’t that mean that every time I change a value through a reference I’m changing it for all of the other references to that
object, too?

A: A: Yes. If rover is a reference to the same object as spot, changing rover.Breed to “beagle” would make it so that spot.Breed was “beagle.”

Q: Q: I still don’t get that stuff about different types holding different sized values. What’s the deal with that?

A: A: OK. The thing about variables is they assign a size to your number no matter how big its value is. So if you name a variable and give it a long type
even though the number is really small (like, say, 5), the CLR sets aside enough memory for it to get really big. When you think about it, that’s really
useful. After all, they’re called variables because they change all the time.
The CLR assumes you know what you’re doing and you’re not going to give a variable a type that you don’t need. So even though the number might
not be big now, there’s a chance that after some math happens, it’ll change. The CLR gives it enough memory to handle whatever type of number you
call it.

Q: Q: Remind me again — what does this do?

A: A: this is a special variable that you can only use inside an object. When you’re inside a class, you use this to refer to any field or method of that
particular instance. It’s especially useful when you’re working with a class whose methods call other classes. One object can use it to send a reference
to itself to another object. So if Spot calls one of Rover’s methods passing this as a parameter, he’s giving Rover a reference to the Spot object.

Any time you’ve got code in an object that’s going to be instantiated, the instance can use the special this variable
that has a reference to itself.

B ULLET POINTS

When you declare a variable you specify a type and a variable name. Sometimes you combine it with setting the value on the
same line of code.

NOTE

There’s a very specific case where you don’t declare a type. You’ll learn about it when you use
the var keyword in Chapter 14.

There are value types for variables that hold different sizes of numbers. The biggest numbers should be of the type long and the
smallest ones (up to 255) can be declared as bytes.
Every value type has a size, and you can’t put a value of a bigger type into a smaller variable, no matter what the actual size of
the data is.
When you’re using literal values, use the F suffix to indicate a float (15.6F) and M for a decimal (36.12M).
There are a few types (like short to int) that C# knows how to convert automatically. When the compiler won’t let you set a
variable equal to a value of a different type, that’s when you need to cast it.
There are some words that are reserved by the language and you can’t name your variables with them. They’re words like for,
while, using, new, and others that do specific things in the language.
References are like labels: you can have as many references to an object as you want, and they all refer to the same thing.
If an object doesn’t have any references to it, it eventually gets garbage-collected.

SHARPEN YOUR PENCIL

Here’s an array of Elephant objects and a loop that will go through it and find the one with the biggest ears. What’s the value of the
biggestEars.Ears after each iteration of the for loop?

 Answers in Sharpen your pencil Solution.

CODE MAGNETS

The code for a button is all scrambled up on the fridge. Can you reconstruct the code snippets to make a working method that
produces the output listed below?

 Answers in Code Magnets Solution.

POOL PUZZLE

Your job is to take code snippets from the pool and place them into the blank lines in the code. You may use the same snippet more
than once, and you won’t need to use all the snippets. Your goal is to make a class that will compile and run, and produce the output
listed.

Output

Bonus Question!

For extra bonus points, use snippets from the pool to fill in the two blanks missing from the output.

Note: each snippet from the pool can be used more than once.

 Answers in Pool Puzzle Solution.

Build a typing game
You’ve reached a milestone...you know enough to build a game! Here’s how your game will work.
The form will display random letters. If the player types one of them, it disappears and the accuracy
rate goes up. If the player types an incorrect letter, the accuracy rate goes down. As the player keeps
typing letters, the game goes faster and faster, getting more difficult with each correct letter. If the
form fills up with letters, the game is over!

DO THIS

➊ BUILD THE FORM.
Here’s what the form will look like in the form designer:

You’ll need to:
Turn off the minimize box and maximize box. Then set the form’s FormBorderStyle property to
Fixed3D. That way, the player won’t be able to accidentally drag and resize it. Then resize it so
that it’s much wider than it is tall (we set our form’s size to 876, 174).
Drag a ListBox out of the toolbox onto the form. Set its Dock property to Fill, and its
MultiColumn property to True. Set its Font to 72 point bold.
In the toolbox, expand the All Windows Forms group at the top. This will display many controls.
Find the Timer control and double-click on it to add it to your form.
Find the StatusStrip in the All Windows Forms group in the toolbox and double-click on it to add a
status bar to your form. You should now see the StatusStrip and Timer icons in the gray area at the
bottom of the form designer:

See how you can use a Timer to make your form do more than one thing at once? Take a
minute and flip to #4 in the “Leftovers” appendix to learn about another way to do that.

RELAX

You’ll be using three new controls, but they’re easy to work with!

Even though you haven’t seen a ListBox, StatusStrip, or Timer before, you already know how to set their properties and work
with them in your code. You’ll learn a lot more about them in the next few chapters.

➋ SET UP THE STATUSSTRIP CONTROL.
Take a closer look at the status bar at the bottom of the screenshot. On one side, it’s got a series of
labels:

And on the other side, it’s got a label and a progress bar:

Add a StatusLabel to your StatusStrip by clicking its drop-down and selecting StatusLabel. Then
do the following:
Use the Properties window to set its (Name) to correctLabel and its Text to “Correct: 0”. Add
three more StatusLabels: missedLabel, totalLabel, and accuracyLabel, and set their Text
properties to “Missed: 0”, “Total: 0”, and “Accuracy: 0%”.

Add one more StatusLabel. Set its Spring to True, TextAlign to MiddleRight, and Text to
“Difficulty”. Finally, add a ProgressBar and name it difficultyProgressBar.
Set the StatusStrip’s SizingGrip property to False (hit Escape if you’ve got a child StatusLabel
or ProgressBar selected to return the IDE’s focus to the parent StatusStrip).
➌ SET UP THE TIMER CONTROL.
Did you notice how your Timer control didn’t show up on your form? That’s because the Timer is
a nonvisual control. It doesn’t actually change the look and feel of the form. It does exactly one
thing: it calls a method over and over again. Set the Timer control’s Interval property to 800,
so that it calls its method every 800 milliseconds. Then double-click on the timer1 icon in the
designer. The IDE will do what it always does when you double-click on a control: it will add a
method to your form. This time, it’ll add one called timer1_Tick. Here’s the code for it:

➍ ADD A CLASS TO KEEP TRACK OF THE PLAYER STATS.
If the form is going to display the total number of keys the player pressed, the number that were
missed and the number that were correct, and the player’s accuracy, then we’ll need a way to keep
track of all that data. Sounds like a job for a new class! Add a class called Stats to your project.
It’ll have four int fields called Total, Missed, Correct, and Accuracy, and a method called
Update with one bool parameter: true if the player typed a correct letter that was in the ListBox,
or false if the player missed one.

➎ ADD FIELDS TO YOUR FORM TO HOLD A STATS OBJECT AND A RANDOM
OBJECT.
You’ll need an instance of your new Stats class to actually store the information, so add a field
called stats to store it. And you already saw that you’ll need a field called random — it’ll
contain a Random object.
Add the two fields to the top of your form:

public partial class Form1 : Form
{
 Random random = new Random();
 Stats stats = new Stats();
 ...

Before you go on, there are three properties you need to set. Set the Timer control’s Enabled property to True, the
ProgressBar control’s Maximum property to 701, and the Form’s KeyPreview property to True. Take a minute and figure
out why you need those properties. What happens if you don’t set them?

➏ HANDLE THE KEYSTROKES.
There’s one last thing your game needs to do: any time the player hits a key, it needs to check if
that key is correct (and remove the letter from the ListBox if it is), and update the stats on the
StatusStrip.
Go back to the form designer and select the form. Then go to the Properties window and click on
the lightning bolt button. Scroll to the KeyDown row and double-click on it. This tells the IDE to
add a method called Form1_KeyDown() that gets called every time the user presses a key. Here’s
the code for the method:

This game only runs once. Can you figure out how to modify it so the player can start a new
game when it’s displaying “Game Over”?
➐ RUN YOUR GAME.
Your game’s done! Give it a shot and see how well you do. You may need to adjust the font size of
the ListBox to make sure it holds exactly seven letters, and you can change the difficulty by
adjusting the values that are subtracted from timer1.Interval in the Form1_KeyDown() method.

Controls are objects, just like any other object
You’ve built plenty of forms by dragging controls out of the toolbox. It turns out that those controls are
just regular old objects. And since they’re objects, you can add references to them and work with
them like you’d work with an instance of a class that you wrote yourself. Let’s see a live example of
that by building a program that animates some Label controls by bouncing them back and forth on a
form.

DO THIS

➊ Create a new Windows Forms Application and build this form.

➋ Add a class called LabelBouncer. Here’s the code for it:

All you need to do to bounce a label across a form is to create a new instance of the LabelBouncer class, set its MyLabel field to point
to a Label control on the form, and then call its Move() method over and over again.

Each time the Move() method is called, the LabelBouncer nudges the label by changing its Left property. If the GoingForward field is true,
then it nudges it to the right by adding 5; otherwise, it nudges it to the left by subtracting 5.

Every control has a Parent property that contains a reference to the form, because the form is an object too!

➌ Here’s the code for the form. See if you can figure out exactly what’s going on here. It uses an array of LabelBouncer
objects to bounce labels back and forth, and has the Timer’s Tick event handler method call their Move() methods over and over
again.

The form stores an array of LabelBouncer references in a field called bouncers. When the ToggleBouncing() method is called, it uses the
index parameter to check an element of the array. If the element is null, it creates a new LabelBouncer object and stores its
reference in the array; otherwise, it clears the element by setting it to null.

Since controls are just objects, you can pass references to them as method parameters and store them in arrays,
fields, and variables.

EXERCISE SOLUTION

There are about 77 reserved words called keywords in C#. These are words reserved by the C# compiler; you can’t use them for
variable names. You’ll know a lot of them really well by the time you finish the book. Here are some you’ve already used. Write down
what you think these words do in C#.

TYPECROSS SOLUTION

SHARPEN YOUR PENCIL SOLUTION

Here’s an array of Elephant objects and a loop that will go through it and find the one with the biggest ears. What’s the value of the
biggestEars.Ears after each iteration of the for loop?

CODE MAGNETS SOLUTION

The code for a button is all scrambled up on the fridge. Can you reconstruct the code snippets to make a working method that
produces the output listed below?

POOL PUZZLE SOLUTION

Part I. C# Lab: A Day at the Races
Name: ____________________ Date: ____________________

This lab gives you a spec that describes a program for you to build, using the knowledge you’ve
gained over the last few chapters.
This project is bigger than the ones you’ve seen so far. So read the whole thing before you get started,
and give yourself a little time. And don’t worry if you get stuck — there’s nothing new in here, so you
can move on in the book and come back to the lab later.
We’ve filled in a few design details for you, and we’ve made sure you’ve got all the pieces you
need...and nothing else.
It’s up to you to finish the job. You can download the graphics files we used in our solution...but we
won’t give you code for a solution.

NOTE

But other readers have claimed their bragging rights by publishing their solutions on CodePlex, GitHub, and other collaborative source
code hosting sites, in case you need a hint!

The Spec: Build a Racetrack Simulator
Joe, Bob, and Al love going to the track, but they’re tired of losing all their money. They need you to
build a simulator for them so they can figure out winners before they lay their money down. And, if
you do a good job, they’ll cut you in on their profits.
Here’s what you’re going to build for them...

The Guys
Joe, Bob, and Al want to bet on a dog race. Joe starts with 50 bucks, Bob starts with 75 bucks, and Al
starts with 45 bucks. Before each race, they’ll each decide if they want to bet, and how much they
want to put down. The guys can change their bets right up to the start of the race...but once the race
starts, all bets are final.

The Betting Parlor
The betting parlor keeps track of how much cash each guy has, and what bet he’s placed. There’s a
minimum bet of 5 bucks. The parlor only takes one bet per person for any one race.
The parlor checks to make sure that the guy who’s betting has enough cash to cover his bet — so the
guys can’t place a bet if they don’t have the cash to cover the bet.

Betting
Every bet is double-or-nothing — either the winner doubles his money, or he loses what he bet.
There’s a minimum bet of 5 bucks, and each guy can bet up to 15 bucks on a single dog. If the dog
wins, the bettor ends up with twice the amount that he bets (after the race is complete). If he loses,
that amount disappears from his pile.

NOTE

Say a guy places a $10 bet at the window. At the end of the race, if his dog wins, his cash goes up by $10 (because he keeps the
original $10 he bet, plus he gets $10 more from winning). If he loses, his cash goes down by $10.

The Race
There are four dogs that run on a straight track. The winner of the race is the first dog to cross the
finish line. The race is totally random, there are no handicaps or odds, and a dog isn’t more likely to
win his next race based on his past performance.

NOTE

If you want to build a handicap system, by all means do it! It’ll be really good practice writing some fun code.

Sound fun? We’ve got more details coming up...

You’ll need three classes and a form
You’ll build three main classes in the project, as well as a GUI for the simulator. You should have an
array of three Guy objects to keep track of the three guys and their winnings, and an array of four
Greyhound objects that actually run the race. Also, each instance of Guy should have its own Bet
object that keeps track of his bet and pays out (or takes back) cash at the end of the race.

You’ll need to add using System.Windows.Forms; to the top of the Greyhound and Guy classes. You’ll also need to add the
public keyword in front of each of your class declarations.

We’ve gotten you started with class descriptions and some snippets of code to work from. You’ve got
to finish everything up.

Initialize your arrays of Greyhound and Guy objects
The Greyhound class keeps track of its position on the racetrack during the race, and it updates the
location of the PictureBox representing the dog to move down the race track. Each instance of
Greyhound uses a field called MyPictureBox to reference the PictureBox control on the form that
shows the picture of the dog. It also needs to know its starting position and the length of the racetrack,
which it can determine using the PictureBox for the racetrack (we named it
racetrackPictureBox). Here’s the object initializer for one of the Greyhound objects in the array
(we called it GreyhoundArray):

NOTE

This works just like LabelBouncer: the form passes a reference to a PictureBox to the Greyhound object, which uses its Left property
to make it move.

Remember: the form keeps the dogs in an array that starts at index 0. Dog #1 is at index 0, dog
#2 is at index 1, etc. You’ll need to add 1 to the array index to get the winner.

Here’s your application architecture
Spend some time looking closely at the architecture. It looks pretty complicated at first, but there’s
nothing here you don’t know. Your job is to recreate this architecture yourself, starting with the
Greyhound and Guy arrays in your main form.

If your code won’t build because of an error message about “inconsistent accessibility,” make sure you added public to
the beginning of the three class declarations. (You’ll learn more about this later on in the book.)

When a Guy places a bet, he creates a new Bet object

The form uses a Timer to keep the dogs running until there’s a
winner

The Bet object figures out if it should pay out

Here’s what your GUI should look like
The graphical user interface for the “Day at the Races” application consists of a form that’s divided
into two sections. The top is the racetrack: a PictureBox control for the track, and four more for the
dogs. The bottom half of the form shows the betting parlor, where three guys (Joe, Bob, and Al) can
bet on the outcome of the race.

You can download the graphics files from www.headfirstlabs.com/books/hfcsharp/.

http://www.headfirstlabs.com/books/hfcsharp/

Placing bets
Use the controls in the Betting Parlor GroupBox to place each guy’s bet. There are three distinct
stages here:

➊ No bets have been placed yet.
When the program first starts up, or if a race has just finished, no bets have been placed in the
betting parlor. You’ll see each guy’s total cash next to his name on the left.

NOTE

You’ll need a loop to initialize each Guy object by calling his ClearBet() method (which has him place a bet with zero bucks) and
then calling his UpdateLabels() method.

➋ Each guy places his bets.
To place a bet, select the guy’s radio button, select an amount and a dog, and click the Bets button.
His PlaceBet() method will update the label and radio button.

➌ After the race, each guy collects his winnings (or pays up!).
Once the race is complete and there’s a winner, each Guy object calls his Collect() method and
adds his winnings or losses to his cash.

Make sure all the Greyhound objects share the same Random object! If each dog creates its
own new instance of Random, you might see a bug where all of the dogs generate the same
sequence of random numbers.

The Finished Product
You’ll know your “Day at the Races” application is done when your guys can place their bets and
watch the dogs race.

You can download a finished executable, as well as the graphics files for the four dogs and the racetrack, from the Head
First labs website:
www.headfirstlabs.com/books/hfcsharp

We didn’t give solutions for this lab because when programs get large enough, there are too many ways to build them for
us to say there’s one “right” solution. But if you need a hint, plenty of people have claimed their bragging rights by
publishing their own code on CodePlex.com and other collaborative source code hosting sites.

http://www.headfirstlabs.com/books/hfcsharp

Chapter 5. Encapsulation: Keep your
privates... Private

Ever wished for a little more privacy?
Sometimes your objects feel the same way. Just like you don’t want anybody you don’t trust reading
your journal or paging through your bank statements, good objects don’t let other objects go poking
around their fields. In this chapter, you’re going to learn about the power of encapsulation. You’ll
make your object’s data private, and add methods to protect how that data is accessed.

Kathleen is an event planner
She’s been planning dinner parties for her clients and she’s doing really well. But lately she’s been
having a hard time responding to clients fast enough with an estimate for her services.

When a new client calls Kathleen to do a party, she needs to find out the number of guests, what kind
of drinks to serve, and what decorations she should buy. Then she uses a pretty complicated
calculation to figure out the total cost, based on a flow chart she’s been using for years. The bad news
is that it takes her a long time to work through her chart, and while she’s estimating, her potential
clients are checking out other event planners.
It’s up to you to build her a C#-driven event estimator and save her business. Imagine the party she’ll
throw you when you succeed!

What does the estimator do?
Kathleen runs down some of the basics of her system for figuring out the costs of an event. Here’s part
of what she came up with:

KATHLEEN’S PARTY PLANNING PROGRAM — COST ESTIMATE FOR A DINNER PARTY

For each person on the guest list there’s a $25 food charge.
Clients have a choice when it comes to drinks. Most parties serve alcohol, which costs $20 per person. But they can also choose
to have a party without alcohol. Kathleen calls that the “Healthy Option,” and it only costs $5 per person to have soda and juice
instead of alcohol. Choosing the Healthy Option is a lot easier for her, so she gives the client a 5% discount on the entire party,
too.
There are two options for the cost of decorations. If a client goes with the normal decorations, it’s $7.50 per person with a $30
decorating fee. A client can also upgrade the party decorations to the “Fancy Decorations” — that costs $15 per person with a
$50 one-time decorating fee.

Here’s another look at this same set of costs, broken down into a little flow chart to help you see how
it works:

You’re going to build a program for Kathleen
When you flip the page, you’ll see an exercise to build a dinner party–planning program for Kathleen.
Here’s a sneak preview of what you’ll build.
You’ll build this form, which Kathleen will use to set the options for her party. She’ll set the
number of people and check or uncheck the boxes for fancy decorations or a healthy option. As she
does, the cost at the bottom will change based on her selections.

The logic for the program will be built into a class called DinnerParty. The form will create a
DinnerParty object, store a reference to that object in a field, and use its fields and methods to
perform the calculation.

Here’s what the top of the form will look like. It will have a field called dinnerParty to do the
cost calculation. The first thing the form will do is set it up with default values, and then calculate the
cost using a method called DisplayDinnerPartyCost(). The form will call that method every time
the user changes an option.

public partial class Form1 : Form
{
 DinnerParty dinnerParty;

 public Form1()
 {
 InitializeComponent();
 dinnerParty = new DinnerParty() { NumberOfPeople = 5 };
 dinnerParty.SetHealthyOption(false);
 dinnerParty.CalculateCostOfDecorations(true);
 DisplayDinnerPartyCost();
 }
 ...

Here’s how the DinnerParty class will work. The current state of the DinnerParty object —

the values stored in its fields — determines how it does its cost calculation. Setting the healthy
option, choosing fancy decorations, and adding or removing people changes the state of the object,
which causes the CalculateCost() method to return a different number.

Got all that? Let’s start building!
We’re going to start asking you to solve longer and tougher problems because we know you’re up
to the challenge!

NOTE

The goal is to help you become a great C# programmer, and the quickest way to that goal is solving problems like this one.

EXERCISE

Build a program to solve Kathleen’s party estimating problem.

➊ Create a new Windows Forms Application project, add a class file to it called DinnerParty. cs, and build the DinnerParty
class using the class diagram to the left. It’s got three methods: CalculateCostOfDecorations(), SetHealthyOption(), and
CalculateCost(). For the fields, use decimal for the two costs, and an int for the number of people. Make sure you add an M
after every literal you assign to a decimal value (10.0M).

➋ Here’s a useful C# tool. Since the cost of food won’t be changed by the program, you can declare it as a constant, which is
like a variable except that its value can never be changed. Here’s the declaration to use:

public const int CostOfFoodPerPerson = 25;

➌ Flip back to the previous page to be sure you’ve got the calculations right for the methods. Only one of them returns a value (a
decimal) — the other two are void. The CalculateCostOfDecorations() method figures out the cost of decorations for the
number of people attending the party. Use the CalculateCost() method to figure out the total cost by adding the cost of the
decorations to the cost of drinks and food per person. If the client wants the healthy option, you can apply the discount inside the
CalculateCost() method after you’ve figured out the total cost.
➍ Add this code to your form:

➎ Here’s what the form should look like. Use the NumericUpDown control’s properties to set the maximum number of people to
20, the minimum to 1, and the default to 5. Get rid of the maximize and minimize buttons, too.

NOTE

The checkboxes are named fancyBox and healthyBox. You can keep the default name for the
NumericUpDown control.

➏ Instead of using a button to calculate the costs, this form will update the cost label automatically as soon as you use a
checkbox or the NumericUpDown control. The first thing you need to do is create a method in the form that displays the cost.
Add this method to the Form1 class. It’ll get called when the NumericUpDown control is clicked:

➐ Now hook up the NumericUpDown field to the NumberOfPeople variable you created in the DinnerParty class and display the
cost in the form. Double-click on the NumericUpDown control — the IDE will add an event handler method that gets run every
time the value in the control is changed. Use this method to reset the number of people in the party. Here’s the code for the
method:

NOTE

You’ve been using event handlers all along — when you double-click on a button, the IDE adds a
Click event handler. Now you know what it’s called.

Uh oh — there’s a problem with this code. Can you spot it? Don’t worry if you don’t see it just yet.

NOTE

The value you send from the form to the method will be fancyBox.Checked. That will be passed
as a boolean parameter to the method in the class.

➑ Double-click on the Fancy Decorations checkbox on the form and make sure that it first calls
CalculateCostOfDecorations() and then DisplayDinnerPartyCost(). Next, double-click the Healthy Option checkbox and
make sure that it calls the SetHealthyOption() method in the DinnerParty class and then calls the DisplayDinnerPartyCost()
method.

NOTE

These are just two-line methods. The first line will call the method you created in the class to
figure out the costs, and the second will display the total cost on the form.

EXERCISE SOLUTION

Here’s the code that goes into DinnerParty.cs.

NOTE

You don’t need to add “using System.Windows.Forms;” to your DinnerParty class, because it
doesn’t use MessageBox.Show() or anything else from that .NET Framework namespace.

We had you use a decimal for the prices because it’s designed for monetary values. Just make sure you always put an
“M” after every literal — so if you want to store $35.26, make sure you write 35.26M. You can remember this because
the M stands for Money!

STRING FORMATTING

You’ve already seen how you can convert any object to a string using its ToString() method. If you
pass “c” to ToString(), it converts it to the local currency. You can also pass it “f3” to format it as a
decimal number with three decimal places, “0” (that’s a zero) to convert it to a whole number, “0%”
for a whole number percentage, and “n” to display it as a number with a comma separator for
thousands. Take a minute and see how each of these looks in your program!

Kathleen’s test drive

Rob (on phone): Hi, Kathleen. How are the arrangements for my dinner party going?

NOTE

Rob’s one of Kathleen’s favorite clients. She did his wedding last year, and now she’s planning an important dinner party for him.

Kathleen: Just great. We were out looking at decorations this morning and I think you’ll love the way
the party’s going to look.
Rob: That’s awesome. Listen, we just got a call from my wife’s aunt. She and her husband are going
to be visiting for the next couple of weeks. Can you tell me what it does to the estimate to move from
10 to 12 people on the guest list?

NOTE

When you start the program, the Fancy Decorations box should already be checked because you set its Checked property to true.
Setting the number of people to 10 gives a cost of $575.

Kathleen: Sure! I’ll have that for you in just one minute.

Kathleen: OK. It looks like the total cost for the dinner will go from $575 to $665.
Rob: Only $90 difference? That sounds like a great deal! What if we decide to cut the fancy
decorations? What’s the cost then?

Kathleen: Um, it looks like...um, $660.
Rob: $660? I thought the decorations were $15 per person. Did you change your pricing or
something? If it’s only $5 difference, we might as well go with the fancy decorations. I’ve gotta tell
you though, this pricing is confusing.
Kathleen: We just had this new program written to do the estimation for us. But it looks like there
might be a problem. Just one second while I add the fancy decorations back to the bill.

Kathleen: Rob, I think there’s been a mistake. It looks like the cost with the fancy decorations just
shot up to $770. That does seem to make more sense. But I am beginning not to trust this application.
I’m going to send it back for some bug fixes and work up your estimate by hand. Can I get back to you
tomorrow?
Rob: I am not paying $770 just to add two people to the party. The price you quoted me before was a
lot more reasonable. I’ll pay you the $665 you quoted me in the first place, but I just can’t go higher
than that!

B RAIN POWER

Why do you think the numbers are coming out wrong every time Kathleen makes a change?

Each option should be calculated individually
Even though we made sure to calculate all of the amounts according to what Kathleen said, we didn’t
think about what would happen when people made changes to just one of the options on the form.

RELAX

Don’t worry! This one wasn’t your fault.

We built a nasty little bug into the code we gave you to show you just how easy it is to have problems with how objects use one
another’s fields...and just how hard those problems are to spot.

When you launch the program, the form sets the number of people to 5 and Fancy Decorations to true.
It leaves Healthy Option unchecked and it calculates the cost of the dinner party as $350. Here’s how
it comes up with the initial total cost:

When you change the number of guests, the application should recalculate the total estimate the same
way. But it doesn’t:

Uncheck the Fancy Decorations checkbox and then check it again.
This will cause the DinnerParty object’s CostOfDecorations field to be updated, and then the
correct cost of $650 will show up.

THE PROB LEM UP CLOSE

Take a look at the method that handles changes to the value in the numericUpDown control. It sets the value from the field to the
NumberofPeople variable and then calls the DisplayDinnerPartyCost() method. Then it counts on that method to handle
recalculating all the individual new costs.

So, when you make a change to the value in the NumberofPeople field, this method never gets called:

This isn’t the only part of the program that has problems, either. The two checkboxes are inconsistent in how they behave: one calls
a method to set the object’s state, and the other is passed as an argument to a method. A programmer trying to figure out how this
program works will find it totally counterintuitive!

NOTE

Did you have a bit of trouble figuring out how this exercise works? Don’t be hard on yourself if you
did. It could be because we asked you to build a program that had these conceptual problems! You’ll
build a much better, simpler version at the end of this chapter.

People won’t always use your classes in exactly the way you expect.

NOTE

...and sometimes those “people” who are using your classes are you! You might be writing a class today that you’ll be using
tomorrow.

Luckily, C# gives you a powerful tool to make sure your program always works correctly — even
when people do things you never thought of. It’s called encapsulation and it’s a really helpful
technique for working with objects.

It’s easy to accidentally misuse your objects
Kathleen ran into problems because her form ignored the convenient
CalculateCostOfDecorations() method that you set up and instead went directly to the fields in
the DinnerParty class. So even though your DinnerParty class worked just fine, the form called it
in an unexpected way... and that caused problems.

➊ HOW THE DINNERPARTY CLASS EXPECTED TO BE CALLED
The DinnerParty class gave the form a perfectly good method to calculate the total cost of
decorations. All it had to do was set the number of people and then call
CalculateCostOfDecorations(), and then CalculateCost() will return the correct cost.

➋ HOW THE DINNERPARTY CLASS WAS ACTUALLY CALLED
The form set the number of people, but just called the CalculateCost() method without first
recalculating the cost of the decorations. That threw off the whole calculation, and Kathleen ended
up giving Rob the wrong price.

Encapsulation means keeping some of the data in a class private
There’s an easy way to avoid this kind of problem: make sure that there’s only one way to use your
class. Luckily, C# makes it easy to do that by letting you declare some of your fields as private. So
far, you’ve only seen public fields. If you’ve got an object with a public field, any other object can
read or change that field. But if you make it a private field, then that field can only be accessed from
inside that object (or by another object of the same class).

NOTE

Use your laziness to your own benefit — if you leave off the “private” or “public” declaration, then C# will just assume that your field
is private.

NOTE

Also, a class’s static methods can access the private field in any instance of that class.

By making the field that holds the number of party guests private, we only give the form one
way to tell the DinnerParty class how many people are at the party — and we can make sure
the cost of decorations is recalculated properly. When you make some data private and then
write code to use that data, it’s called encapsulation.

EN-CAP-SU-LA-TED, ADJ.

enclosed by a protective coating or membrane. The divers were fully encapsulated by their submersible, and could only enter
and exit through the airlock.

Use encapsulation to control access to your class’s methods and
fields
When you make all of your fields and methods public, any other class can access them. Everything
your class does and knows about becomes an open book for every other class in your program...and
you just saw how that can cause your program to behave in ways you never expected. Encapsulation
lets you control what you share and what you keep private inside your class. Let’s see how this
works:

➊ Super-spy Herb Jones is defending life, liberty, and the pursuit of happiness as an undercover
agent in the USSR. His ciaAgent object is an instance of the SecretAgent class.

RealName: "Herb Jones"
Alias: "Dash Martin"
Password: "the crow flies at midnight"

➋ Agent Jones has a plan to help him evade the enemy KGB agents. He added an
AgentGreeting() method that takes a password as its parameter. If he doesn’t get the right
password, he’ll only reveal his alias, Dash Martin.

➌ Seems like a foolproof way to protect the agent’s identity, right? As long as the agent object that
calls it doesn’t have the right password, the agent’s name is safe.

But is the RealName field REALLY protected?
So as long as the KGB doesn’t know any CIA agent passwords, the CIA’s real names are safe. Right?
But what about the field declaration for the realName field:

Agent Jones can use private fields to keep his identity secret from enemy spy objects. Once he
declares the realName field as private, the only way to get to it is by calling methods that have
access to the private parts of the class. So the KGB agent is foiled!

NOTE

The kgbAgent object can’t access the ciaAgent’s private fields because they’re instances of different classes .

B RAIN POWER

Why do you think we used an uppercase R for the public field, but switched to a lowercase r for the private one?

Private fields and methods can only be accessed from inside the
class
There’s only one way that an object can get at the data stored inside another object’s private fields:
by using the public fields and methods that return the data. But while KGB and MI5 agents need to use
the AgentGreeting() method, friendly spies can see everything — any class can see private fields
in other instances of the same class.

THERE ARE NO DUMB QUESTIONS

Q: Q: OK, so I need to access private data through public methods. What happens if the class with the private field doesn’t give me a way to get
at that data, but my object needs to use it?

A: A: Then you can’t access the data from outside the object. When you’re writing a class, you should always make sure that you give other objects some
way to get at the data they need. Private fields are a very important part of encapsulation, but they’re only part of the story. Writing a class with good
encapsulation means giving a sensible, easy-to-use way for other objects to get the data they need, without giving them access to hijack data your class
depends on.

Q: Q: Why would I ever want a field in an object that another object can’t read or write?

A: A: Sometimes a class needs to keep track of information that is necessary for it to operate, but that no other object really needs to see. Here’s an
example. When computers generate random numbers, they use special values called seeds. You don’t need to know how they work, but every instance
of Random actually contains an array of several dozen numbers that it uses to make sure that Next() always gives you a random number. If you create an
instance of Random, you won’t be able to see that array. That’s because you don’t need it — but if you had access to it, you might be able to put values
in it that would cause it to give nonrandom values. So the seeds have been completely encapsulated from you.

Q: Q: Hey, I just noticed that all of the event handlers I’ve been using have the private keyword. Why are they private?

A: A: Because C# forms are set up so that only the controls on the forms can trigger event handlers. When you put the private keyword in front of any
method, then that method can only be used from inside your class. When the IDE adds an event handler method to your program, it declares it as
private so other forms or objects can’t get to it. But there’s no rule that says that an event handler must be private. In fact, you can check this out for
yourself — double-click on a button, then change its event handler declaration to public. The code will still compile and run.

The only way that one object can get to data stored in a private field inside another object of a different type is by
using public methods that return the data.

SHARPEN YOUR PENCIL

Here’s a class with some private fields. Circle the statements below that won’t compile if they’re run from outside the class using an
instance of the object called mySuperChef.

class SuperChef
{
 public string cookieRecipe;
 private string secretIngredient;
 private const int loyalCustomerOrderAmount = 60;
 public int Temperature;
 private string ingredientSupplier;

 public string GetRecipe (int orderAmount)
 {
 if (orderAmount >= loyalCustomerOrderAmount)
 {
 return cookieRecipe + " " + secretIngredient;
 }
 else
 {
 return cookieRecipe;
 }
 }
}

1. string ovenTemp = mySuperChef.Temperature;
2. string supplier = mySuperChef.ingredientSupplier;
3. int loyalCustomerOrderAmount = 54;
4. mySuperChef.secretIngredient = "cardamom";

5. mySuperChef.cookieRecipe = "get 3 eggs, 2 1/2 cup flour, 1 tsp salt,
1 tsp vanilla and 1.5 cups sugar and mix them together. Bake for 10
minutes at 375. Yum!";

6. string recipe = mySuperChef.GetRecipe(56);
7. After running all of the lines that will compile above, what’s the value of recipe?

__
__

SHARPEN YOUR PENCIL SOLUTION

Here’s a class with some private fields. Circle the statements below that won’t compile if they’re run from outside the class using an
instance of the object called mySuperChef.

Because sometimes you want your class to hide information from the rest of the program.
A lot of people find encapsulation a little odd the first time they come across it because the idea of
hiding one class’s fields, properties, or methods from another class is a little counterintuitive. But
there are some very good reasons that you’ll want to think about what information in your class to
expose to the rest of the program.

Encapsulation makes your classes...
Easy to use
You already know that classes use fields to keep track of their state. And a lot of them use methods
to keep those fields up to date — methods that no other class will ever call. It’s pretty common to
have a class that has fields, methods, and properties that will never be called by any other class. If
you make those members private, then they won’t pop up in the IntelliSense window later when
you need to use that class.
Easy to maintain
Remember that bug in Kathleen’s program? It happened because the form accessed a field directly
rather than using a method to set it. If that field had been private, you would have avoided that bug.
Flexible
A lot of times, you’ll want to go back and add features to a program you wrote a while ago. If your
classes are well encapsulated, then you’ll know exactly how to use them later on.
Encapsulation means having one class hide information from another. It helps you prevent bugs in your programs.

B RAIN POWER

How could building a poorly encapsulated class now make your programs harder to modify later?

Mike’s navigator program could use better encapsulation
NOTE

Geocaching is a sport where people use their GPS navigators to hide and seek containers that can be hidden anywhere in the world.
Mike is really into GPS stuff, so you can see why he likes it so much.

Remember Mike’s street navigation program from Chapter 3? Mike joined a geocaching group, and he
thinks his navigator will give him an edge. But it’s been a while since he’s worked on it, and now
he’s run into a little trouble. Mike’s navigator program has a Route class that stores a single route
between two points. But he’s running into all sorts of bugs because he can’t seem to figure out how
it’s supposed to be used! Here’s what happened when Mike tried to go back to his navigator and
modify the code:

Mike set the StartPoint property to the GPS coordinates of his home and the EndPoint property
to the coordinates of his office, and checked the Length property. It said the length was 15.3.
When he called the GetRouteLength() method, it returned 0.
He uses the SetStartPoint() property to set the start point to the coordinates of his home and the
SetEndPoint() property to set the end point to his office. The GetRouteLength() method
returned 9.51, and the Length property contained 5.91.
When he tried using the StartPoint property to set the starting point and the SetEndPoint()
method to set the ending point, GetRouteLength() always returned 0 and the Length property
always contained 0.
When he tried using the SetStartPoint() method to set the starting point and the EndPoint
property to set the ending point, the Length property contained 0, and the GetRouteLength()
method caused the program to crash with an error that said something about not being able to
divide by zero.

SHARPEN YOUR PENCIL

Here’s the Route object from Mike’s navigator program. Which properties or methods would you make private in order to make it
easier to use?

__

__

__

__

__

__

NOTE

There are lots of ways to solve this problem, all potentially correct! Write down the one you think is
best.

Think of an object as a black box
Sometimes you’ll hear a programmer refer to an object as a “black box,” and that’s a pretty good way
of thinking about them. When you call an object’s methods, you don’t really care how that method
works — at least, not right now. All you care about is that it takes the inputs you gave it and does the
right thing.

When you come back to code that you haven’t looked at in a long time, it’s easy to forget how you intended it to be used.
That’s where encapsulation can make your life a lot easier!

If you encapsulate your classes well today, that makes them a lot easier to reuse tomorrow.

Exactly! The difference is that the well-encapsulated one is built in a way that prevents bugs
and is easier to use.
It’s easy to take a well-encapsulated class and turn it into a poorly encapsulated class: do a search-
and-replace to change every occurrence of private to public.
And that’s a funny thing about the private keyword: you can generally take any program and do that
search-and-replace, and it will still compile and work in exactly the same way. That’s one reason that
encapsulation is difficult for some programmers to understand.
Until now, everything you’ve learned has been about making programs do things — perform certain
behaviors. Encapsulation is a little different. It doesn’t change the way your program behaves. It’s
more about the “chess game” side of programming: by hiding certain information in your classes
when you design and build them, you set up a strategy for how they’ll interact later. The better the
strategy, the more flexible and maintainable your programs will be, and the more bugs you’ll avoid.

NOTE

And just like chess, there are an almost unlimited number of possible encapsulation strategies!

A few ideas for encapsulating classes
Think about ways the fields can be misused.
What can go wrong if they’re not set properly?
Is everything in your class public?
If your class has nothing but public fields and methods, you probably need to spend a little more
time thinking about encapsulation.
What fields require some processing or calculation to happen when they’re set?
Those are prime candidates for encapsulation. If someone writes a method later that changes the
value in any one of them, it could cause problems for the work your program is trying to do.

Only make fields and methods public if you need to.
If you don’t have a reason to declare something public, don’t. You could make things really messy
for yourself by making all of the fields in your program public — but don’t just go making
everything private, either. Spending a little time up front thinking about which fields really need to
be public and which don’t can save you a lot of time later.

Encapsulation keeps your data pristine
Sometimes the value in a field changes as your program does what it’s supposed to do. If you don’t
explicitly tell your program to reset the value, you can do your calculations using the old one. When
this is the case, you want to have your program execute some statements any time a field is changed
— like having Kathleen’s program recalculate the cost every time you change the number of people.
We can avoid the problem by encapsulating the data using private fields. We’ll provide a method to
get the value of the field, and another method to set the field and do all the necessary calculations.

We used camelCase for the private fields and PascalCase for the public ones. PascalCase means capitalizing the first
letter in every word in the variable name. camelCase is similar to PascalCase, except that the first letter is lowercase.
That makes the uppercase letters look like “humps” of a camel.

NOTE

Your code is easier to read when you use consistent case when choosing names for fields, properties, variables, and methods This is a
convention that a lot of programmers follow.

A quick example of encapsulation
A Farmer class uses a field to store the number of cows, and multiplies it by a number to figure out
how many bags of cattle feed are needed to feed the cows:

When you create a form to let a user enter the number of cows into a numeric field, you need to be
able to change the value in the numberOfCows field. To do that, you can create a method that returns
the value of the field to the form object:

Properties make encapsulation easier
You can use properties, which are methods that look just like fields to other objects. A property can
be used to get or set a backing field, which is just a name for a field set by a property.
You use get and set accessors exactly like fields. Here’s code for a button that sets the number of
cows and then gets the bags of feed:

Build an application to test the Farmer class
Create a new Windows Forms application that we can use to test the Farmer class and see
properties in action. The Console.WriteLine() method will write the results to the Output Window
in the IDE.

DO THIS

➊ Add the Farmer class to your project:

class Farmer {
 public int BagsOfFeed;
 public const int FeedMultiplier = 30;

 private int numberOfCows;
 public int NumberOfCows {
 // (add the get and set accessors from the
 // previous page)
 }
}

➋ Build this form:

➌ Here’s the code for the form. It uses Console.WriteLine() to send its output to the Output window (which you can bring up
by selecting “Output” from the Debug→Windows menu). You can pass several parameters to WriteLine() — the first one is the
string to write. If you include “{0}” inside the string, then WriteLine() replaces it with the first parameter. It replaces “{1}” with
the second parameter, “{2}” with the third, etc.

WATCH IT!

Console output is displayed in the Output window.

When a Windows Forms application uses the Console.WriteLine() method to write output, the ouptut is displayed in the
Output window in the IDE. WinForms apps don’t typically use console output, but we will use it extensively as a learning tool.

Don’t forget that controls need to be “hooked up” to their event handlers! Double-click on
Button and NumericUpDown in the designer to make the IDE create their event handler method
stubs.

Use automatic properties to finish the class
It looks like the Cow Calculator works really well. Give it a shot — run it and click the button. Then
change the number of cows to 30 and click it again. Do the same for 5 cows and then 20 cows. Here’s
what your Output window should look like:

But there’s a problem with the class. Add a button to the form that executes this statement:
farmer.BagsOfFeed = 5;

Now run your program again. It works fine until you press the new button. But press that button and
then press the Calculate button again. Now your ouput tells you that you need 5 bags of feed — no
matter how many cows you have! As soon as you change the NumericUpDown, the Calculate button
should work again.

NOTE

Can you see how this could lead you to accidentally add a really irritating bug in your program?

Fully encapsulate the Farmer class
The problem is that your class isn’t fully encapsulated. You used properties to encapsulate
NumberOfCows, but BagsOfFeed is still public. This is a common problem. In fact, it’s so common
that C# has a way of automatically fixing it. Just change the public BagsOfFeed field to an automatic
property. And the IDE makes it really easy for you to add automatic properties. Here’s how:

➊ Remove the BagsOfFeed field from the Farmer class. Put your cursor where the field used to
be, and then type prop and press the Tab key twice. The IDE will add this line to your code:

NOTE

The prop-tab-tab code snippet adds an automatic property to your code.

➋ Press the Tab key — the cursor jumps to MyProperty. Change its name to BagsOfFeed:
public int BagsOfFeed { get; set; }

Now you’ve got a property instead of a field. When C# sees this, it works exactly the same as if
you had used a backing field (like the private numberOfCows behind the public NumberOfCows
property).
➌ That hasn’t fixed our problem yet. But there’s an easy fix — just make it a read-only property:

public int BagsOfFeed { get; private set; }

Try to rebuild your code — you’ll get an error on the line in the button that sets BagsOfFeed
telling you that the set accessor is inaccessible. You can’t modify BagsOfFeed from outside the
Farmer class — you’ll need to remove that line in order to get your code to compile, so remove
the button and its event handler from the form. Now your Farmer class is better encapsulated!

A property is read-only if it can’t be set by another class. You can make its set accessor private. You can also leave out
the set accessor for normal properties, but not automatic properties (which must have both get and set accessors).

What if we want to change the feed multiplier?
We built the Cow Calculator to use a const for the feed multiplier. But what if we want to use the
same Farmer class in different programs that need different feed multipliers? You’ve seen how poor
encapsulation can cause problems when you make fields in one class too accessible to other classes.
That’s why you should only make fields and methods public if you need to. Since the Cow
Calculator never updates FeedMultiplier, there’s no need to allow any other class to set it. So let’s
change it to a read-only property that uses a backing field.

DO THIS!

➊ Remove this line from your Farmer class:

public const int FeedMultiplier = 30;

Use prop-tab-tab to add a read-only property. But instead of adding an automatic property, use a backing field:

This property acts just like an int field, except instead of storing a value it just returns the backing field, feedMultiplier. And
since there’s no set accessor, it’s read-only. It has a public get, which means any other class can read the value of
FeedMultiplier. But since its set is private, that makes it read-only — it can only be set by an instance of Farmer.

➋ Go ahead and make that change to your code. Then run it. Uh oh — something’s wrong! BagsOfFeed always returns 0
bags .
Wait, that makes sense. FeedMultiplier never got initialized. It starts out with the default value of zero and never changes.
When it’s multiplied by the number of cows, it still gives you zero. So add an object initializer:

public Form1() {
 InitializeComponent();
 farmer = new Farmer() { NumberOfCows = 15, feedMultiplier = 30 };

Check the Error List window for helpful warnings from the IDE about things like forgetting to initialize a variable
before using it.

Uh oh — the program won’t compile! You should get this error:

You can only initialize public fields and properties inside an object initializer. So how can you
make sure your object gets initialized properly if some of the fields that need to be initialized
are private?

Use a constructor to initialize private fields
If you need to initialize your object, but some of the fields that need to be initialized are private, then
an object initializer just won’t do. Luckily, there’s a special method that you can add to any class
called a constructor. If a class has a constructor, then that constructor is the very first thing that
gets executed when the class is created with the new statement. You can pass parameters to the
constructor to give it values that need to be initialized. But the constructor does not have a return
value, because you don’t actually call it directly. You pass its parameters to the new statement. And
you already know that new returns the object — so there’s no way for a constructor to return anything.
All you have to do to add a constructor to a class is add a method that has the same name as the
class and no return value.

➊ ADD A CONSTRUCTOR TO YOUR FARMER CLASS.
This constructor only has two lines, but there’s a lot going on here. So let’s take it step by step. We
already know that we need the number of cows and a feed multiplier for the class, so we’ll add
them as parameters to the constructor. Since we changed feedMultiplier from a const to an
int, now we need an initial value for it. So let’s make sure it gets passed into the constructor.
We’ll use the constructor to set the number of cows, too.

➋ NOW CHANGE THE FORM SO THAT IT USES THE CONSTRUCTOR.
The only thing you need to do now is change the form so that the new statement that creates the
Farmer object uses the constructor instead of an object initializer. Once you replace the new
statement, both errors will go away, and your code will work!

CONSTRUCTORS WAY UP CLOSE

Let’s take a closer look at the Farmer constructor so we can get a good sense of what’s really going on.

THERE ARE NO DUMB QUESTIONS

Q: Q: Is it possible to have a constructor without any parameters?

A: A: Yes. It’s actually very common for a class to have a constructor without a parameter. In fact, you’ve already seen an example of it — your form’s
constructor. Look inside a newly added Windows form and find its constructor’s declaration:

public Form1() {
 InitializeComponent();
}

That’s the constructor for your form object. It doesn’t take any parameters, but it does have to do a lot. Take a minute and open up Form1.Designer.cs.
Find the InitializeComponent() method by clicking on the plus sign next to “Windows Form Designer generated code.”
That method initializes all of the controls on the form and sets all of their properties. If you drag a new control onto your form in the IDE’s form
designer and set some of its properties in the Properties window, you’ll see those changes reflected inside the InitializeComponent() method.
The InitializeComponent() method is called inside the form’s constructor so that the controls all get initialized as soon as the form object is created.
(Remember, every form that gets displayed is just another object that happens to use methods that the .NET Framework provides in the
System.Windows.Forms namespace to display windows, buttons, and other controls.)

WATCH IT!

When a method’s parameter has the same name as a field, then it masks the field.

The constructor’s feedMultiplier parameter masks the backing field behind the FeedMultiplier property because they have
the same name, so the parameter takes precedence inside the body of the constructor. If you wanted to use the backing field
inside the constructor, you’d use the this keyword: feedMultiplier refers to the parameter, and this.feedMultiplier refers
to the private field.

NOTE

Here’s a helpful way to remember what “this” does: think of it as short for “this instance.”

THERE ARE NO DUMB QUESTIONS

Q: Q: Why would I need complicated logic in a get or set accessor? Isn’t it just a way of creating a field?

A: A: Because sometimes you know that every time you set a field, you’ll have to do some calculation or perform some action. Think about Kathleen’s
problem — she ran into trouble because the form didn’t run the method to recalculate the cost of the decorations after setting the number of people in
the DinnerParty class. If we replaced the field with a set accessor, then we could make sure that the set accessor recalculates the cost of the decorations.
(In fact, you’re about to do exactly that in just a couple of pages!)

Q: Q: Wait a minute — so what’s the difference between a method and a get or set accessor?

A: A: There is none! Get and set accessors are a special kind of method — one that looks just like a field to other objects, and is called whenever that
“field” is set. Get accessors always return a value that’s the same type as the field, and set accessors always take exactly one parameter called value
whose type is the same as the field. Oh, and by the way, you can just say “property” instead of “get and set accessor.”

Q: Q: So you can have ANY kind of statement in a property?

A: A: Absolutely. Anything you can do in a method, you can do in a property. They can call other methods, access other fields, even create objects and
instances. But they only get called when a property gets accessed, so it doesn’t make sense to have any statements in them that don’t have to do with
getting or setting the property.

Q: Q: If a set accessor always takes a parameter called value, why doesn’t its declaration have parentheses with the “int value” parameter in
them, like you’d have with any other method that takes a parameter called value?

A: A: Because C# was built to keep you from having to type in extra information that the compiler doesn’t need. The parameter gets declared without you
having to explicitly type it in, which doesn’t sound like much when you’re only typing one or two — but when you have to type a few hundred, it can
be a real time saver (not to mention a bug preventer).
Every set accessor always has exactly one parameter called value, and the type of that parameter always matches the type of the property. C# has all
the information it needs about the type and parameter as soon as you type set {. So there’s no need for you to type any more, and the C# compiler
isn’t going to make you type more than you have to.

Q: Q: Wait a sec — is that why I don’t add a return value to my constructor?

A: A: Exactly! Your constructor doesn’t have a return value because every constructor is always void. It would be redundant to make you type void at the
beginning of each constructor, so you don’t have to.

Q: Q: Can I have a get without a set or a set without a get?

A: A: Yes! When you have a get accessor but no set, you create a read-only property. For example, the SecretAgent class might have public read-only field
with a backing field for the name:

string name = "Dash Martin";
public string RealName {
 get { return name; }
}

And if you create a property with a set accessor but no get, then your backing field can only be written, not read. The SecretAgent class could use that
for a Password property that other spies could write to, but not see:

public string Password {
 set {
 if (value == secretCode) {
 name = "Herb Jones";
 }
}

Both of those techniques can come in really handy when you’re doing encapsulation.

Q: Q: I’ve been using objects for a while, but I haven’t written a constructor. Does that mean some classes don’t need one?

A: A: No, it just means that C# automatically makes a zero-parameter constructor if there’s none defined. If you define a constructor, then it doesn’t do
that. That’s a valuable tool for encapsulation, because it means that you have the option — but not the requirement — to force anyone instantiating
your class to use your constructor.

Properties (get and set accessors) are just another kind of C# method that’s only run when the property value is
read or written.

Here’s something useful: the first line of a method that contains the access modifier, return
value, name, and parameters i called the method’s signature. Properties have signatures, too.

SHARPEN YOUR PENCIL

Take a look at the get and set accessors here. The form that is using this class has a new instance of CableBill called thisMonth
and calls the GetThisMonthsBill() method with a button click. Write down the value of the amountOwed variable after the code
below executed.

class CableBill {
 private int rentalFee;
 public CableBill(int rentalFee) {
 this.rentalFee = rentalFee;
 discount = false;
 }

 private int payPerViewDiscount;
 private bool discount;
 public bool Discount {
 set {
 discount = value;
 if (discount)
 payPerViewDiscount = 2;
 else
 payPerViewDiscount = 0;
 }
 }

 public int CalculateAmount(int payPerViewMoviesOrdered) {
 return (rentalFee - payPerViewDiscount) * payPerViewMoviesOrdered;
 }
}

1. CableBill january = new CableBill(4);
MessageBox.Show(january.CalculateAmount(7).ToString());

What’s the value of amountOwed?

2. CableBill february = new CableBill(7);
february.payPerViewDiscount = 1;
MessageBox.Show(february.CalculateAmount(3).ToString());

What’s the value of amountOwed?

3. CableBill march = new CableBill(9);
march.Discount = true;
MessageBox.Show(march.CalculateAmount(6).ToString());

What’s the value of amountOwed?

THERE ARE NO DUMB QUESTIONS

Q: Q: I noticed that you used uppercase names for some fields but lowercase ones for others. Does that matter?

A: A: Yes — it matters to you. But it doesn’t matter to the compiler. C# doesn’t care what you name your variables, but if you choose weird names then it
makes your code hard to read. Sometimes it can get confusing when you have variables that are named the same, except one starts with an uppercase
letter and the other starts with a lowercase one.
Case matters in C#. You can have two different variables called Party and party in the same method. It’ll be confusing to read, but your code will
compile just fine. Here are a few tips about variable names to help you keep it straight. They’re not hard-and-fast rules — the compiler doesn’t care
whether a variable is uppercase or lowercase — but they’re good suggestions to help make your code easier to read.

1. When you declare a private field, it should be in camelCase and start with a lowercase letter. (It’s called camelCase because it starts with a
lowercase letter and additional words are uppercase, so they resemble humps on a camel.)

2. Properties and methods are in PascalCase (they start with an uppercase letter), whether or not they’re public.
3. Parameters to methods should be in camelCase.
4. Some methods, especially constructors, will have parameters with the same names as fields. When this happens, the parameter masks the field,

which means statements in the method that use the name end up referring to the parameter, not the field. Use the this keyword to fix the
problem — add it to the variable to tell the compiler you’re talking about the field, not the parameter.

SHARPEN YOUR PENCIL

This code has problems. Write down what you think is wrong with the code, and what you’d change.

EXERCISE

Use what you’ve learned about properties and constructors to fix Kathleen’s Party Planner program. This new program will be much
simpler and more consistent than the first version.

➊ Fix the Dinner Party calculator.
To fix the DinnerParty class, we’ll need to make sure the CalculateCostOfDecorations() method is called every time
NumberOfPeople changes. We’ll do it by adding a property called Cost.

➋ Use properties to set the number of people and the party options.
You may want to create a new project, because you’re going to overhaul the DinnerParty class. Start by creating these three
automatic properties:

public int NumberOfPeople { get; set; }
public bool FancyDecorations { get; set; }
public bool HealthyOption { get; set; }

You’ll also need a constructor with this signature to set the properties:

public DinnerParty(int numberOfPeople, bool healthyOption,
 bool fancyDecorations)

➌ Create private methods to calculate the intermediate costs.
Here are signatures for the methods that help calculate the cost. Fill in their calculations:

➍ Add the read-only Cost property to calculate the cost.
Add a property called Cost that calculates the cost of the dinner party:

➎ Update the form to use the properties.
Here’s the complete code for the form. It uses the constructor and the three properties (NumberOfPeople, FancyDecoration, and
HealthyOption) to pass information into the object, and it uses the Cost property to calculate the cost.

The form is simpler now because it doesn’t need to access the methods that do the calculations. Those calculations
are encapsulated behind the Cost property.

EXERCISE SOLUTION

SHARPEN YOUR PENCIL SOLUTION

Write down the value of the amountOwed variable after the code below executed.

1. CableBill january = new CableBill(4);
MessageBox.Show(january.CalculateAmount(7).ToString());

What’s the value of amountOwed?

2. CableBill february = new CableBill(7);
february.payPerViewDiscount = 1;
MessageBox.Show(february.CalculateAmount(3).ToString());

What’s the value of amountOwed?

3. CableBill march = new CableBill(9);
march.Discount = true;
MessageBox.Show(march.CalculateAmount(6).ToString());

What’s the value of amountOwed?

SHARPEN YOUR PENCIL SOLUTION

This code has problems. Write down what you think is wrong with the code, and what you’d change.

Take an extra minute or two and really look at this code. These are some of the most common mistakes that new
programmers make when working with objects, and avoiding them makes it much more satisfying to write code.

Chapter 6. Inheritance: Your object’s family
tree

Sometimes you DO want to be just like your parents.
Ever run across an object that almost does exactly what you want your object to do? Found yourself
wishing that if you could just change a few things, that object would be perfect? Well, that’s just one
reason that inheritance is one of the most powerful concepts and techniques in the C# language.
Before you’re through with this chapter, you’ll learn how to subclass an object to get its behavior, but
keep the flexibility to make changes to that behavior. You’ll avoid duplicate code, model the real
world more closely, and end up with code that’s easier to maintain.

Kathleen does birthday parties, too
Now that you got your program working, Kathleen is using it all the time. But she doesn’t just handle
dinner parties — she does birthdays too, and they’re priced a little differently. She’ll need you to add
birthdays to her program.

B RAIN POWER

There’s no healthy option for birthday parties. Can you think of how this could lead to bugs if you start out a project by copying and
pasting code from the DinnerParty class from the last chapter?

We need a BirthdayParty class
Modifying your program to calculate the cost of Kathleen’s birthday parties means adding a new class
and changing the form to let you handle both kinds of parties.

Here’s what we’re going to do:
➊ CREATE A NEW CLASS FOR BIRTHDAY PARTIES.

NOTE

You’ll do all this in a minute — but first you’ll need to get a sense of what the job involves.

Your new class will need to calculate the costs, deal with decorations, and check the size of the
writing on the cake.
➋ ADD A TAB CONTROL TO YOUR FORM.
Each tab on the form is a lot like the GroupBox control you used to choose which guy placed the
bet in the Betting Parlor lab. Just click on the tab you want to display, and drag controls into it.

➌ LABEL THE FIRST TAB AND MOVE THE DINNER PARTY CONTROLS INTO IT.
You’ll drag each of the controls that handle the dinner party into the new tab. They’ll work exactly
like before, but they’ll only be displayed when the dinner party tab is selected.
➍ LABEL THE SECOND TAB AND ADD NEW BIRTHDAY PARTY CONTROLS TO IT.
You’ll design the interface for handling birthday parties just like you did for the dinner parties.
➎ WIRE YOUR BIRTHDAY PARTY CLASS UP TO THE CONTROLS.
Now all you need to do is add a BirthdayParty reference to the form’s fields, and add the code
to each of your new controls so that it uses its methods and properties.

THERE ARE NO DUMB QUESTIONS

Q: Q: Why can’t we just create a new instance of DinnerParty, like Mike did when he wanted to compare three routes in his navigation
program?

A: A: Because if you created another instance of the DinnerParty class, you’d only be able to use it to plan extra dinner parties. Two instances of the same
class can be really useful if you need to manage two different pieces of the same kind of data. But if you need to store different kinds of data, you’ll
need different classes to do it.

Q: Q: How do I know what to put in the new class?

A: A: Before you can start building a class, you need to know what problem it’s supposed to solve. That’s why you had to talk to Kathleen — she’s going
to be using the program. Good thing you took a lot of notes! You can come up with your class’s methods, fields, and properties by thinking about its
behavior (what it needs to do) and its state (what it needs to know).

Build the Part y Planner version 2.0
Start a new project — we’re going to build Kathleen a new version of her program that handles
birthdays and dinner parties. We’ll start by creating a well-encapsulated BirthdayParty class to do
the actual calculation.

DO THIS!

➊ ADD THE NEW BIRTHDAYPARTY CLASS TO YOUR PROGRAM.
You already know how you’ll handle the NumberOfPeople and FancyDecorations properties — they’re just like their counterparts
in DinnerParty. We’ll start by creating your new class and adding those, and then we’ll add the rest of the behavior.

Add the CostOfFoodPerPerson constant, and the NumberOfPeople and FancyDecorations properties. You’ll also need a private
int property called ActualLength. (Yes, properties can be private, too!)

The ActualLength property calculates the actual length of the field by comparing the CakeWriting property against
MaxWritingLength(). If the cake writing is too long, it returns the maximum allowable length for the cake.
The program uses the size of the cake (which varies based on the number of people) and the maximum number of letters that will

fit on the cake (based on the cake size). You’ll add two methods to calculate these things, CakeSize() and MaxWritingLength().

We made ActualLength a private read-only property because we wanted to include an example of how that would look
(including the PascalCase naming convention). Would it make more sense as a private method? That wouldn’t change the
way the program functions. But would it make the code easier to understand? Would someone reading the code wonder
why you used a property for ActualLength but a method for CakeSize()? As your code gets more complex, you’ll find that
there are an almost unlimited number of ways that you can solve a problem. Your job is to make good decisions about
your code.

CURLY B RACKETS ARE OPTIONAL FOR SINGLE-LINE B LOCKS

A lot of times you’ll have an if statement or while loop that’s just got a single statement inside its block. When that happens a lot, you
can end up with a whole lot of curly brackets — and that can be a real eyesore! C# helps you avoid that problem by letting you drop
the curly brackets if there’s just one statement. So this is perfectly valid syntax for a loop and an if statement:

for (int i = 0; i < 10; i++) if (myValue == 36)

DoTheJob(i); myValue *= 5;

Keep on going with the BirthdayParty class...
Finish off the BirthdayParty class by adding the Cost property. But instead of taking the
decoration cost and adding the cost of beverages (which is what happens in DinnerParty), it’ll
add the cost of the cake.

➋ USE A TABCONTROL TO ADD TABS TO THE FORM.
Drag a TabControl out of the toolbox and onto your form, and resize it so it takes up the entire
form. Change the text of each tab using the TabPages property: a “...” button shows up in the
Properties window next to the property. When you click it, the IDE pops up a window that lets you
edit the properties of each tab. Set the Text property of the tabs to “Dinner Party” and “Birthday
Party”.
➌ PASTE THE DINNER PARTY CONTROLS ONTO THEIR TAB.
Open up the Party Planner program from Chapter 5 in another IDE window. Select the controls on
the form, copy them, and paste them into the new Dinner Party tab. You’ll need to click inside
the tab to make sure they get pasted into the right place (otherwise you’ll get an error about not
being able to add a component to a container of type TabControl).

One thing to keep in mind here: when you copy and paste a control into a form, you’re only adding
the control itself, not the event handlers for the control. And you’ll need to check to make sure
that (Name) is set correctly in the Properties window for each of them. Make sure that each
control has the same name as it did in your Chapter 5 project, and then double-click on each
control after you add it to add a new empty event handler.

➍ BUILD THE BIRTHDAY PARTY USER INTERFACE.
The Birthday Party GUI has a NumericUpDown control for the number of people, a CheckBox
control for fancy decorations, and a Label control with a 3D border for the cost. Then you’ll add
a TextBox control for the cake writing.

Keep on going with the code for the form...

The form creates a DinnerParty object, so you’ll need to copy the DinnerParty class into your project. You can use
Add→Existing Item... in the Solution Explorer to add the DinnerParty.cs file — but make sure you change the
namespace to match your new project.

➎ PUT IT ALL TOGETHER.
All the pieces are there — now it’s just a matter of writing a little code to make the controls work.
You’ll need fields in your form that have references to a BirthdayParty object and a
DinnerParty object, and you’ll need to instantiate them in the constructor.
You already have code for the dinner party controls’ event handlers — they’re in your Chapter 5
project. If you haven’t double-clicked on the NumericUpDown and CheckBox controls in the
Dinner Party tab to add the event handlers, do it now. Then copy the contents of each event handler
from the Chapter 5 program and paste them in here. Here’s the code for the form:

Add code to the NumericUpDown control’s event handler method to set the object’s
NumberOfPeople property, and make the Fancy Decorations checkbox work.

Use the Events page in the Properties window to add a new TextChanged event handler to the
cakeWriting TextBox. Click on the lightning bolt button in the Properties window to switch to the
Events page. Then select the TextBox and scroll down until you find the TextChanged event.
Double-click on it to add a new event handler for it.

private void cakeWriting_TextChanged(object sender, EventArgs e)
{
 birthdayParty.CakeWriting = cakeWriting.Text;

 DisplayBirthdayPartyCost();
}

Add a DisplayBirthdayPartyCost() method and add it to all of the event handlers so the cost
label is updated automatically any time there’s a change.

➏ YOUR PROGRAM’S DONE...TIME TO RUN IT!
Make sure the program works the way it’s supposed to. Check that it pops up a message box if the
writing is too long for the cake. Make sure the price is always right. If it’s working, you’re done!

One more thing...can you add a $100 fee for parties over 12?
Kathleen’s gotten so much business using your program that she can afford to charge a little more for
some of her larger clients. So what would it take to change your program to add in the extra charge?

Change the DinnerParty.Cost property to check NumberOfPeople and add $100 to the return
value if it’s over 12.
Do the exact same thing for the BirthdayParty.Cost property.

Take a minute and think about how you’d add a fee to both the DinnerParty and BirthdayParty
classes. What code would you write? Where would it have to go?
Easy enough...but what happens if there are three similar classes? Or four? Or twelve? And what if
you had to maintain that code and make more changes later? What if you had to make the same exact
change to five or six closely related classes?

You’re right! Having the same code repeated in different classes is inefficient and error-prone.
Lucky for us, C# gives us a better way to build classes that are related to each other and share
behavior: inheritance.

When your classes use inheritance, you only need to write your
code once
It’s no coincidence that your DinnerParty and BirthdayParty classes have a lot of the same code.
When you write C# programs, you often create classes that represent things in the real world — and
those things are usually related to each other. Your classes have similar code because the things they
represent in the real world — a birthday party and a dinner party — have similar behaviors.

Dinner parties and birthday parties are both parties
When you have two classes that are specific cases of something more general, you can set them up to
inherit from the same class. When you do that, each of them is a subclass of the same base class.

Build up your class model by starting general and getting more
specific
C# programs use inheritance because it mimics the relationship that the things they model have in the
real world. Real-world things are often in a hierarchy that goes from more general to more specific,
and your programs have their own class hierarchy that does the same thing. In your class model,
classes further down in the hierarchy inherit from those above it.

NOTE

in-her-it, verb.

to derive an attribute from one’s parents or ancestors. She wanted the baby to inherit her big brown eyes, and not her husband’s
beady blue ones.

How would you design a zoo simulator?
Lions and tigers and bears...oh my! Also, hippos, wolves, and the occasional cat. Your job is to
design a program that simulates a zoo. (Don’t get too excited — we’re not going to actually build the
code, just design the classes to represent the animals.)
We’ve been given a list of some of the animals that will be in the program, but not all of them. We
know that each animal will be represented by an object, and that the objects will move around in the
simulator, doing whatever it is that each particular animal is programmed to do.
More importantly, we want the program to be easy for other programmers to maintain, which means
they’ll need to be able to add their own classes later on if they want to add new animals to the
simulator.
So what’s the first step? Well, before we can talk about specific animals, we need to figure out the
general things they have in common — the abstract characteristics that all animals have. Then we can
build those characteristics into a class that all animal classes can inherit from.

The terms parent>, superclass, and base class are often used interchangeably. Also, the terms extend and inherit from
mean the same thing. The terms child and subclass are also synonymous, but subclass can also be used as a verb.

NOTE

Some people use the term “base class” to specifically mean the class at the top of the inheritance tree...but not the VERY top,
because every class inherits from Object or a subclass of Object.

➊ LOOK FOR THINGS THE ANIMALS HAVE IN COMMON.
Take a look at these six animals. What do a lion, a hippo, a tiger, a cat, a wolf, and a dog have in
common? How are they related? You’ll need to figure out their relationships so you can come up
with a class model that includes all of them.

➋ BUILD A BASE CLASS TO GIVE THE ANIMALS EVERYTHING THEY HAVE IN
COMMON.
The fields, properties, and methods in the base class will give all of the animals that inherit from it

a common state and behavior. They’re all animals, so it makes sense to call the base class Animal.

Use inheritance to avoid duplicate code in subclasses
You already know that duplicate code sucks. It’s hard to maintain, and always leads to headaches
down the road. So let’s choose fields and methods for an Animal base class that you only have to
write once, and each of the animal subclasses can inherit from them. Let’s start with the public fields:

Picture: an image that you can put into a PictureBox.
Food: the type of food this animal eats. Right now, there can be only two values: meat and grass.
Hunger: an int representing the hunger level of the animal. It changes depending on when (and
how much) the animal eats.
Boundaries: a reference to a class that stores the height, width, and location of the pen that the
animal will roam around in.
Location: the X and Y coordinates where the animal is standing.

In addition, the Animal class has four methods the animals can inherit:
MakeNoise(): a method to let the animal make a sound.
Eat(): behavior for when the animal encounters its preferred food.
Sleep(): a method to make the animal lie down and take a nap.
Roam(): the animals like to wander around their pens in the zoo.

NOTE

Choosing a base class is about making choices. You could have decided to use a ZooOccupant class that defines the feed and
maintenance costs, or an Attraction class with methods for how the animals entertain the zoo visitors. But we think Animal makes
the most sense here. Do you agree?

Different animals make different noises
Lions roar, dogs bark, and as far as we know hippos don’t make any sound at all. Each of the classes
that inherit from Animal will have a MakeNoise() method, but each of those methods will work a
different way and will have different code. When a subclass changes the behavior of one of the
methods that it inherited, we say that it overrides the method.

NOTE

Just because a property or a method is in the Animal base class, that doesn’t mean every subclass has to use it the same way...or at
all!

➌ FIGURE OUT WHAT EACH ANIMAL DOES THAT THE ANIMAL CLASS DOES
DIFFERENTLY-OR NOT AT ALL.
What does each type of animal do that all the other animals don’t? Dogs eat dog food, so the dog’s
Eat() method will need to override the Animal.Eat() method. Hippos swim, so a hippo will
have a Swim() method that isn’t in the Animal class at all.

Think about what you need to override
Every animal needs to eat. But a dog might take little bites of meat, while a hippo eats huge mouthfuls
of grass. So what would the code for that behavior look like? Both the dog and the hippo would
override the Eat() method. The hippo’s method would have it consume, say, 20 pounds of hay each
time it was called. The dog’s Eat() method, on the other hand, would reduce the zoo’s food supply
by one 12-ounce can of dog food.

NOTE

So when you’ve got a subclass that inherits from a base class, it must inherit all of the base class’s behaviors... but you can modify
them in the subclass so they’re not performed exactly the same way. That’s what overriding is all about.

B RAIN POWER

We already know that some animals will override the MakeNoise() and Eat() methods. Which animals will override Sleep() or
Roam()? Will any of them? What about the properties — which animals will override some properties?

Think about how to group the animals
Aged Vermont cheddar is a kind of cheese, which is a dairy product, which is a kind of food, and a
good class model for food would represent that. Lucky for us, C# gives us an easy way to do it. You
can create a chain of classes that inherit from each other, starting with the topmost base class and
working down. So you could have a Food class, with a subclass called DairyProduct that serves as
the base class for Cheese, which has a subclass called Cheddar, which is what
AgedVermontCheddar inherits from.

➍ LOOK FOR CLASSES THAT HAVE A LOT IN COMMON.
Don’t dogs and wolves seem pretty similar? They’re both canines, and it’s a good bet that if you
look at their behavior they have a lot in common. They probably eat the same food and sleep the
same way. What about domestic cats, tigers, and lions? It turns out all three of them move around
their habitats in exactly the same way. It’s a good bet that you’ll be able to have a Feline class
that lives between Animal and those three cat classes that can help prevent duplicate code
between them.

Create the class hierarchy
When you create your classes so that there’s a base class at the top with subclasses below it, and
those subclasses have their own subclasses that inherit from them, what you’ve built is called a class
hierarchy. This is about more than just avoiding duplicate code, although that is certainly a great
benefit of a sensible hierarchy. But when it comes down to it, the biggest benefit you’ll get is that your
code becomes really easy to understand and maintain. When you’re looking at the zoo simulator code,
when you see a method or property defined in the Feline class, then you immediately know that
you’re looking at something that all of the cats share. Your hierarchy becomes a map that helps you
find your way through your program.

➎ FINISH YOUR CLASS HIERARCHY.
Now that you know how you’ll organize the animals, you can add the Feline and Canine classes.

NOTE

hi-er-ar-chy, noun.

an arrangement or classification in which groups or things are ranked one above the other. The president of Dynamco had worked
his way up from the mailroom to the top of the corporate hierarchy.

Every subclass extends its base class
You’re not limited to the methods that a subclass inherits from its base class...but you already know
that! After all, you’ve been building your own classes all along. When you add inheritance to a class,
what you’re doing is taking the class you’ve already built and extending it by adding all of the fields,
properties, and methods in the base class. So if you wanted to add a Fetch() method to Dog, that’s
perfectly normal. It won’t inherit or override anything — only Dog objects will have that method, and
it won’t end up in Wolf, Canine, Animal, Hippo, or any other class.

C# always calls the most specific method
If you tell your dog object to roam, there’s only one method that can be called — the one in the
Animal class. But what about telling your dog to make noise? Which MakeNoise() is called?
Well, it’s not too hard to figure it out. A method in the Dog class tells you how dogs do that thing. If
it’s in the Canine class, it’s telling you how all canines do it. And if it’s in Animal, then it’s a
description of that behavior that’s so general that it applies to every single animal. So if you ask your
dog to make a noise, first C# will look inside the Dog class to find the behavior that applies
specifically to dogs. If Dog didn’t have one, it’d then check Canine, and after that it’d check Animal.

Use a colon to inherit from a base class
When you’re writing a class, you use a colon (:) to have it inherit from a base class. That makes it a
subclass, and gives it all of the fields, properties, and methods of the class it inherits from.

When a subclass inherits from a base class, all of the fields, properties, and methods in the base class are automatically
added to the subclass.

THERE ARE NO DUMB QUESTIONS

Q: Q: Why does the arrow point up, from the subclass to the base class? Wouldn’t the diagram look better with the arrow pointing down
instead?

A: A: It might look better, but it wouldn’t be as accurate. When you set up a class to inherit from another one, you build that relationship into the subclass
— the base class remains the same. And that makes sense when you think about it from the perspective of the base class. Its behavior is completely
unchanged when you add a class that inherits from it. The base class isn’t even aware of this new class that inherited from it. Its methods, fields, and
properties remain entirely intact. But the subclass definitely changes its behavior. Every instance of the subclass automatically gets all of the properties,
fields, and methods from the base class, and it all happens just by adding a colon. That’s why you draw the arrow on your diagram so that it’s part of
the subclass, and points to the base class that it inherits from.

SHARPEN YOUR PENCIL

Take a look at these class models and declarations, and then circle the statements that won’t work.

class Aircraft {
 public double AirSpeed;
 public double Altitude;
 public void TakeOff() { ... };
 public void Land() { ... };
}

class FirePlane : Aircraft {
 public double BucketCapacity;
 public void FillBucket() { ... };
}

public void FireFightingMission() {
 FirePlane myFirePlane = new FirePlane();
 new FirePlane.BucketCapacity = 500;
 Aircraft.Altitude = 0;
 myFirePlane.TakeOff();
 myFirePlane.AirSpeed = 192.5;
 myFirePlane.FillBucket();
 Aircraft.Land();
}

class Sandwich {
 public boolean Toasted;
 public int SlicesOfBread;
 public int CountCalories() { ... }
}

class BLT : Sandwich {
 public int SlicesOfBacon;
 public int AmountOfLettuce;
 public int AddSideOfFries() { ... }
}

public BLT OrderMyBLT() {
 BLT mySandwich = new BLT();
 BLT.Toasted = true;
 Sandwich.SlicesOfBread = 3;
 mySandwich.AddSideOfFries();
 mySandwich.SlicesOfBacon += 5;
 MessageBox.Show("My sandwich has "
 + mySandwich.CountCalories + "calories.");
 return mySandwich;
}

SHARPEN YOUR PENCIL SOLUTION

Take a look at these class models and declarations, and then circle the statements that won’t work.

We know that inheritance adds the base class fields, properties, and
methods to the subclass...
Inheritance is simple when your subclass needs to inherit all of the base class methods, properties,
and fields.

NOTE

Pigeon is a subclass of Bird, so any fields and methods in Bird are automatically part of Pigeon, too.

...but some birds don’t fly!
What do you do if your base class has a method that your subclass needs to modify?

B RAIN POWER

If this were your Bird Simulator code, what would you do to keep the penguins from flying?

A subclass can override methods to change or replace methods it
inherited
Sometimes you’ve got a subclass that you’d like to inherit most of the behaviors from the base class,
but not all of them. When you want to change the behaviors that a class has inherited, you can
override the methods.

➊ ADD THE VIRTUAL KEYWORD TO THE METHOD IN THE BASE CLASS.
A subclass can only override a method if it’s marked with the virtual keyword, which tells C# to
allow the subclass to override methods.

➋ ADD A METHOD WITH THE SAME NAME TO THE DERIVED CLASS.
You’ll need to have exactly the same signature — meaning the same return value and parameters
— and you’ll need to use the override keyword in the declaration.

Use the override keyword to add a method to your subclass that replaces one that it inherited. Before you can
override a method, you need to mark it virtual in the base class.

Any place where you can use a base class, you can use one of its
subclasses instead
One of the most useful things you can do with inheritance is use a subclass in place of the base class it
inherits from. So if your Recipe() method takes a Cheese object and you’ve got an
AgedVermontCheddar class that inherits from Cheese, then you can pass an instance of
AgedVermontCheddar to the Recipe() method. Recipe() only has access to the fields, properties,
and methods that are part of the Cheese class, though — it doesn’t have access to anything specific to
AgedVermontCheddar.

➊ Let’s say we have a method to analyze Sandwich objects:
public void SandwichAnalyzer(Sandwich specimen) {
 int calories = specimen.CountCalories();
 UpdateDietPlan(calories);
 PerformBreadCalculations(specimen.SlicesOfBread, specimen.Toasted);
}

➋ You could pass a sandwich to the method — but you could also pass a BLT. Since a BLT is a
kind of sandwich, we set it up so that it inherits from the Sandwich class:

public button1_Click(object sender, EventArgs e) {
 BLT myBLT = new BLT();
 SandwichAnalyzer(myBLT);
}

➌ You can always move down the class diagram — a reference variable can always be set equal
to an instance of one of its subclasses. But you can’t move up the class diagram.

EXERCISE

Mixed Messages

A short C# program is listed below. One block of the program is missing! Your challenge is to match the candidate block of code (on
the left) with the output — what’s in the message box that the program pops up — that you’d see if the block were inserted. Not all
the lines of output will be used, and some of the lines of output might be used more than once. Draw lines connecting the candidate
blocks of code with their matching output.

Instructions:

1. Fill in the four blanks in the code.
2. Match the code candidates to the output.

class A {
 public int ivar = 7;
 public ___________ string m1() {
 return "A's m1, ";
 }
 public string m2() {
 return "A's m2, ";
 }
 public ___________ string m3() {
 return "A's m3, ";
 }
}

class B : A {
 public ___________ string m1() {
 return "B's m1, ";
 }
}

Code candidates:

Output:

A's m1, A's m2, C's m3, 6
B's m1, A's m2, A's m3,
A's m1, B's m2, C's m3, 6
B's m1, A's m2, C's m3, 13
B's m1, C's m2, A's m3,
A's m1, B's m2, A's m3,
B's m1, A's m2, C's m3, 6
A's m1, A's m2, C's m3, 13

(Don’t just type this into the IDE — you’ll learn a lot more if you figure this out on paper!)

POOL PUZZLE

Your job is to take code snippets from the pool and place them into the blank lines in the code. You may use the same snippet more
than once, and you might not need to use all the snippets. Your goal is to make a set of classes that will compile and run together as a
program. Don’t be fooled — this one’s harder than it looks.

class Rowboat _____________ {
 public ________ rowTheBoat() {
 return "stroke natasha";
 }
}

class _________ {
 private int ___________;
 _______ void _____________ (_______) {
 length = len;
 }
 public int getLength() {
 _______________;
 }
 public _____________ move() {
 return "_________";
 }
}

OUTPUT:

EXERCISE SOLUTION

You can always substitute a reference to a subclass in place of a base class. In other words, you can always use something more
specific in place of something more general — so if you’ve got a line of code that asks for a Canine, you can send it a reference to a
Dog. So this line of code:

A a2 = new C();

means that you’re instantiating a new C object, and then creating an A reference called a2 and pointing it at that object. Names like A,
a2, and C make for a good puzzle, but they’re a little hard to understand. Here are a few lines that follow the same pattern, but have
names that you can understand:

Sandwich mySandwich = new BLT();
Cheese ingredient= new AgedVermontCheddar();
Songbird tweety = new NorthernMockingbird();

POOL PUZZLE SOLUTION

THERE ARE NO DUMB QUESTIONS

Q: Q: About the entry point that you pointed out in the Pool Puzzle — does this mean I can have a program that doesn’t have a Form1 form?

A: A: Yes. When you create a new Windows Application project, the IDE creates all the files for that project for you, including Program.cs (which
contains a static class with an entry point) and Form1.cs (which contains an empty form called Form1).
Try this: instead of creating a new Windows Application project, create an empty project by selecting Empty Project instead of Windows Application
when you create a new project in the IDE. Then add a class file to it in the Solution Explorer and type in everything in the Pool Puzzle solution. Since
your program uses a message box, you need to add a reference by right-clicking on References in the Solution Explorer, selecting Add Reference, and
choosing System.Windows.Forms. (That’s another thing the IDE does for you automatically when you create a Windows Application.) Finally, select
Properties from the Project menu and choose the Windows Application output type.
Now run it...you’ll see the results! Congratulations, you just created a C# program from scratch.

NO TE

Flip back to Chapter 2 if you need a refresher on Main() and the entry point!

Q: Q: Can I inherit from the class that contains the entry point?

A: A: Yes. The entry point must be a static method, but that method doesn’t have to be in a static class. (Remember, the static keyword means that the
class can’t be instantiated, but that its methods are available as soon as the program starts. So in the Pool Puzzle program, you can call TestBoats.Main()
from any other method without declaring a reference variable or instantiating an object using a new statement.)

Q: Q: I still don’t get why they’re called “virtual” methods — they seem real to me!

A: A: The name “virtual” has to do with how .NET handles the virtual methods behind the scenes. It uses something called a virtual method table (or
vtable). That’s a table that .NET uses to keep track of which methods are inherited and which ones have been overridden. Don’t worry — you don’t
need to know how it works to use virtual methods!

Q: Q: What did you mean by only being able to move up the class diagram but not being able to move down?

A: A: When you’ve got a diagram with one class that’s above another one, the class that’s higher up is more abstract than the one that’s lower down. More
specific or concrete classes (like Shirt or Car) inherit from more abstract ones (like Clothing or Vehicle). When you think about it that way, it’s easy to
see how if all you need is a vehicle, a car or van or motorcycle will do. But if you need a car, a motorcycle won’t be useful to you.
Inheritance works exactly the same way. If you have a method with Vehicle as a parameter, and if the Motorcycle class inherits from the Vehicle class,
then you can pass an instance of Motorcycle to the method. But if the method takes Motorcycle as a parameter, you can’t pass any Vehicle object,
because it may be a Van instance. Then C# wouldn’t know what to do when the method tries to access the Handlebars property!

You can show the Class View page using the View menu, and it’s yet another tool the IDE gives you to help you explore
C#. It’s usually docked in the Solution Explorer window, and it lets you explore the classes in your solution — which
can come in very handy.

You can always pass an instance of a subclass to any method whose parameters expect a class that it extends.

There’s an important reason for virtual and override!
The virtual and override keywords aren’t just for decoration. They actually make a real difference
in how your program works. But don’t take our word for it — here’s a real example to show you how
they work.

CONSOLE APPLICATIONS DON’T USE FORMS

If you create a console application instead of a Windows Forms application, all the IDE creates for you is a new class called Program
with an empty Main() entry point method. When you run it, it pops up a command window to display the output. You’ll get a lot of
practice using console applications over the next few chapters.

DO THIS!

Instead of creating a Windows Forms application, you’re going to create a new console application instead! This means it won’t
have a form.

➊ CREATE A NEW CONSOLE APPLICATION AND ADD CLASSES.
Right-click on the project in the Solution Explorer and add classes, just like normal. Add the following five classes: Jewels, Safe,
Owner, Locksmith, and JewelThief.
➋ ADD THE CODE FOR THE NEW CLASSES.
Here’s the code for the five new classes you added:

class Owner {
 private Jewels returnedContents;
 public void ReceiveContents(Jewels safeContents) {
 returnedContents = safeContents;
 Console.WriteLine("Thank you for returning my jewels! " + returnedContents.Sparkle());
 }
}

➌ THE JEWELTHIEF CLASS INHERITS FROM LOCKSMITH.
Jewel thieves are locksmiths gone bad! They can pick the lock on the safe, but instead of returning the jewels to the owner, they
steal them!

➍ HERE’S THE MAIN() METHOD FOR THE PROGRAM.
But don’t run it just yet! Before you run the program, try to figure out what it’s going to print to the console.

SHARPEN YOUR PENCIL

Read through the code for your program. Before you run it, write down what you think it will print to the console. (Hint: figure out
what JewelThief inherits from Locksmith!)

A subclass can hide methods in the superclass
Go ahead and run the JewelThief program. Since it’s a console application, instead of writing its
console output to the Output window, it’ll pop up a command window and print the output there.
Here’s what you should see:

Did you expect the program’s output to be different? Maybe something like this:
I'm stealing the contents! Sparkle, sparkle!

It looks like the JewelThief acted just like a Locksmith! So what happened?

Hiding methods versus overriding methods
The reason the JewelThief object acted like a Locksmith object when its ReturnContents()
method was called was because of the way the JewelThief class declared its ReturnContents()
method. There’s a big hint in that warning message you got when you compiled your program:

Since the JewelThief class inherits from Locksmith and replaces the ReturnContents() method
with its own method, it looks like JewelThief is overriding Locksmith’s ReturnContents()
method. But that’s not actually what’s happening. You probably expected JewelThief to override the
method (which we’ll talk about in a minute), but instead JewelThief is hiding it.
There’s a big difference. When a subclass hides the method, it replaces (technically, it redeclares) a
method in its base class that has the same name. So now our subclass really has two different methods
that share a name: one that it inherits from its base class, and another brand-new one that’s defined in
its own class.

If a subclass just adds a method with the same name as a method in its superclass, it only hides the superclass method
instead of overriding it.

Use different references to call hidden methods
The JewelThief only hides the ReturnContents() method (as opposed to overriding it), and that
causes it to act like a Locksmith object whenever it’s called like a Locksmith object. JewelThief
inherits one version of ReturnContents() from Locksmith, and it defines a second version of it,
which means that there are two different methods with the same name. That means your class needs
two different ways to call it.
And, in fact, it has exactly that. If you’ve got an instance of JewelThief, you can use a JewelThief
reference variable to call the new ReturnContents() method. But if you use a Locksmith reference
variable to call it, it’ll call the hidden Locksmith ReturnContents() method.

// The JewelThief subclass hides a method in the Locksmith base class,
// so you can get different behavior from the same object based on the
// reference you use to call it!

// Declaring your JewelThief object as a Locksmith reference causes it to
// call the base class ReturnContents() method
Locksmith calledAsLocksmith = new JewelThief();
calledAsLocksmith.ReturnContents(safeContents, owner);

// Declaring your JewelThief object as a JewelThief reference causes it to
// call the JewelThief's ReturnContents() method instead, because it hides
// the base class's method of the same name.
JewelThief calledAsJewelThief = new JewelThief();
calledAsJewelThief.ReturnContents(safeContents, owner);

Use the new keyword when you’re hiding methods
Take a close look at that warning message. Sure, we never really read most of our warnings, right?
But this time, actually read what it says: To make the current member override that
implementation, add the override keyword. Otherwise add the new keyword.
So go back to your program and add the new keyword.

new public void ReturnContents(Jewels safeContents, Owner owner) {

As soon as you add new to your JewelThief class’s ReturnContents() method declaration, that
warning message will go away. But your program still won’t act the way you expect it to! It still calls
the ReturnContents() method defined in the Locksmith object. Why? Because the
ReturnContents() method is being called from a method defined by the Locksmith class —
specifically, from inside Locksmith.OpenSafe(), even though it’s being initiated by a JewelThief
object. If JewelThief only hides the ReturnContents() method, its own ReturnContents() will
never be called.
Can you figure out how to get JewelThief to override the ReturnContents() method instead of
just hiding it? See if you can do it before turning to the next page!

Use the override and virtual keywords to inherit behavior
We really want our JewelThief class to always use its own ReturnContents() method, no matter
how it’s called. This is the way we expect inheritance to work most of the time, and it’s called
overriding. And it’s very easy to get your class to do it. The first thing you need to do is use the
override keyword when you declare the ReturnContents() method, like this:

class JewelThief {
 ...
 override public void ReturnContents
 (Jewels safeContents, Owner owner)

But that’s not everything you need to do. If you just add that override and try to compile, you’ll get an
error that looks like this:

Again, take a really close look and actually read the error. JewelThief can’t override the inherited
member ReturnContents() because it’s not marked virtual, abstract, or override in
Locksmith. Well, that’s an easy error to fix! Just mark Locksmith’s ReturnContents() with the
virtual keyword:

class Locksmith {
 ...
 virtual public void ReturnContents
 (Jewels safeContents, Owner owner)

Now run your program again. Here’s what you should see:

And that’s the output we were looking for.

Exactly. Most of the time you want to override methods, but hiding them is an option.
When you’re working with a subclass that extends a base class, you’re much more likely to use
overriding than you are to use hiding. So when you see that compiler warning about hiding a method,
pay attention to it! Make sure you really want to hide the method, and didn’t just forget to use the
virtual and override keywords. If you always use the virtual, override, and new keywords
correctly, you’ll never run into a problem like this again!

If you want to override a method in a base class, always mark it with the virtual keyword, and always use the override
keyword any time you want to override the method in a subclass. If you don’t, you’ll end up accidentally hiding
methods instead.

A subclass can access its base class using the base keyword
Even when you override a method or property in your base class, sometimes you’ll still want to
access it. Luckily, we can use base, which lets us access any method in the base class.

➊ All animals eat, so the Vertebrate class has an Eat() method that takes a Food object as its
parameter.

class Vertebrate {
 public virtual void Eat(Food morsel) {
 Swallow(morsel);
 Digest();
 }
}

➋ Chameleons eat by catching food with their tongues. So the Chameleon class inherits from
Vertebrate but overrides Eat().

➌ Instead of duplicating the code, we can use the base keyword to call the method that was
overridden. Now we have access to both the old and the new version of Eat().

Now that you’ve had a chance to absorb some of the ideas behind inheritance, here’s something to
think about. While reusing code is a good way to save keystrokes, another valuable part of
inheritance is that it makes it easier to maintain your code later. Can you think of a reason why
that’s true?

When a base class has a constructor, your subclass needs one, too
If your class has constructors that take parameters, then any class that inherits from it must call one of
those constructors. The subclass’s constructor can have different parameters from the base class
constructor.

You can call the new statement without assigning the result to a variable. The following statement creates an instance of
MySubclass:new MySubclass(); It will be garbage-collected quickly because there’s no reference to it.

The base class constructor is executed before the subclass
constructor
But don’t take our word for it — see for yourself !

DO THIS!

➊ Create a base class with a constructor that pops up a message box. Then add a button to a form that instantiates this base
class and shows a message box:

➋ Try adding a subclass, but don’t call the constructor. Then add a button to a form that instantiates this subclass and shows a
message box:

➌ Fix the error by making the constructor call the one from the base class. Then instantiate the subclass and see what order the
two message boxes pop up in!

Now you’re ready to finish the job for Kathleen!
When you last left Kathleen, you’d finished adding birthday parties to her program. She needs you to
charge an extra $100 for parties over 12. It seemed like you were going to have to write the same
exact code twice, once for each class. Now that you know how to use inheritance, you can have them
inherit from the same base class that contains all of their shared code, so you only have to write it
once.
If we play our cards right, we should be able to change the two classes without making any
changes to the form!

EXERCISE

Finish the job for Kathleen by creating a Party base class that has all of the shared behavior from DinnerParty and BirthdayParty.
You’re going to be reusing a lot of code from the previous project, so you may just want to copy it to another folder to do this
exercise.

NOTE

Look at the two classes side by side. What methods and properties do they have in common?

➊ THINK ABOUT THE NEW CLASS MODEL.
The first step to writing a good program is thinking about its design. We’ll still have the same DinnerParty and
BirthdayParty classes, but now they’ll inherit from a single Party class. We need them to have exactly the same properties so
we don’t have to make any changes to the form.

➋ ADD THE PARTY BASE CLASS.
Create a new Windows Forms application. Add a class called Party to the program. Then add the DinnerParty and
BirthdayParty classes from the project at the beginning of this chapter, and update the DinnerParty and BirthdayParty classes
so they extend Party.

➌ MOVE SHARED BEHAVIOR INTO THE PARTY SUPERCLASS.
Cut the CostOfFoodPerPerson constant, the NumberOfPeople and FancyDecorations properties, and the
CalculateCostOfDecorations() method from either the DinnerParty or BirthdayParty class (they’re identical in both), then
paste them into Party. Make sure you delete them from both subclasses.
Create a Cost property in Party and mark it virtual, and mark the Cost in the subclasses override.

➍ The hardest part of this exercise is figuring out what part of the two Cost properties in the subclasses should be copied to the
Party base class. That’s because you have a lot of choices. You could just create an automatic Cost property in the Party class,
and keep the Cost property in the subclasses the same. But for this exercise, your job is to look at the Cost properties in the
original DinnerParty and BirthdayParty classes, figure out what they have in common, and move as many lines as you can into
the base class.
Here’s a hint. Both DinnerParty and BirthdayParty Cost properties should start with these lines:

override public decimal Cost {
 get {
 decimal totalCost = base.Cost;

Don’t forget to add the $100 charge for parties over 12 to the base Cost property in Party.

EXERCISE SOLUTION

Check it out — you changed the DinnerParty and BirthdayParty classes so that they inherited from the same base class, Party.
Then you were able to make the change to the cost calculation to add the $100 fee, and you didn’t have to change the form at all.
Neat!

 Continues in Note.

When your classes overlap as little as possible, that’s an important design principle called
separation of concerns.

When you design your classes well today, they’ll be easier to modify later. It would have been a lot of
work to add that $100 charge for parties over 12 to the separate DinnerParty and BirthdayParty
classes. But after you redesigned your program with inheritance, it just took two lines of code. This
was easy because you moved only the behavior that was shared between the Cost properties in the
subclasses into a shared property in the base class.
This is an example of separation of concerns, because each class has only the code that concerns
one specific part of the problem that your program solves. Code for dinner parties goes in
DinnerParty, code for birthday parties goes in BirthdayParty, and code that’s shared between
them goes in Party.
Here’s something to think about. We separated the concerns about the user interface into the Form
object. It doesn’t do cost calculations itself — that’s encapsulated behind the Cost properties of the
DinnerParty and BirthdayParty classes. But we decided that converting the decimal cost to a
current string is a concern of the Form, not something that the party classes need to be concerned with.
Did we make the right call?

NOTE

Remember, any program can be written in many ways, and usually there’s no single “right” answer. Not even if it’s written in a book!

Build a beehive management system
A queen bee needs your help! Her hive is out of control, and she needs a program to help manage it.
She’s got a beehive full of workers, and a whole bunch of jobs that need to be done around the hive.
But somehow she’s lost control of which bee is doing what, and whether or not she’s got the
beepower to do the jobs that need to be done.

It’s up to you to build a beehive management system to help her keep track of her workers. Here’s
how it’ll work:

➊ THE QUEEN ASSIGNS JOBS TO HER WORKERS.
There are six possible jobs that the workers can do. Some know how to collect nectar and
manufacture honey; others can maintain the hive and patrol for enemies. A few bees can do every
job in the hive. So your program will need to give her a way to assign a job to any bee that’s
available to do it.

➋ WHEN THE JOBS ARE ALL ASSIGNED, IT’S TIME TO WORK.
Once the queen’s done assigning the work, she’ll tell the bees to work the next shift by clicking the
“Work the next shift” button. The program then generates a shift report that tells her which bees
worked that shift, what jobs they did, and how many more shifts they’ll be working each job.

How you’ll build the beehive management system
This project is divided into two parts. The first part is a bit of a review, where you’ll create the basic
system to manage the hive. It’s got two classes, Queen and Worker. You’ll build the form for the
system, and hook it up to the two classes. And you’ll make sure the classes are well-encapsulated
so they don’t get in your way when you move on to the second part later.
This is the object model that you’ll build. The form has a reference to an instance of Queen,
who keeps track of her Worker objects using an array of Worker references.

The form creates the array of workers. Then it creates each worker and adds it to the array.

The queen tells each worker to work a shift, then compiles the results into a shift report.

EXERCISE

A queen bee needs your help! Use what you’ve learned about classes and objects to build a beehive management system to help her
track her worker bees. In this first part of the project you’ll design the form, add the Queen and Worker classes, and get the basic
system working.

The program has one Queen object that manages the work being done.

The Queen uses an array of Worker objects to track each of the worker bees and whether or not those bees have been
assigned jobs. It’s stored in a private Worker[] field called workers.
The form calls the AssignWork() method, passing a string for the job that needs to be performed and an int for the number of
shifts. It’ll return true if it finds a worker to assign the job to, or false if it couldn’t find a worker to do that job.
The form’s “Work the next shift” button calls WorkTheNextShift(), which tells the workers to work and returns a shift
report to display. It tells each Worker object to work one shift, and then checks that worker’s status so it can add a line to the
shift report.
Look closely at the screenshot on the facing page to see exactly what the WorkTheNextShift() method returns. First it
creates a string (“Report for shift #13”). Then it uses a for loop to execute two if statements for each Worker in the workers[]
array. The first if statement checks if the worker finsished the job (“Worker #2 finished the job”). The second if statement
checks if the Worker is currently doing a job, and if so, prints how many more shifts he’ll be working.

The queen uses an array of Worker objects to keep track of all of the workers and what jobs they’re doing.

CurrentJob is a read-only property that tells the Queen object what job the worker’s doing (“Sting patrol,” “Hive
maintenance,” etc.). If the worker isn’t doing any job, it’ll return an empty string.
The Queen object attempts to assign a job to a worker using its DoThisJob() method. If that worker is not already doing the job,
and if it’s a job that he knows how to do, then he’ll accept the assignment and the method returns true. Otherwise, it returns
false.
When the DidYouFinish() method is called, the worker works a shift. He keeps track of how many shifts are left in the
current job. If the job is done, then he resets his current job to an empty string so that he can take on his next assignment. The
method returns true if the worker finished a job this shift; otherwise, it returns false.

STRING.ISNULLOREMPTY()

Each bee stores his current job as a string. So a worker can figure out if he’s currently doing a job
by checking his CurrentJob property — it’ll be equal to an empty string if he’s waiting for his next
job. C# gives you an easy way to do that: String.IsNullOrEmpty(currentJob) will return true if the
currentJob string property is either empty or null, and false otherwise.

➊ BUILD THE FORM.
The form is pretty simple — all of the intelligence is in the Queen and Worker classes. The form has a private Queen field, and
two buttons call its AssignWork() and WorkTheNextShift() methods. You’ll need to add a ComboBox control for the bee jobs (flip
back to the screenshot to see its list items), a NumericUpDown control, two buttons, and a multiline text box for the shift report.
You’ll also need the form’s constructor — it’s below the screenshot.

➋ BUILD THE WORKER AND QUEEN CLASSES.
You’ve got almost everything you need to know about the Worker and Queen classes. There are just a couple more details.
Queen.AssignWork() loops through the Queen object’s workers array and attempts to assign the job to each Worker using its
DoThisJob() method. The Worker object checks its jobsICanDo string array to see if it can do the job. If it can, it sets its private
shiftsToWork field to the job duration, its CurrentJob to the job, and its shiftsWorked to zero. When it works a shift, it increases
shiftsWorked by one. The read-only ShiftsLeft property returns shiftsToWork - shiftsWorked — the queen uses it to see
how many shifts are left on the job.

EXERCISE SOLUTION

We already gave you the constructor. Here’s the rest of the code for the form:

NOTE

The form uses its queen field to keep a reference to the Queen object, which in turn has an array of
references to the worker objects.

INHERITANCECROSS

Before you move on to the next part of the exercise, give your brain a break with a quick crossword.

Across Down

5. This method gets the value of a property.

7. This method returns true if you pass it “”.

8. The constructor in a subclass doesn’t need the same _____
as the constructor in its base class.

9. A control on a form that lets you create tabbed applications.

11. This type of class can’t be instantiated.

1. A _______ can override methods from its base class.

2. If you want a subclass to override a method, mark the method
with this keyword in the base class.

3. A method in a class that’s run as soon as it’s instantiated.

4. What a subclass does to replace a method in the base class.

6. This contains base classes and subclasses.

7. What you’re doing by adding a colon to a class declaration.

10. A subclass uses this keyword to call the members of the class
it inherited from.

 Answers in Inheritancecross Solution.

Use inheritance to extend the bee management system

Now that you have the basic system in place, use inheritance to let it track how much honey each bee
consumes. Different bees consume different amounts of honey, and the queen consumes the most honey
of all. You’ll use what you’ve learned about inheritance to create a Bee base class that Queen and
Worker inherit from.

ADD EXISTING ITEM

Whenever you have a two-part exercise, it’s always a good idea to start a new project for the second part. That way, you can always
get back to the first solution if you need it. An easy way to do that is to right-click on the project name in the new project’s Solution
Explorer in the IDE, select Add Existing Item from the menu, navigate to the old project’s folder, and select the files you want to add.
The IDE will make new copies of those files in the new project’s folder, and add them to the project. There are a few things to watch
out for, though. The IDE will NOT change the namespace, so you’ll need to edit each class file and change its namespace line by
hand. And if you add a form, make sure to add its designer (.Designer.cs) and resource (.resx) files — and make sure you change
their namespaces, too.

EXERCISE

We’re not done yet! The queen got a call from her accountants, who told her she needs to keep track of how much honey the hive is
spending on its workers. Here’s a perfect chance to use your new inheritance skills! Add a new Bee superclass and use it to calculate
honey consumption for each shift.

➊ CREATE THE BEE CLASS AND MODIFY QUEEN AND WORKER TO EXTEND IT.
The Bee class has a HoneyConsumptionRate() method that calculates how much honey the bee uses per shift. Your job will be to
modify the Worker and Queen classes to extend it.

➋ MODIFY THE QUEEN AND WORKER CLASSES TO EXTEND BEE.
The Queen and Worker classes will inherit the basic honey consumption behavior from their new parent Bee superclass. You’ll
need to set up their constructors to call the base class constructor.

Modify the Queen class to extend Bee. You’ll need to add a double parameter called weightMg to the constructor that gets passed
back to the base constructor.
Modify the Worker class to extend Bee, too — you’ll need to make the same modification to the Worker constructor that you did
for the Queen.

NOTE

— Hint: you can use the “does not contain a constructor” error message you saw earlier in the
chapter to your advantage! Have the Worker class inherit from Bee, then build your project.
When the IDE displays the error, double-click on it and the IDE will jump right to the Worker
constructor automatically. How convenient!

➌ MODIFY THE FORM TO INITIALIZE THE QUEEN AND WORKERS WITH THEIR WEIGHTS.
Since you changed the Queen and Worker constructors, you’ll also need to change the form’s constructor so that when it
creates its new Worker and new Queen instances, it passes the additional weights into their constructors. Worker #1 weighs
175mg, worker #2 weighs 114mg, worker #3 weighs 149mg, worker #4 weighs 155mg, and the queen weighs 275mg.
(Your code should now compile.)

➍ OVERRIDE THE WORKER’S HONEYCONSUMPTIONRATE() METHOD

The Queen consumes honey just like the base Bee class. And workers consume the same amount of honey...but only while they’re
idle! When they’re working a shift, they consume .65 additional units for each shift they worked so far.
This means that the Queen can use the base HoneyConsumptionRate() method that she inherits from her Bee superclass, but the
Worker will need to override the method to add the additional .65 units per shift worked. You can also add a constant called
honeyUnitsPerShiftWorked to make it really clear exactly what this method is doing.
You can use the IDE to get started. Go to the Worker class and type “public override” — when you add the space, the IDE will
automatically list all the methods you can override:

Choose the HoneyConsumptionRate() method from the IntelliSense window. When you do, the IDE will generate a method stub
that just calls the base method. Modify your new method so that it starts with the output of base.HoneyConsumptionRate() and
then adds the extra .65 units consumed per shift worked.
➎ ADD HONEY CONSUMPTION TO THE SHIFT REPORT.
You’ll need to modify the Queen’s WorkTheNextShift() method to keep track of the honey consumed by the Queen object and
each of the Worker objects, calling each object’s HoneyConsumptionRate() method and adding it to a total. Then it should add this
line to the end of the report (replacing XXX with the number of units of honey consumed):

NOTE

You should be able to do this by adding just three lines of code to the WorkTheNextShift()
method.

Total honey consumed for the shift: XXX units

B RAIN POWER

Since all bees have a HoneyConsumptionRate() method, and the Queen and Worker are both Bees, shouldn’t there be a single,
consistent way to call that method for any Bee object, no matter what kind of Bee it is?

EXERCISE SOLUTION

Inheritance made it less work for you to update your code and add the new honey consumption behavior to the
Queen and Worker classes. It would have been a lot harder to make this change if you’d had a lot of duplicated
code.

INHERITANCECROSS SOLUTION

Chapter 7. Interfaces and Abstract Classes:
Making classes keep their promises

Actions speak louder than words.
Sometimes you need to group your objects together based on the things they can do rather than the
classes they inherit from. That’s where interfaces come in — they let you work with any class that
can do the job. But with great power comes great responsibility, and any class that implements an
interface must promise to fulfill all of its obligations...or the compiler will break their kneecaps, see?

Let’s get back to bee-sics
The General Bee-namics corporation wants to make the Beehive Management System you created in
the last chapter into a full-blown Hive Simulator. Here’s an overview of the specification for the new
version of the program:

Lots of things are still the same
The bees in the new Hive Simulator will still consume honey in the same way they did before. The
queen still needs to be able to assign work to the workers and see the shift reports that tell who’s
doing what. The workers work shifts just like they did before, too; it’s just that the jobs they are doing
have been elaborated a little bit.

We can use inheritance to create classes for different types of bees
Here’s a class hierarchy with Worker and Queen classes that inherit from Bee, and Worker has
subclasses NectarCollector and StingPatrol.

B RAIN POWER

What happens if you have a bee that needs to sting and collect nectar?

An interface tells a class that it must implement certain methods
and properties
A class can only inherit from one other class. So creating two separate subclasses for the
StingPatrol and NectarCollector bees won’t help us if we have a bee that can do both jobs.
The queen’s DefendTheHive() method can only tell StingPatrol objects to keep the hive safe.
She’d love to train the other bees to use their stingers, but she doesn’t have any way to command them
to attack:

class Queen {
 private void DefendTheHive(StingPatrol patroller) { ... }
}

You use an interface to require a class to include all of the methods and properties listed inside the interface — if it
doesn’t, the compiler will throw an error.

There are NectarCollector objects that know how to collect nectar from flowers, and instances of
StingPatrol that can sharpen their stingers and patrol for enemies. But even if the queen could teach
the NectarCollector to defend the hive by adding methods like SharpenStinger() and
LookForEnemies() to its class definition, she still couldn’t pass it into her DefendTheHive()
method. She could use two different methods:

But that’s not a particularly good solution. Both of those methods would be identical, because they’d
call the same methods in the objects passed to them. The only difference is that one method would
take a StingPatrol, and the other would take a NectarCollector that happens to have the methods

necessary for patrolling the hive. And you already know how painful it is to maintain two identical
methods.
Luckily, C# gives us interfaces to handle situations like that. Interfaces let you define a bunch of
methods that a class must have.
An interface requires that a class has certain methods, and the way that it does that is by making the
compiler throw errors if it doesn’t find all the methods required by the interface in every class that
implements it. Those methods can be coded directly in the class, or they can be inherited from a base
class. The interface doesn’t care how the methods or properties get there, as long as they’re there
when the code is compiled.

Use the interface keyword to define an interface
Adding an interface to your program is a lot like adding a class, except you never write any methods.
You just define the methods’ return type and parameters, but instead of a block of statements inside
curly brackets, you just end the line with a semicolon.
Interfaces do not store data, so you can’t add any fields. But you can add definitions for properties.
The reason is that get and set accessors are just methods, and interfaces are all about forcing classes
to have certain methods with specific names, types, and parameters. So if you’ve got a problem that
looks like it could be solved by adding a field to an interface, try using a property instead — odds
are, it’ll do what you’re looking for.

INTERFACE NAMES START WITH I

Whenever you create an interface, you should make its name start with an uppercase I. There’s no rule that says you need to do it,
but it makes your code a lot easier to understand. You can see for yourself just how much easier that can make your life. Just go into
the IDE to any blank line inside any method and type “I” — IntelliSense shows .NET interfaces.

So how does this help the queen? Now she can make one single method that takes any object that
knows how to defend the hive:

This gives the queen a single method that can take a StingPatrol, NectarCollector, and any other
bee that knows how to defend the hive — it doesn’t matter which class she passes to the method. As
long as it implements IStingPatrol, the DefendTheHive() method is guaranteed that the object has
the methods and properties it needs to defend the hive.

Everything in a public interface is automatically public, because you’ll use it to define the public methods and
properties of any class that implements it.

Now you can create an instance of NectarStinger that does both
jobs
You use the colon operator to implement an interface, just like you do for inheritance. It works like
this: the first thing after the colon is the class it inherits from, followed by a list of interfaces —
unless it doesn’t inherit from a class, in which case it’s just a list of interfaces (in no particular
order).

When you’ve got a class that implements an interface, it acts just like any other class. You can
instantiate it with new and use its methods:

NectarStinger bobTheBee = new NectarStinger();
bobTheBee.LookForEnemies();
bobTheBee.FindFlowers();

This is one of the tougher concepts to get into your brain. If it’s not quite clear yet, keep reading. We’ll have lots of
examples throughout the chapter.

THERE ARE NO DUMB QUESTIONS

Q: Q: I still don’t quite get how interfaces improve the beehive code. You’ll still need to add a NectarStinger class, and it’ll still have duplicate
code...right?

A: A: Interfaces aren’t about preventing you from duplicating code. They’re about letting you use one class in more than one situation. The goal is to
create one worker bee class that can do two different jobs. You’ll still need to create classes for them — that’s not the point. The point of the interfaces
is that now you’ve got a way to have a class that does any number of jobs. Say the Queen has a PatrolTheHive() method that takes a StingPatrol object
and a CollectNectar() method that takes a NectarCollector object. But you don’t want StingPatrol to inherit from NectarCollector or vice versa — each
class has public methods and properties that the other one shouldn’t have. Now take a minute and try to think of a way to create one single class whose
instances could be passed to both methods. Seriously, put the book down, take a minute and try to think up a way! How do you do it?
Interfaces fix that problem. Now you can create an IStingPatrol reference — and it can point to any object that implements IStingPatrol, no matter
what the actual class is. It can point to a StingPatrol, or a NectarStinger, or even a totally unrelated object. If you’ve got an IStingPatrol reference
pointing to an object, then you know you can use all of the methods and properties that are part of the IStingPatrol interface, regardless of the actual
type of the object.
But the interface is only part of the solution. You’ll still need to create a new class that implements it, since it doesn’t actually come with any code.
Interfaces aren’t about avoiding the creation of extra classes or avoiding duplicate code. They’re about making one class that can do more than one job
without relying on inheritance, as inheritance brings a lot of extra baggage — you’ll have to inherit every method, property, and field, not just those that
have to do with the specific job.
Can you think of ways that you could still avoid duplicating code while using an interface? You could create a separate class called Stinger or Proboscis
to contain the code that’s specific to stinging or collecting nectar. NectarStinger and NectarCollector could both create a private instance of Proboscis,
and any time they needed to collect nectar, they’d call its methods and set its properties.

Classes that implement interfaces have to include ALL of the
interface’s methods
Implementing an interface means that you have to have a method in the class for each and every
property and method that’s declared in the interface — if it doesn’t have every one of them, it won’t
compile. If a class implements more than one interface, then it needs to include all of the properties
and methods in each of the interfaces it implements. But don’t take our word for it...

DO THIS!

➊ CREATE A NEW CONSOLE APPLICATION AND ADD A NEW CLASS FILE CALLED ISTINGPATROL.CS .
The IDE will add a file that has the line class IStingPatrol as usual. Replace that line with interface IStingPatrol, and
type in the IStingPatrol interface from two pages ago. You’ve now added an interface to your project! Your program should
now compile.
➋ ADD A BEE CLASS TO THE PROJECT.
Don’t add any properties or methods yet. Just have it implement IStingPatrol:

class Bee : IStingPatrol
{
}

➌ TRY TO COMPILE THE PROGRAM.
Select Rebuild from the Build menu. Uh oh — the compiler won’t let you do it:

NOTE

You’ll see one of these “does not implement” errors for every member of IStingPatrol that’s not implemented in the class. The
compiler really wants you to implement every method in the interface.

➍ ADD THE METHODS AND PROPERTIES TO THE BEE CLASS.
Add a LookForEnemies() method and a SharpenStinger() method. Make sure that their signatures match the ones in the
interface — so LookForEnemies() has to return a bool, and SharpenStinger() takes an int parameter (choose any name) and
returns an int; they don’t have to do anything for now, so just return dummy values. Add an int property called AlertLevel with
a get accessor (have it return any number), and an automatic int property called StingerLength with get and set accessors.
One more thing: make sure all the Bee members are marked public. Now the program will compile!

Get a little practice using interfaces
Interfaces are really easy to use, and the best way to understand them is to start using them. So create
a new Console Application project and get started!

DO THIS!

➊ Here’s the TallGuy class, and the code for the Main() method in Program.cs that instantiates it using an object initializer and
calls its TalkAboutYourself() method. Nothing new here — we’ll use it in a minute:

class TallGuy {
 public string Name;
 public int Height;
 public void TalkAboutYourself() {
 Console.WriteLine("My name is " + Name + " and I'm "
 + Height + " inches tall.");
 }
}
static void Main(string[] args) {
 TallGuy tallGuy = new TallGuy() { Height = 74, Name = "Jimmy" };
 tallGuy.TalkAboutYourself();
}

➋ You already know that everything inside an interface has to be public, but don’t take our word for it. Add a new IClown
interface to your project, just like you would add a class: right-click on the project in the Solution Explorer, select Add→New
Item... and choose . Make sure it’s called IClown.cs. The IDE will create an interface that includes this
declaration:

interface IClown
{

Now try to declare a private method inside the interface:

private void Honk();

Select Build→Build Solution in the IDE. You’ll see this error:

Now go ahead and delete the private access modifier — the error will go away and your program will compile just fine.

NOTE

You don’t need to type “public” inside the interface, because it automatically makes every property and method public.

➌ Before you go on to the next page, see if you can create the rest of the IClown interface, and modify the TallGuy class to
implement this interface. Your new IClown interface should have a void method called Honk that doesn’t take any parameters,
and a string read-only property called FunnyThingIHave that has a get accessor but no set accessor.
➍ Here’s the interface — did you get it right?

OK, now modify the TallGuy class so that it implements IClown. Remember, the colon operator is always followed by the base
class to inherit from (if any), and then a list of interfaces to implement, all separated by commas. Since there’s no base class and
only one interface to implement, the declaration looks like this:

Then make sure the rest of the class is the same, including the two fields and the method. Select Build Solution from the Build
menu in the IDE to compile and build the program. You’ll see two errors, including this one:

➎ The errors will go away as soon as you add all of the methods and properties defined in the interface. So go ahead and
implement the interface. Add a read-only string property called FunnyThingIHave with a get accessor that always returns the
string "big shoes". Then add a Honk() method that writes “Honk honk!” to the console.
Here’s what it’ll look like:

➏ Now your code will compile! Update your Main() method so that it calls the TallGuy object’s Honk() method to print the
“Honk honk!” line to the console.

You can’t instantiate an interface, but you can reference an
interface
Say you had a method that needed an object that could perform the FindFlowers() method. Any
object that implemented the INectarCollector interface would do. It could be a Worker object,
Robot object, or Dog object, as long as it implements the INectarCollector interface.
That’s where interface references come in. You can use one to refer to an object that implements the
interface you need and you’ll always be sure that it has the right methods for your purpose — even if
you don’t know much else about it.
This won’t work...

You can’t use the new keyword with an interface, which makes sense — the methods and properties
don’t have any implementation. If you could create an object from an interface, how would it know
how to behave?
...but this will.

The first line is an ordinary new statement, creating a reference called Fred and pointing it to a
NectarStinger object.

The second line is where things start to get interesting, because that line of code creates a new
reference variable using IStingPatrol. That line may look a little odd when you first see it. But
look at this:

NectarStinger ginger = fred;

You know what this third statement does — it creates a new NectarStinger reference called
ginger and points it at whatever object fred is pointing to. The george statement uses
IStingPatrol the same way.
So what happened?
There’s only one new statement, so only one object was created. The second statement created a
reference variable called george that can point to an instance of any class that implements
IStingPatrol.

Interface references work just like object references
You already know all about how objects live on the heap. When you work with an interface reference,
it’s just another way to refer to the same objects you’ve already been using.

➊ OBJECTS ARE CREATED AS USUAL.
Both of these classes implement IStingPatrol.

➋ ADD ISTINGPATROL AND INECTARCOLLECTOR REFERENCES.
You can use interface references just like you use any other reference type.

➌ AN INTERFACE REFERENCE WILL KEEP AN OBJECT ALIVE.
When there aren’t any references pointing to an object, it disappears. But there’s no rule that says
those references all have to be the same type! An interface reference is just as good as an object
reference when it comes to keeping track of objects.

biff = null;

➍ ASSIGN A NEW INSTANCE TO AN INTERFACE REFERENCE.
You don’t actually need an object reference — you can create a new object and assign it straight to
an interface reference variable.

INectarCollector gatherer = new NectarStinger();

You can find out if a class implements a certain interface with “is”
Sometimes you need to find out if a certain class implements an interface. Suppose we have all our
worker bees in an array, called Bees. We can make the array hold the type Worker, since all worker
bees will be Worker classes, or subclasses of that type.
But which of the worker bees can collect nectar? In other words, we want to know if the class
implements the INectarCollector interface. We can use the is keyword to find out exactly that.

THERE ARE NO DUMB QUESTIONS

Q: Q: Wait a minute. When I put a property in an interface, it looks just like an automatic property. Does that mean I can only use automatic
properties when I implement an interface?

A: A: No, not at all. It’s true that a property inside an interface looks very similar to an automatic property — like Job and ShiftsLeft in the IWorker
interface on the next page. But they’re definitely not automatic properties. You could implement Job like this:

public Job {
 get; private set;
}

You need that private set, because automatic properties require you to have both a set and a get (even if they’re private). But you could also implement
it like this:

public Job {
 get {
 return "Accountant";
 }
}

and the compiler will be perfectly happy with that, too. You can also add a set accessor — the interface requires a get, but it doesn’t say you can’t have
a set, too. (If you use an automatic property to implement it, you can decide for yourself whether you want the set to be private or public.)

B RAIN POWER

If you have some other class that doesn’t inherit from Worker but does implement the INectarCollector interface, then it’ll be able
to do the job, too! But since it doesn’t inherit from Worker, you can’t get it into an array with other bees. Can you think of a way to
get around the problem and create an array with both bees and this new class?

Interfaces can inherit from other interfaces
When one class inherits from another, it gets all of the methods and properties from the base class.
Interface inheritance is simpler. Since there’s no actual method body in any interface, you don’t
have to worry about calling base constructors or methods. The inherited interfaces simply accumulate
all of the methods and properties from the interfaces they inherit from.

Any class that implements an interface that inherits from IWorker
must implement its methods and properties
When a class implements an interface, it has to include every property and method in that interface.
And if that interface inherits from another one, then all of those properties and methods need to be
implemented, too.

The RoboBee 4000 can do a worker bee’s job without using
valuable honey
Let’s create a new bee, a RoboBee 4000, that runs on gas. We can have it inherit from the IWorker
interface, though, so it can do everything a normal worker bee can.

Remember, for other classes in the application, there’s no functional difference between a RoboBee
and a normal worker bee. They both implement the interface, so both act like worker bees as far as
the rest of the program is concerned.
But, you could distinguish between the types by using:

Any class can implement ANY interface as long as it keeps the promise of implementing the interface’s methods and
properties.

is tells you what an object implements; as tells the compiler how to
treat your object
Sometimes you need to call a method that an object gets from an interface it implements. But what if
you don’t know if that object is the right type? You use is to find that out. Then, you can use as to
treat that object — which you now know is the right type — as having the method you need to call.

SHARPEN YOUR PENCIL

Take a look at the array on the left. For each of these statements, write down which values of i would make it evaluate to true. Also,
two of them won’t compile — cross those lines out.

IWorker[] Bees = new IWorker[8];
Bees[0] = new NectarStinger();
Bees[1] = new RoboBee();
Bees[2] = new Worker();
Bees[3] = Bees[0] as IWorker;
Bees[4] = IStingPatrol;
Bees[5] = null;
Bees[6] = Bees[0];
Bees[7] = new INectarCollector();

1. (Bees[i] is INectarCollector)

2. (Bees[i] is IStingPatrol)

3. (Bees[i] is IWorker)

A CoffeeMaker is also an Appliance
If you’re trying to figure out how to cut down your energy bill each month, you don’t really care what
each of your appliances does. You only really care that they consume power. So if you were writing a
program to monitor your electricity consumption, you’d probably just write an Appliance class. But
if you needed to be able to distinguish a coffee maker from an oven, you’d have to build a class
hierarchy. So you’d add the methods and properties that are specific to a coffee maker or oven to
some CoffeeMaker and Oven classes, and they’d inherit from an Appliance class that has their
common methods and properties.

SHARPEN YOUR PENCIL SOLUTION

Take a look at the array on the left. For each of these statements, write down which values of i would make it evaluate to true. Also,
two of them won’t compile — cross them out.

Upcasting works with both objects and interfaces
When you substitute a subclass for a base class — like substituting a coffee maker for an appliance,
or a BLT for a sandwich — it’s called upcasting. It’s a really powerful tool that you get when you
build class hierarchies. The only drawback to upcasting is that you can only use the properties and
methods of the base class. In other words, when you treat a coffee maker like an appliance, you can’t
tell it to make coffee or fill it with water. But you can tell whether or not it’s plugged in, since that’s
something you can do with any appliance (which is why the PluggedIn property is part of the
Appliance class).

➊ LET’S CREATE SOME OBJECTS.
We can create a CoffeeMaker and Oven class as usual:

➋ WHAT IF WE WANT TO CREATE AN ARRAY OF APPLIANCES?
You can’t put a CoffeeMaker in an Oven[] array, and you can’t put an Oven in a CoffeeMaker[
] array. But you can put both of them in an Appliance[] array:

➌ BUT YOU CAN’T TREAT ANY APPLIANCE LIKE AN OVEN.
When you’ve got an Appliance reference, you can only access the methods and properties that
have to do with appliances. You can’t use the CoffeeMaker methods and properties through the
Appliance reference even if you know it’s really a CoffeeMaker. So these statements will work
just fine, because they treat a CoffeeMaker object like an Appliance:

Appliance powerConsumer = new CoffeeMaker();
powerConsumer.ConsumePower();

But as soon as you try to use it like a CoffeeMaker:

your code won’t compile, and the IDE will display an error:

because once you upcast from a subclass to a base class, then you can only access the methods and
properties that match the reference that you’re using to access the object.

Downcasting lets you turn your appliance back into a coffee maker
Upcasting is a great tool, because it lets you use a coffee maker or an oven anywhere you just need an
appliance. But it’s got a big drawback — if you’re using an Appliance reference that points to a
CoffeeMaker object, you can only use the methods and properties that belong to Appliance. And
that’s where downcasting comes in: that’s how you take your previously upcast reference and
change it back. You can figure out if your Appliance is really a CoffeeMaker using the is keyword.
And once you know that, you can convert the Appliance back to a CoffeeMaker using the as
keyword.

➊ We’ll start with the CoffeeMaker we already upcast.
Here’s the code that we used:

Appliance powerConsumer = new CoffeeMaker();
powerConsumer.ConsumePower();

➋ But what if we want to turn the Appliance back into a CoffeeMaker?
The first step in downcasting is using the is keyword to check if it’s even an option.

if (powerConsumer is CoffeeMaker)
 // then we can downcast!

➌ Now that we know it’s a CoffeeMaker, let’s use it like one.
The is keyword is the first step. Once you know that you’ve got an Appliance reference that’s
pointing to a CoffeeMaker object, you can use as to downcast it. And that lets you use the
CoffeeMaker class’s methods and properties. And since CoffeeMaker inherits from Appliance,
it still has its Appliance methods and properties.

if (powerConsumer is CoffeeMaker) {
 CoffeeMaker javaJoe = powerConsumer as CoffeeMaker;
 javaJoe.MakeCoffee();
}

When downcasting fails, as returns null
So what happens if you try to use as to convert an Oven object into a CoffeeMaker? It returns null
— and if you try to use it, .NET will cause your program to break.

Upcasting and downcasting work with interfaces, too
You already know that is and as work with interfaces. Well, so do all of the upcasting and
downcasting tricks. Let’s add an ICooksFood interface for any class that can heat up food. And we’ll
add a Microwave class — both Microwave and Oven implement the ICooksFood interface. Now
there are three different ways that you can access an Oven object. And the IDE’s IntelliSense can help
you figure out exactly what you can and can’t do with each of them:

Three different references that point to the same object can access different methods and properties, depending on
the reference’s type.

THERE ARE NO DUMB QUESTIONS

Q: Q: So back up — you told me that I can always upcast but I can’t always downcast. Why?

A: A: Because the compiler can warn you if your upcast is wrong. The only time an upcast won’t work is if you’re trying to set an object equal to a class
that it doesn’t inherit from or an interface that it doesn’t implement. And the compiler can figure out immediately that you didn’t upcast properly, and
will give you an error.
On the other hand, the compiler doesn’t know how to check if you’re downcasting from an object or interface reference to a reference that’s not valid.
That’s because it’s perfectly legal to put any class or interface name on the righthand side of the as keyword. If the downcast is illegal, then the as
statement will just return null. And it’s a good thing that the compiler doesn’t stop you from doing that, because there are plenty of times when you’d
want to do it.

Q: Q: Someone told me that an interface is like a contract, but I don’t really get why. What does that mean?

A: A: Yes, we’ve heard that too — a lot of people like to say that an interface is like a contract. (That’s a really common question on job interviews.) And
it’s true, to some extent. When you make your class implement an interface, you’re telling the compiler that you promise to put certain methods into it.
The compiler will hold you to that promise.
But we think that it’s easier to remember how interfaces work if you think of an interface as a kind of checklist. The compiler runs through the checklist
to make sure that you actually put all of the methods from the interface into your class. If you didn’t, it’ll bomb out and not let you compile.

Q: Q: What if I want to put a method body into my interface? Is that OK?

A: A: No, the compiler won’t let you do that. An interface isn’t allowed to have any statements in it at all. Even though you use the colon operator to
implement an interface, it’s not the same thing as inheriting from a class. Implementing an interface doesn’t add any behavior to your class at all, or
make any changes to it. All it does is tell the compiler to make sure that your class has all of the methods that the interface says it should have.

Q: Q: Then why would I want to use an interface? It seems like it’s just adding restrictions, without actually changing my class at all.

A: A: Because when your class implements an interface, then an interface reference can point to any instance of that class. And that’s really useful to you
— it lets you create one reference type that can work with a whole bunch of different kinds of objects.
Here’s a quick example. A horse, an ox, a mule, and a steer can all pull a cart. But in our zoo simulator, Horse, Ox, Mule, and Steer would all be different
classes. Let’s say you had a cart-pulling ride in your zoo, and you wanted to create an array of any animal that could pull carts around. Uh-oh — you
can’t just create an array that will hold all of those. If they all inherited from the same base class, then you could create an array of those. But it turns
out that they don’t. So what’ll you do?
That’s where interfaces come in handy. You can create an IPuller interface that has methods for pulling carts around. Now you could declare your array
like this:

IPuller[] pullerArray;

Now you can put a reference to any animal you want in that array, as long as it implements the IPuller interface.

Q: Q: Is there an easier way to implement interfaces? It’s a lot of typing!

A: A: Why, yes, there is! The IDE gives you a very powerful shortcut that automatically implements an interface for you. Just start typing your class:

class
 Microwave : ICooksFood
 { }

Click on ICooksFood — you’ll see a small bar appear underneath the “I”. Hover over it and you’ll see an icon appear underneath it:

NO TE

Sometimes it’s hard to click on the icon, but Ctrl-period will work, too.

Click on the icon and choose “Implement Interface ‘ICooksFood’” from the menu. It’ll automatically add any members that you haven’t implemented
yet. Each one has a single throw statement in it — they’ll cause your program to halt, as a reminder in case you forget to implement one of them. (You’ll
learn about throw in Chapter 10.)

An interface is like a checklist that the compiler runs through to make sure your class implemented a certain set of
methods.

EXERCISE

Extend the IClown interface and use classes that implement it by adding more code to the Console application you created earlier.

➊ Start with the IClown interface from the last “Do this!” in Get a little practice using interfaces:

interface IClown {
 string FunnyThingIHave { get; }
 void Honk();
}

➋ Extend IClown by creating a new interface, IScaryClown, that inherits from IClown. It should have an additional string
property called ScaryThingIHave with a get accessor but no set accessor, and a void method called ScareLittleChildren().
➌ Create these classes:

A funny clown class called FunnyFunny that uses a private string variable to store a funny thing. Use a constructor that takes a
parameter called funnyThingIHave and uses it to set the private field. The Honk() method should print: “Hi kids! I have a ”
followed by the funny thing it has. The FunnyThingIHave get accessor should return the same thing.
A scary clown class called ScaryScary that uses a private variable to store an integer that was passed to it by its constructor in a
parameter called numberOfScaryThings. The ScaryThingIHave get accessor should return a string consisting of the number from
the constructor followed by “spiders”. The ScareLittleChildren() prints a message that says, “Boo! Gotcha!”

➍ Here’s new code for the Main() method — but it’s not working. Can you figure out how to fix it?

static void Main(string[] args) {
 ScaryScary fingersTheClown = new ScaryScary("big shoes", 14);
 FunnyFunny someFunnyClown = fingersTheClown;
 IScaryClown someOtherScaryClown = someFunnyClown;
 someOtherScaryClown.Honk();
 Console.ReadKey();
}

EXERCISE SOLUTION

Extend the IClown interface and use classes that implement it.

There’s more than just public and private
You already know how important the private keyword is, how you use it, and how it’s different from
public. C# has a name for these keywords: they’re called access modifiers. The name makes sense,
because when you change an access modifier on a property, field, or method of a class — its
members — or the entire class, you change the way other classes can access it. There are a few more
access modifiers that you’ll use, but we’ll start with the ones you know:

NOTE

We call a class’s methods, fields, and properties its members. Any member can be marked with the public or private access modifier.

public means that anyone can access it.

NOTE

(as long as they can access the declaring class)

When you mark a class or class member public, you’re telling C# that any instance of any other
class can access it. It’s the least restrictive access modifier. And you’ve already seen how it can
get you in trouble — only mark class members public if you have a reason. That’s how you make
sure your classes are well encapsulated.
private means that only other members can access it.
When you mark a class member private, then it can only be accessed from other members inside
that class or other instances of that class. You can’t mark a class private — unless that class
lives inside another class, in which case it’s only available to instances of its container class.
Then it’s private by default, and if you want it to be public you need to mark it public.

NOTE

If you leave off the access modifier when you declare a class member, it defaults to private.

protected means public to subclasses, private to everyone else.
You’ve already seen how a subclass can’t access the private fields in its base class — it has to
use the base keyword to get to the private members of the base object. Wouldn’t it be convenient
if the subclass could access those private fields? That’s why you have the protected access
modifier. Any class member marked protected can be accessed by any other member of its class,
and any member of a subclass of its class.
internal means public only to other classes in an assembly.
The built-in .NET Framework classes and all of the code in your projects are in assemblies —
libraries of classes that are in your project’s list of references. You can see a list of assemblies by
right-clicking on References in the Solution Explorer and choosing “Add Reference...” — when
you create a new Windows Forms application, the IDE automatically includes the references you
need to build a Windows application. When you build an assembly, you can use the internal
keyword to keep classes private to that assembly, so you can only expose the classes you want.
You can combine this with protected — anything you mark protected internal can only be

accessed from within the assembly or from a subclass.

NOTE

If you leave off the access modifier when you declare a class or an interface, then by default it’s set to internal. And that’s just
fine for most classes — it means that any other class in the assembly can read it. If you’re not using multiple assemblies, internal
will work just as well as public for classes and interfaces. Give it a shot — go to an old project, change some of the classes to
internal, and see what happens.

sealed says that this class can’t be subclassed.
There are some classes that you just can’t inherit from. A lot of the .NET Framework classes are
like this — go ahead, try to make a class that inherits from String (that’s the class whose
IsEmptyOrNull() method you used in the last chapter). What happens? The compiler won’t let
you build your code — it gives you the error “cannot derive from sealed type ‘string’”. You can do
that with your own classes — just add sealed after the access modifier.

NOTE

Sealed is a modifier, but it’s not an access modifier. That’s because it only affects inheritance — it doesn’t change the way the
class can be accessed.

There’s a little more to all of these definitions. Take a peek at leftover #3 in the appendix to
learn more about them.

Access modifiers change visibility
Let’s take a closer look at the access modifers and how they affect the scope of the various class
members. We’ll make two changes: the funnyThingIHave backing field will be protected, and
we’ll change the ScareLittleChildren() method so that it uses the funnyThingIHave field:

NOTE

Make these two changes to your own exercise solution. Then change the protected access modifier back to private and see what
errors you get.

➊ Here are two interfaces. IClown defines a clown who honks his horn and has a funny thing.
IScaryClown inherits from clown. A scary clown does everything a clown does, plus he has a
scary thing and scares little children. (These haven’t changed from earlier.)

interface IClown {
 string FunnyThingIHave { get; }
 void Honk();
}

interface IScaryClown : IClown {
 string ScaryThingIHave { get; }
 void ScareLittleChildren();
}

➋ The FunnyFunny class implements the IClown interface. We changed the funnyThingIHave
field to protected so that it can be accessed by any instance of a subclass of FunnyFunny.

➌ The ScaryScary class implements the IScaryClown interface. It also inherits from
FunnyFunny, and since FunnyFunny implements IClown, that means ScaryScary does, too. Take
a look at how the ScareLittleChildren() method accesses the funnyThingIHave backing field
— it can do that because we used the protected access modifier. If we’d made it private
instead, then this code wouldn’t compile.
Access Modifiers Up Close

➍ Here’s a Main() method that instantiates FunnyFunny and ScaryScary. Take a look at how it
uses as to downcast someFunnyClown to an IScaryClown reference.

We put in some extra steps to show you that you could upcast ScaryScary to FunnyFunny, and then downcast that to
IScaryClown. But all three of those lines could be collapsed into a single line. Can you figure out how?

THERE ARE NO DUMB QUESTIONS

Q: Q: Why would I want to use an interface instead of just writing all of the methods I need directly into my class?

A: A: You might end up with a lot of different classes as you write more and more complex programs. Interfaces let you group those classes by the kind of
work they do. They help you be sure that every class that’s going to do a certain kind of work does it using the same methods. The class can do the
work however it needs to, and because of the interface, you don’t need to worry about how it does it to get the job done.
Here’s an example: you can have a Truck class and a Sailboat class that implement ICarryPassenger. Say the ICarryPassenger interface stipulates that any
class that implements it has to have a ConsumeEnergy() method. Your program could use them both to carry passengers even though the Sailboat class’s
ConsumeEnergy() method uses wind power and the Truck class’s method uses diesel fuel.
Imagine if you didn’t have the ICarryPassenger interface. Then it would be tough to tell your program which vehicles could carry people and which
couldn’t. You would have to look through each class that your program might use and figure out whether or not there was a method for carrying people
from one place to another. Then you’d have to call each of the vehicles your program was going to use with whatever method was defined for carrying
passengers. And since there’s no standard interface, they could be named all sorts of things or buried inside other methods. You can see how that’ll get
confusing pretty fast.

Q: Q: Why do I need to use a property? Can’t I just include a field?

A: A: Good question. An interface only defines the way a class should do a specific kind of job. It’s not an object by itself, so you can’t instantiate it and
it can’t store information. If you added a field that was just a variable declaration, then C# would have to store that data somewhere — and an interface
can’t store data by itself. A property is a way to make something that looks like a field to other objects, but since it’s really a method, it doesn’t
actually store any data.

Q: Q: What’s the difference between a regular object reference and an interface reference?

A: A: You already know how a regular, everyday object reference works. If you create an instance of Skateboard called vertBoard, and then a new reference
to it called halfPipeBoard, they both point to the same thing. But if Skateboard implements the interface IStreetTricks and you create an interface
reference to Skateboard called streetBoard, it will only know the methods in the Skateboard class that are also in the IStreetTricks interface.
All three references are actually pointing to the same object. If you call the object using the halfPipeBoard or vertBoard references, you’ll be able to
access any method or property in the object. If you call it using the streetBoard reference, you’ll only have access to the methods and properties in the
interface.

Q: Q: Then why would I ever want to use an interface reference, if it limits what I can do with the object?

A: A: Interface references give you a way of working with a bunch of different kinds of objects that do the same thing. You can create an array using the
interface reference type that will let you pass information to and from the methods in ICarryPassenger whether you’re working with a truck object, a
horse object, a unicycle object, or a car object. The way each of those objects does the job is probably a little different, but with interface references,
you know that they all have the same methods that take the same parameters and have the same return types. So, you can call them and pass
information to them in exactly the same way.

Q: Q: Why would I make something protected instead of private or public?

A: A: Because it helps you encapsulate your classes better. There are a lot of times that a subclass needs access to some internal part of its base class. For
example, if you need to override a property, it’s pretty common to use the backing field in the base class in the get accessor, so that it returns some sort
of variation of it. But when you build classes, you should only make something public if you have a reason to do it. Using the protected access modifier
lets you expose it only to the subclass that needs it, and keep it private from everyone else.

Interface references only know about the methods and properties that are defined in the interface.

Some classes should never be instantiated
Remember our zoo simulator class hierarchy? You’ll definitely end up instantiating a bunch of hippos,
dogs, and lions. But what about the Canine and Feline classes? How about the Animal class? It
turns out that there are some classes that just don’t need to be instantiated...and, in fact, don’t make
any sense if they are. Here’s an example.
Let’s start with a basic class for a student shopping at the student bookstore.

class Shopper {
 public void ShopTillYouDrop() {
 while (TotalSpent < CreditLimit)
 BuyFavoriteStuff();
 }
 public virtual void BuyFavoriteStuff () {
 // No implementation here - we don't know
 // what our student likes to buy!
 }
}

Here’s the ArtStudent class — it subclasses Shopper:
class ArtStudent : Shopper {
 public override void BuyFavoriteStuff () {
 BuyArtSupplies();
 BuyBlackTurtlenecks();
 BuyDepressingMusic();
 }
}

And the EngineeringStudent class also inherits from Shopper:

class EngineeringStudent : Shopper {
 public override void BuyFavoriteStuff () {
 BuyPencils();
 BuyGraphingCalculator();
 BuyPocketProtector();
 }
}

So what happens when you instantiate Shopper? Does it ever make sense to do it?

An abstract class is like a cross between a class and an interface
Suppose you need something like an interface, that requires classes to implement certain methods and
properties. But you need to include some code in that interface, so that certain methods don’t have to
be implemented in each inheriting class. What you want is an abstract class. You get the features of
an interface, but you can write code in it like a normal class.

AN ABSTRACT CLASS IS LIKE A NORMAL CLASS.
You define an abstract class just like a normal one. It has fields and methods, and you can inherit
from other classes, too, exactly like with a normal class. There’s almost nothing new to learn here,
because you already know everything that an abstract class does!
AN ABSTRACT CLASS IS LIKE AN INTERFACE.
When you create a class that implements an interface, you agree to implement all of the properties
and methods defined in that interface. An abstract class works the same way — it can include
declarations of properties and methods that, just like in an interface, must be implemented by
inheriting classes.

NOTE

A method that has a declaration but no statements or method body is called an abstract method. Inheriting classes must
implement all abstract methods, just like when they inherit from an interface.

Only abstract classes can have abstract methods. If you put an abstract method into a class, then you’ll have to mark that class
abstract or it won’t compile. You’ll learn more about how to mark a class abstract in a minute.

But an abstract class can’t be instantiated.

NOTE

The opposite of abstract is concrete . A concrete method is one that has a body, and all the classes you’ve been working with so
far are concrete classes.

The biggest difference between an abstract class and a concrete class is that you can’t use new to
create an instance of an abstract class. If you do, C# will give you an error when you try to
compile your code.

Because you want to provide some code, but still require that subclasses fill in the rest of the
code.
Sometimes bad things happen when you create objects that should never be created. The class at the
top of your class diagram usually has some fields that it expects its subclasses to set. An Animal
class may have a calculation that depends on a Boolean called HasTail or Vertebrate, but there’s
no way for it to set that itself.
Here’s an example...

Like we said, some classes should never be instantiated
The problems all start when you create an instance of the PlanetMission class. Its FuelNeeded()
method expects the fields to be set by the subclass. But when they aren’t, they get their default values
— zero. And when C# tries to divide a number by zero...

Solution: use an abstract class
When you mark a class abstract, C# won’t let you write code to instantiate it. It’s a lot like an
interface — it acts like a template for the classes that inherit from it.

B RAIN POWER

Flip back to the solution to Kathleen’s party planning program in the previous chapter, and take another look at the class hierarchy.
Would it ever make sense to instantiate Party, or would it make more sense to mark it as abstract to prevent that?

An abstract method doesn’t have a body
You know how an interface only has declarations for methods and properties, but it doesn’t actually
have any method bodies? That’s because every method in an interface is an abstract method. So let’s
implement it! Once we do, the error will go away. Any time you extend an abstract class, you need to
make sure that you override all of its abstract methods. Luckily, the IDE makes this job easier. Just
type “public override” — as soon as you press space, the IDE will display a drop-down box with a
list of any methods that you can override. Select the SetMissionInfo() method and fill it in:
Every method in an interface is automatically abstract, so you don’t need to use the abstract
keyword in an interface, just in an abstract class. Abstract classes can have abstract methods,
but they can have concrete methods too.

If we add that method in and try to build the program, the IDE gives us an error:

So let’s implement it! Once we do, the error will go away.

The Mars class looks just like Venus, except with different numbers. What do you think about
this class hierarchy? Does it really make sense to make SetMissionInfo() abstract? Should it
be a concrete method in the PlanetMission class instead?

SHARPEN YOUR PENCIL

Here’s your chance to demonstrate your artistic abilities. On the left you’ll find sets of class and interface declarations. Your job is to
draw the associated class diagrams on the right. We did the first one for you. Don’t forget to use a dashed line for implementing an
interface and a solid line for inheriting from a class.

On the left you’ll find sets of class diagrams. Your job is to turn these into valid C# declarations. We did number 1 for you.

KEY

extends

implements

class

interface

abstract class

FIRESIDE CHATS

Tonight’s talk: An abstract class and an interface butt heads over the pressing question, “Who’s more important?”

Abstract Class Interface

I think it’s obvious who’s more important between the
two of us. Programmers need me to get their jobs done.
Let’s face it. You don’t even come close.

 Nice. This oughta be good.

You can’t really think you’re more important than me.
You don’t even use real inheritance — you only get
implemented.

 Great, here we go again. Interfaces don’t use real inheritance. Interfaces
only implement. That’s just plain ignorant. Implementation is as good as
inheritance. In fact, it’s better!

Better? You’re nuts. I’m much more flexible than you. I
can have abstract methods or concrete ones. I can even
have virtual methods if I want. Sure, I can’t be
instantiated — but then, neither can you. And I can do
pretty much anything else a regular class does.

 Yeah? What if you want a class that inherits from you and your buddy?
You can’t inherit from two classes. You have to choose which class to
inherit from. And that’s just plain rude! There’s no limit to the number of
interfaces a class can implement. Talk about flexible! With me, a
programmer can make a class do anything.

You might be overstating your power a little bit.

 You think that just because you can contain code, you’re the greatest
thing since sliced bread. But you can’t change the fact that a program
can only inherit from one class at a time. So you’re a little limited. Sure, I
can’t include any code. But really, code is overrated.

That’s exactly the kind of drivel I’d expect from an
interface. Code is extremely important! It’s what makes
your programs run.

 Nine times out of ten, a programmer wants to make sure an object has
certain properties and methods, but doesn’t really care how they’re
implemented.

Really? I doubt that — programmers always care
what’s in their properties and methods.

 OK, sure. Eventually. But think about how many times you’ve seen a
programmer write a method that takes an object that just needs to have a
certain method, and it doesn’t really matter right at that very moment
exactly how the method’s built. Just that it’s there. So bang! The
programmer just needs to write an interface. Problem solved!

Yeah, sure, tell a coder he can’t code.

 Whatever!

SHARPEN YOUR PENCIL SOLUTION

It’s not a limitation, it’s a protection.
If C# let you inherit from more than one base class, it would open up a whole can of worms. When a
language lets one subclass inherit from two base classes, it’s called multiple inheritance. And by
giving you interfaces instead, C# saves you from a big fat mess that we like to call...

The Deadly Diamond of Death!

Avoid ambiguity!
A language that allows the Deadly Diamond of Death can lead to some pretty ugly situations, because
you need special rules to deal with this kind of ambiguous situation...which means extra work for you
when you’re building your program! C# protects you from having to deal with this by giving you
interfaces. If Television and MovieTheater are interfaces instead of classes, then the same
ShowAMovie() method can satisfy both of them. All the interface cares about is that there’s some
method called ShowAMovie().

POOL PUZZLE

Your job is to take code snippets from the pool and place them into the blank lines in the code and output. You may use the same
snippet more than once, and you won’t need to use all the snippets. Your goal is to make a set of classes that will compile and run and
produce the output listed.

Note: each snippet from the pool can be used more than once!

 Answers in Pool Puzzle Solution from Pool Puzzle.

You’re an object-oriented programmer.
There’s a name for what you’ve been doing. It’s called object-oriented programming, or OOP.
Before languages like C# came along, people didn’t use objects and methods when writing their code.
They just used functions (which is what they call methods in a non-OOP program) that were all in one
place — as if each program were just one big static class that only had static methods. It made it a lot
harder to create programs that modeled the problems they were solving. Luckily, you’ll never have to
write programs without OOP, because it’s a core part of C#.

NOTE

The idea that you could combine your data and your code into classes and objects was a revolutionary one when it was first
introduced — but that’s how you’ve been building all your C# programs so far, so you can think of it as just plain programming.

The four principles of object-oriented programming
When programmers talk about OOP, they’re referring to four important principles. They should seem
very familiar to you by now because you’ve been working with every one of them. You’ll recognize
the first three principles just from their names: inheritance, abstraction, and encapsulation. The last
one’s called polymorphism. It sounds a little odd, but it turns out that you already know all about it
too.

Polymorphism means that one object can take many different forms
Any time you use a mockingbird in place of an animal or aged Vermont cheddar in a recipe that just
calls for cheese, you’re using polymorphism. That’s what you’re doing any time you upcast or
downcast. It’s taking an object and using it in a method or a statement that expects something else.

You’re using polymorphism when you take an instance of one class and use it in a statement or a method that expects a
different type, like a parent class or an interface that the class implements.

Keep your eyes open for polymorphism in the next exercise!
You’re about to do a really big exercise — the biggest one you’ve seen so far — and you’ll be using a
lot of polymorphism in it, so keep your eyes open. Here’s a list of four typical ways that you’ll use
polymorphism. We gave you an example of each of them (you won’t see these particular lines in the
exercise, though). As soon as you see similar code in what you write for the exercise, check it off
the following list:

Taking any reference variable that uses one class and setting it equal to an instance of a different class.

NectarStinger bertha = new NectarStinger();
INectarCollector gatherer = bertha;

Upcasting by using a subclass in a statement or method that expects its base class.

Creating a reference variable whose type is an interface and pointing it to an object that implements that interface.

Downcasting using the as keyword.

LONG EXERCISE

Let’s build a house! Create a model of a house using classes to represent the rooms and locations, and an interface for any place
that has a door.

➊ Start with this class model.
Every room or location in your house will be represented by its own object. The interior rooms all inherit from Room, and the
outside places inherit from Outside, and both subclass the same base class, Location. The Name property is the name of the
location (“Kitchen”). The Exits field is an array of Location objects that the current location connects to. So diningRoom.Name
will be equal to "Dining Room", and diningRoom.Exits will be equal to the array { LivingRoom, Kitchen }.

Create a Windows Forms Application project and add Location, Room, and Outside classes to it.

➋ You’ll need the blueprint for the house.
This house has three rooms, a front yard, a back yard, and a garden. There are two doors: the front door connects the living room
to the front yard, and the back door connects the kitchen to the back yard.

➌ Use the IHasExteriorDoor interface for rooms with an exterior door.
There are two exterior doors in the house, the front door and the back door. Every location that has one (the front yard, back
yard, living room, and kitchen) should implement IHasExteriorDoor. The DoorDescription read-only property contains a
description of the door (the front door is “an oak door with a brass knob,” and the back door is “a screen door”). The
DoorLocation property contains a reference to the Location where the door leads (kitchen).

➍ Here’s the Location class.
To get you started, here’s the Location class:

➎ Create the classes.
First create the Room and Outside classes based on the class model. Then create two more classes: OutsideWithDoor, which
inherits from Outside and implements IHasExteriorDoor, and RoomWithDoor, which subclasses Room and implements
IHasExteriorDoor.
Here are the class declarations to give you a leg up:

This one’s going to be a pretty big exercise...but we promise it’s a lot of fun! And you’ll definitely know this stuff
once you get through it.

 We’re not done yet — flip the page!
Now that you’ve got the class model, you can create the objects for all of the parts of the house, and add a form to explore it.
➏ Here’s how your house objects work.
Here’s the architecture for two of your objects, frontYard and livingRoom. Since each of them has a door, they both need to be
instances of a class that implements IHasExteriorDoor. The DoorLocation property keeps a reference to the location on the
other side of the door.

➐ Finish building the classes, and instantiate their instances.
You’ve got all the classes — now it’s time to finish them and build your objects.

You’ll need to make sure that the constructor for the Outside class sets the private hot fieldand overrides the Description
property to add the text “It’s very hot here.” if hot is true. It’s hot in the back yard, but not the front yard or garden.
The constructor for Room needs to set the Decoration, and should override the Description property to add, “You see (the
decoration).” The living room has an antique carpet, the dining room has a crystal chandelier, and the kitchen has stainless steel
appliances and a screen door that leads to the back yard.
Your form needs to create each of the objects and keep a reference to each one. So add a method to the form called
CreateObjects() and call it from the form’s constructor.

NOTE

— Every location will have its own field in the form class.

Instantiate each of the objects for the six locations in the house. Here’s one of those lines:

RoomWithDoor livingRoom = new RoomWithDoor("Living Room",
 "an antique carpet" , "an oak door with a brass knob");

Your CreateObjects() method needs to populate the Exits[] field in each object:

➑ Build a form to explore the house.
Build a simple form to let you explore the house. It’ll have a big multiline text box called description to show the description of
the current room. A ComboBox called exits lists all of the exits in the current room. It’s got two buttons: goHere moves to the
room selected in the ComboBox, and goThroughTheDoor is only visible when there’s an exterior door.

➒ Make the form work!
You’ve got all the pieces; now you just need to put them together.

You’ll need a field in your form called currentLocation to keep track of your current location.
Add a MoveToANewLocation() method that has a Location as its parameter. This method should first set currentLocation to the
new location. Then it’ll clear the combo box using its Items.Clear() method, and then add the name of each location in the
Exits[] array using the combo box’s Items.Add() method. Finally, reset the combo box so it displays the first item in the list by
setting its SelectedIndex property to zero.

NOTE

— Here’s where you’ll set up what populates the ComboBox.

Set the text box so that it has the description of the current location.
Use the is keyword to check if the current location has a door. If it does, make the “Go through the door” button visible using its
Visible property. If not, make it invisible.
If the “Go here:” button is clicked, move to the location selected in the combo box.

NOTE

— Hint: when you choose an item in the combo box, its selected index in the combo box will be
the same as the index of the corresponding location in the Exits[] array.

If the “Go through the door” button is clicked, move to the location that the door connects to.

NOTE

— Another hint: your form’s currentLocation field is a Location reference. So even though it’s
pointing to an object that implements IHasExteriorDoor, you can’t just type
“currentLocation.DoorLocation” because DoorLocation isn’t a field in Location. You’ll need to
downcast if you want to get the door location out of the object.

LONG EXERCISE SOLUTION

Here’s the code to model the house. We used classes to represent the rooms and locations, and an interface for any place that has a
door.

Did you use backing fields instead of automatic properties? That’s a perfectly valid solution, too.

 We’re not done yet — flip the page!

Here’s the code for the form. It’s all in the Form1.cs file, inside the Form1 declaration.

But we’re not done yet!

It’s fine to create a model of a house, but wouldn’t it be cool to turn it into a game? Let’s do it! You’ll play Hide and Seek against the
computer. We’ll need to add an Opponent class and have him hide in a room. And we’ll need to make the house a lot bigger. Oh, and
he’ll need someplace to hide! We’ll add a new interface so that some rooms can have a hiding place. Finally, we’ll update the form to
let you check the hiding places, and keep track of how many moves you’ve made trying to find your opponent. Sound fun? Definitely!

 Let’s get started!

Here’s the biggest challenge we’ve given you so far. Read the instructions carefully! It’s not
cheating to peek at the solution.

EXERCISE

Time for hide and seek! Build on your original house program to add more rooms, hiding places, and an opponent who hides from
you.

NOTE

Create a new project, and use the IDE’s Add Existing Item feature to add the classes from the first
part of the exercise.

➊ Add an IHidingPlace interface.
We don’t need to do anything fancy here. Any Location subclass that implements IHidingPlace has a place for the opponent to

hide. It just needs a string to store the name of the hiding place (“in the closet”, “under the bed”, etc.). Give it a get accessor, but
no set accessor — we’ll set this in the constructor, since once a room has a hiding place we won’t ever need to change it.

We didn’t give you a class diagram this time, so you should grab a piece of paper and draw it yourself. That will help
you understand the program you need to build.

➋ Add classes that implement IHidingPlace.
You’ll need two more classes: OutsideWithHidingPlace (which inherits from Outside) and RoomWithHidingPlace (which
inherits from Room). Also, let’s make any room with a door have a hiding place, so it’ll have to inherit from RoomWithHidingPlace
instead of Room.

NOTE

So every room with an exterior door will also have a hiding place: the kitchen has a cabinet, and
the living room has a closet.

➌ Add a class for your opponent.
The Opponent object will find a random hiding place in the house, and it’s your job to find him.

He’ll need a private Location field (myLocation) so he can keep track of where he is, and a private Random field (random) to use
when he moves to a random hiding place.
The constructor takes the starting location and sets myLocation to it, and sets random to a new instance of Random. He starts in
the front yard (that’ll be passed in by the form), and moves from hiding place to hiding place randomly. He moves 10 times when
the game starts. When he encounters an exterior door, he flips a coin to figure out whether or not to go through it.
Add a Move() method that moves the opponent from his current location to a new location. First, if he’s in a room with a door,
then he flips a coin to decide whether or not to go through the door, so if random.Next(2) is equal to 1, he goes through it. Then
he chooses one of the exits from his current location at random and goes through it. If that location doesn’t have a hiding place,
then he’ll do it again — he’ll choose a random exit from his current location and go there, and he’ll keep doing it over and over
until he finds a place to hide.
Add a Check() method that takes a location as a parameter and returns true if he’s hiding in that location, or false otherwise.

➍ Add more rooms to the house.
Update your CreateObjects() method to add more rooms:

Add stairs with a wooden bannister that connect the living room to the upstairs hallway, which has a picture of a dog and a
closet to hide in.
The upstairs hallway connects to three rooms: a master bedroom with a large bed, a second bedroom with a small bed, and a
bathroom with a sink and a toilet. Someone could hide under the bed in either bedroom or in the shower.
The front yard and back yard both connect to the driveway, where someone could hide in the garage. Also, someone could hide
in the shed in the garden.

Don’t forget that there are many ways to solve any programming problem. If your solution is different than ours but it
works, that’s great!
➎ OK, it’s time to update the form.
You’ll need to add a few buttons to the form. And we’ll get a little more intricate with making them visible or invisible, depending
on the state of the game.

➏ Make the buttons work.
There are two new buttons to add to the form.

The middle button checks the hiding place in the current room and is only visible when you’re in a room with a place to hide using
the opponent’s Check() method. If you found him, then it resets the game.
The bottom button is how you start the game. It counts to 10 by showing “1...”, waiting 200 milliseconds, then showing “2...”, then
“3...”, etc., in the text box. After each number, it tells the opponent to move by calling his Move() method. Then it shows, “Ready
or not, here I come!” for half a second, and then the game starts.

NOTE

— Flip back to Chapter 2 for a refresher on DoEvents() and Sleep() — they’ll come in handy.

➐ Add a method to redraw the form, and another one to reset the game.
Add a RedrawForm() method that puts the right text in the description text box, makes the buttons visible or invisible, and puts the
correct label on the middle button. Then add a ResetGame() method that’s run when you find your opponent. It resets the
opponent object so that he starts in the front yard again — he’ll hide when you click the “Hide!” button. It should leave the form
with nothing but the text box and “Hide!” button visible. The text box should say where you found the opponent, and how many
moves it took.
➑ Keep track of how many moves the player made.
Make sure the text box displays the number of times you checked a hiding place or moved between rooms. When you find the
opponent, he should pop up a message box that says, “You found me in X moves!”
➒ Make it look right when you start the program.
When you first start the program, all you should see is an empty text box and the “Hide!” button. When you click the button, the
fun begins!

EXERCISE SOLUTION

Build on your original house program to add more rooms, hiding places, and an opponent who hides from you.

You’ll also need the OutsideWithDoor class, which is identical to the version from the “Explore the House” program.

 We’re not done yet — flip the page!

Here’s all the code for the form. The only things that stay the same are the goHere_Click() and goThroughTheDoor_Click()
methods.

 We’re still not done — flip the page!

OOPCROSS

Across Down

3. What an abstract method doesn’t have

4. C# doesn’t allow _____________ inheritance

6. When you subclass to a method that expects its base class,
you’re using this OOP principle

8. The OOP principle where you hide private data and only
expose those methods and fields that other classes need access
to

10. One of the four principles of OOP that you implement using
the colon operator

14. Every method in an interface is automatically

15. If your class implements an interface that __________
from another interface, then you need to implement all of its
members, too

17. An access modifier that’s not valid for anything inside an
interface

18. Object __________ Programming means creating
programs that combine your data and code together into classes
and objects

1. When you move common methods from specific classes to a
more general class that they all inherit from, you’re using this OOP
principle

2. If a class that implements an interface doesn’t implement all of
its methods, getters, and setters, then the project won’t

5. Everything in an interface is automatically ___________

7. An abstract class can include both abstract and
____________ methods

9. You can’t ____________ an abstract class

11. A class that implements this must include all of the methods,
getters, and setters that it defines

12. What you do with an interface

13. The is keyword returns true if an __________ implements an
interface

16. An interface can’t technically include a __________, but it
can define getters and setters that look just like one from the
outside

POOL PUZZLE SOLUTION FROM POOL PUZZLE

Your job is to take code snippets from the pool and place them into the blank lines in the code and output. You may use the same
snippet more than once, and you won’t need to use all the snippets. Your goal is to make a set of classes that will compile and run and
produce the output listed.

OOPCROSS SOLUTION

Chapter 8. Enums and Collections: Storing lots
of data

When it rains, it pours.
In the real world, you don’t get to handle your data in tiny little bits and pieces. No, your data’s going
to come at you in loads, piles, and bunches. You’ll need some pretty powerful tools to organize all of
it, and that’s where collections come in. They let you store, sort, and manage all the data that your
programs need to pore through. That way, you can think about writing programs to work with your
data, and let the collections worry about keeping track of it for you.

Strings don’t always work for storing categories of data
Suppose you have several worker bees, all represented by Worker classes. How would you write a
constructor that took a job as a parameter? If you use a string for the job name, you might end up with
code that looks like this:

You could probably add code to the Worker constructor to check each string and make sure it’s a
valid bee job. However, if you add new jobs that bees can do, you’ve got to change this code and
recompile the Worker class. That’s a pretty short-sighted solution. What if you have other classes that
need to check for the types of worker bees they can be? Now you’ve got to duplicate code, and that’s
a bad path to go down.
What we need is a way to say, “Hey, there are only certain values that are allowed here.” We need to
enumerate the values that are OK to use.

Enums let you work with a set of valid values
An enum is a data type that only allows certain values for that piece of data. So we could define an
enum called Job, and define the allowed jobs:

Now, you can reference these with types like this:

But you can’t just make up a new value for the enum! If you do, the program won’t compile.
private void button1_Click(object sender EventArgs e)
{
 Worker buzz = new Worker(Job.AttorneyGeneral);
}

Enums let you represent numbers with names
Sometimes it’s easier to work with numbers if you have names for them. You can assign numbers to
the values in an enum and use the names to refer to them. That way, you don’t have a bunch of
unexplained numbers floating around in your code. Here’s an enum to keep track of the scores for
tricks at a dog competition:

You can cast an int to an enum, and you can cast an (int-based) enum back to an int.

NOTE

Some enums use a different type, like byte or long — like the one at the bottom of this page — and you can cast those back to their
type.

Here’s an excerpt from a method that uses the TrickScore enum by casting it to and from an int.

You can cast the enum as a number and do calculations with it, or you can use the ToString()
method to treat the name as a string. If you don’t assign any number to a name, the items in the list will
be given values by default. The first item will be assigned a 0 value, the second a 1, etc.
But what happens if you want to use really big numbers for one of the enumerators? The default type
for the numbers in an enum is int, so you’ll need to specify the type you need using the : operator,
like this:

Use what you’ve learned about enums to build a class that holds a playing card.

EXERCISE

➊ CREATE A NEW PROJECT AND ADD A CARD CLASS.
You’ll need two public properties: Suit (which will be Spades, Clubs, Diamonds, or Hearts) and Value (Ace, Two, Three...Ten,
Jack, Queen, King). And you’ll need a read-only property, Name (Ace of Spades, Five of Diamonds).
➋ USE TWO ENUMS TO DEFINE THE SUITS AND VALUES.
Use the familiar Add→Class feature in the IDE to add them, replacing the word class with enum in the newly added files. Make
sure that (int)Suits.Spades is equal to 0, followed by Clubs (equal to 1), Diamonds (2), and Hearts (3). Make the values equal
to their face values: (int)Values.Ace should equal 1, Two should be 2, Three should be 3, etc. Jack should equal 11, Queen should
be 12, and King should be 13.
➌ ADD A PROPERTY FOR THE NAME OF THE CARD.
Name should be a read-only property. The get accessor should return a string that describes the card. This code will run in a form
that calls the Name property from the card class and displays it:

The value of cardName should be Ace of Spades.
➍ ADD A FORM BUTTON THAT POPS UP THE NAME OF A RANDOM CARD.
You can get your program to create a card with a random suit and value by casting a random number between 0 and 3 as a Suits
and another random number between 1 and 13 as a Values. To do this, you can take advantage of a feature of the built-in Random
class that gives it three different ways to call its Next() method:

THERE ARE NO DUMB QUESTIONS

Q: Q: Hold on a second. When I was typing in that code, I noticed that an IntelliSense window popped up that said something about “3 of 3”
when I used that Random.Next() method. What was that about?

A: A: What you saw was a method that was overloaded. When a class has a method that you can call more than one way, it’s called overloading. When
you’re using a class with an overloaded method, the IDE lets you know all of the options that you have. In this case, the Random class has three possible
Next() methods. As soon as you type “random.Next(” into the code window, the IDE pops up its IntelliSense box that shows the parameters for the
different overloaded methods. The up and down arrows next to the “3 of 3” let you scroll between them. That’s really useful when you’re dealing with
a method that has dozens of overloaded definitions. So when you’re doing it, make sure you choose the right overloaded Next() method! But don’t
worry too much now — we’ll talk a lot about overloading later on in the chapter.

EXERCISE SOLUTION

A deck of cards is a great example of where limiting values is important. Nobody wants to turn over their cards and be faced with a
Joker of Clubs, or a 13 of Hearts. Here’s how we wrote the Card class.

We could use an array to create a deck of cards...
What if you want to create a class to represent a deck of cards? It would need a way to keep track of
every card in the deck, and it’d need to know what order they were in. A Card array would do the
trick — the top card in the deck would be at value 0, the next card at value 1, etc. Here’s a starting
point — a Deck that starts out with a full deck of 52 cards.

...but what if you wanted to do more?
Think of everything you might need to do with a deck of cards, though. If you’re playing a card game,
you routinely need to change the order of the cards, and add and remove cards from the deck. You just
can’t do that with an array very easily.

B RAIN POWER

How would you add a Shuffle() method to the Deck class that rearranges the cards in random order? What about a method to deal
the first card off the top of the deck? How would you add a card to the deck?

Arrays are hard to work with
An array is fine for storing a fixed list of values or references. But once you need to move array
elements around, or add more elements than the array can hold, things start to get a little sticky.

➊ Every array has a length, and you need to know the length to work with it. You could use null
references to keep some array elements empty:

➋ You’d need to keep track of how many cards are being held. So you’d need an int field, which
we could call topCard, that would hold the index of the last card in the array. So our three-card
array would have a Length of 7, but we’d set topCard equal to 3.

➌ But now things get complicated. It’s easy enough to add a Peek() method that just returns a
reference to the top card — so you can peek at the top of the deck. But what if you want to add a
card? If topCard is less than the array’s Length, you can just put your card in the array at that
index and add 1 to topCard. But if the array’s full, you’ll need to create a new, bigger array and
copy the existing cards to it. Removing a card is easy enough — but after you subtract 1 from
topCard, you’ll need to make sure to set the removed card’s array index back to null. And what if
you need to remove a card from the middle of the list? If you remove card 4, you’ll need to move
card 5 back to replace it, and then move 6 back, then 7 back...wow, what a mess!

NOTE

There’s actually an Array.Resize() method built into the .NET Framework that does exactly that.

Lists make it easy to store collections of...anything
The .NET Framework has a bunch of collection classes that handle all of those nasty issues that come
up when you add and remove array elements. The most common sort of collection is a List<T>. Once
you create a List<T> object, it’s easy to add an item, remove an item from any location in the list,
peek at an item, and even move an item from one place in the list to another. Here’s how a list works:

Black First you create a new instance of List<T>.
Every array has a type — you don’t just have an array, you have an int array, a Card array, etc.
Lists are the same way. You need to specify the type of object or value that the list will hold by
putting it in angle brackets <> when you use the new keyword to create it.

List<Card> cards = new List<Card>();

--------- Now you can add to your List<T>.
Once you’ve got a List<T> object, you can add as many items to it as you want (as long as they’re
polymorphic with whatever type you specified when you created your new List<T>).

cards.Add(new Card(Suits.Diamonds, Values.King));
cards.Add(new Card(Suits.Clubs, Values.Three));
cards.Add(new Card(Suits.Hearts, Values.Ace));

NOTE

Which means they’re assignable to the type: interfaces, abstract classes, base classes, etc.

RELAX

We’ll sometimes leave the <T> off because it can make the book a little hard to read. When you see List, think List<T>!

The <T> at the end of List<T> means it’s generic.

The T gets replaced with a type — so List<int> just means a List of ints. You’ll get plenty of practice with generics over the next
few pages.

Lists are more flexible than arrays
The List class is built into the .NET Framework, and it lets you do a lot of things with objects that
you can’t do with a plain old array. Check out some of the things you can do with a List<T>.

Black You can make one.
List<Egg> myCarton = new List<Egg>();

--------- Add something to it.
Egg x = new Egg();
myCarton.Add(x);

➊ Add something else to it.
Egg y = new Egg();
myCarton.Add(y);

➋ Find out how many things are in it.
int theSize = myCarton.Count;

➌ Find out if it has something in particular in it.

NOTE

Now you can search for any Egg inside the list. This would definitely come back true.

bool isIn = myCarton.Contains(x);

➍ Figure out where that thing is.

➎ Take something out of it.
myCarton.Remove(y);

SHARPEN YOUR PENCIL

Fill in the rest of the table below by looking at the List code on the left and putting in what you think the code might be if it were
using a regular array instead. We don’t expect you to get all of them exactly right, so just make your best guess.

SHARPEN YOUR PENCIL SOLUTION

Your job was to fill in the rest of the table by looking at the List code on the left and putting in what you think the code might be if it
were using a regular array instead.

Lists shrink and grow dynamically
The great thing about a List is that you don’t need to know how long it’ll be when you create it. A
List automatically grows and shrinks to fit its contents. Here’s an example of a few of the methods
that make working with Lists a lot easier than arrays. Create a new Console Application and add
this code to the Main() method. It won’t print anything — use the debugger to step through the code
and see what’s going on.

DO THIS!

foreach is a special kind of loop for Lists. It will execute a statement for each object in the List. This loop creates an
identifier called shoe. As the loop goes through the items, it sets shoe equal to the first item in the list, then the second,
then the third, until the loop is done.

foreach loops work on arrays, too! In fact, they work on any collection.

Generics can store any type
You’ve already seen that a List can store strings or Shoes. You could also make Lists of integers or
any other object you can create. That makes a List a generic collection. When you create a new
List object, you tie it to a specific type: you can have a List of ints, or strings, or Shoe objects. That
makes working with Lists easy — once you’ve created your list, you always know the type of data
that’s inside it.

The .NET Framework comes with some generic interfaces that let the collections you’re building
work with any and all types. The List class implement those interfaces, and that’s why you could
create a List of integers and work with it in pretty much the same way that you would work with a
List of Shoe objects.
Check it out for yourself. Type the word List into the IDE, and then right-click on it and select Go
To Definition. That will take you to the declaration for the List class. It implements a few interfaces:

B ULLET POINTS

List is a class in the .NET Framework.
A List resizes dynamically to whatever size is needed. It’s got a certain capacity — once you add enough data to the list, it’ll
grow to accommodate it.
To put something into a List, use Add(). To remove something from a List, use Remove().
You can remove objects using their index number using RemoveAt().
You declare the type of the List using a type argument, which is a type name in angle brackets. Example: List<Frog> means
the List will be able to hold only objects of type Frog.
To find out where something is (and if it is) in a List, use IndexOf().
To get the number of elements in a List, use the Count property.
You can use the Contains() method to find out if a particular object is in a List.
foreach is a special kind of loop that will iterate through all of the elements in a List and execute code on it. The syntax for a
foreach loop is foreach (string s in StringList). You don’t have to tell the foreach loop to increment by one; it will go through
the entire List all on its own.

WATCH IT!

You can’t modify a collection while you’re using foreach to iterate through it!

If you do, it will cause an error. Luckily, you can always make a copy of it. Every IEnumerable has a ToList() method that
you can use to make a copy of it to safely iterate through.

CODE MAGNETS

Can you reconstruct the code snippets to make a working Windows Form that will pop up the message box below when you click a
button?

CODE MAGNETS SOLUTION

Remember how we talked about using intuitive names back in Chapter 3? Well, that may make for good code, but it
makes these puzzles way too easy. Just don’t use cryptic names like printL() in real life!

THERE ARE NO DUMB QUESTIONS

Q: Q: So why would I ever use an enum instead of a List? Don’t they solve the same problem?

A: A: Enums are a little different than Lists. First and foremost, enums are types, while Lists are objects.
You can think of enums as a handy way to store lists of constants so you can refer to them by name. They’re great for keeping your code readable and
making sure that you are always using the right variable names to access values that you use really frequently.
A List can store just about anything. Since it’s a list of objects, each element in a list can have its own methods and properties. Enums, on the other
hand, have to be assigned one of the value types in C# (like the ones on the first page of Chapter 4). So you can’t store reference variables in them.
Enums can’t dynamically change their size either. They can’t implement interfaces or have methods, and you’ll have to cast them to another type to
store a value from an enum in another variable. Add all of that up and you’ve got some pretty big differences between the two ways of storing data. But
both are really useful in their own right.

Q: Q: OK, it sounds like Lists are pretty powerful. So why would I ever want to use an array?

A: A: If you know that you have a fixed number of items to work with, or if you want a fixed sequence of values with a fixed length, then an array is
perfect. Luckily, you can easily convert any list to an array using the ToArray() method...and you can convert an array to a list using one of the
overloaded constructors for the List<T> object.

NO TE

Arrays also take up less memory and CPU time for your programs, but that only accounts for a tiny performance
boost. If you have to do the same thing, say, millions of times a second, you might want to use an array and not a
list. But if your program is running slowly, it’s pretty unlikely that switching from lists to arrays will fix the
problem.

Q: Q: I don’t get the name “generic.” Why is it called a generic collection? Why isn’t an array generic?

A: A: A generic collection is a collection object (or a built-in object that lets you store and manage a bunch of other objects) that’s been set up to store only
one type (or more than one type, which you’ll see in a minute).

Q: Q: OK, that explains the “collection” part. But what makes it “generic”?

A: A: Supermarkets used to carry generic items that were packaged in big white packages with black type that just said the name of what was inside
(“Potato Chips,” “Cola,” “Soap,” etc.). The generic brand was all about what was inside the bag, and not about how it was displayed.
The same thing happens with generic data types. Your List<T> will work exactly the same with whatever happens to be inside it. A list of Shoe objects,
Card objects, ints, longs, or even other lists will still act at the container level. So you can always add, remove, insert, etc., no matter what’s inside the
list itself.

NO TE

The term “generic” refers to the fact that even though a specific instance of List can only store one specific type,
the List class in general works with any type.
That’s what the <T> stuff is all about. It’s the way that you tie a specific instance of a List to one type. But the
List class as a whole is generic enough to work with ANY type. That’s why generic collections are different from
anything you’ve seen so far.

Q: Q: Can I have a list that doesn’t have a type?

A: A: No. Every list — in fact, every generic collection (and you’ll learn about the other generic collections in just a minute) — must have a type connected
to it. C# does have nongeneric lists called ArrayLists that can store any kind of object. If you want to use an ArrayList, you need to include a using
System.Collections; line in your code. But you really shouldn’t ever need to do this, because a List<object> will work just fine!

When you create a new List object, you always supply a type — that tells C# what type of data it’ll store. A list can
store a value type (like int, bool, or decimal) or a class.

Collection initializers are similar to object initializers
C# gives you a nice bit of shorthand to cut down on typing when you need to create a list and
immediately add a bunch of items to it. When you create a new List object, you can use a collection
initializer to give it a starting list of items. It’ll add them as soon as the list is created.

A collection initializer makes your code more compact by letting you combine creating a list with adding an initial set of
items.

Let’s create a List of Ducks
DO THIS!

Here’s a Duck class that keeps track of your extensive duck collection. (You do collect ducks, don’t you?) Create a new Console
Application and add a new Duck class and KindOfDuck enum.

Here’s the initializer for your List of Ducks
We’ve got six ducks, so we’ll create a List<Duck> that has a collection initializer with six
statements. Each statement in the initializer creates a new duck, using an object initializer to set each
Duck object’s Size and Kind field. Add this code to your Main() method in Program.cs:

Lists are easy, but SORTING can be tricky
It’s not hard to think about ways to sort numbers or letters. But what do you sort two objects on,
especially if they have multiple fields? In some cases you might want to order objects by the value in
the name field, while in other cases it might make sense to order objects based on height or date of
birth. There are lots of ways you can order things, and lists support any of them.

Lists know how to sort themselves
Every list comes with a Sort() method that rearranges all of the items in the list to put them in order.
Lists already know how to sort most built-in types and classes, and it’s easy to teach them how to sort
your own classes.

NOTE

Technically, it’s not the List<T> that knows how to sort itself. It depends on an IComparer<T> object, which you’ll learn about in a
minute.

IComparable<Duck> helps your list sort its ducks
The List.Sort() method knows how to sort any type or class that implements the
IComparable<T> interface. That interface has just one member — a method called CompareTo().
Sort() uses an object’s CompareTo() method to compare it with other objects, and uses its return
value (an int) to determine which comes first.
But sometimes you need to sort a list of objects that don’t implement IComparable<T>, and .NET has
another interface to help with that. You can pass Sort() an instance of a class that implements
IComparer<T>. That interface also has one method. The List object’s Sort() method uses the
comparer object’s Compare() method to compare pairs of objects, in order to figure out which one
comes first in the sorted list.

You can make any class work with the List’s built-in Sort() method by having it implement IComparable<T> and adding
a CompareTo() method.

An object’s CompareTo() method compares it to another object
One way to give our List object the ability to sort is to modify the Duck class to implement
IComparable<Duck>. To do that, we’d add a CompareTo() method that takes a Duck reference as a
parameter. If the duck to compare should come after the current duck in the sorted list, CompareTo()
returns a positive number.
Update your project’s Duck class by implementing IComparable<Duck> so that it sorts itself based
on duck size:

Add this code to the end of your Main() method above the call to Console.ReadKey() to tell your
list of ducks to sort itself. Use the debugger to see this at work by putting a breakpoint in the
CompareTo() method.

ducks.Sort();

Use IComparer to tell your List how to sort
Lists have a special interface built into the .NET Framework that lets you build a separate class to
help the List<T> sort out its members. By implementing the IComparer<T> interface, you can tell
your List exactly how you want it to sort your objects. You do that by implementing the Compare()
method in the IComparer<T> interface. It takes two object parameters, x and y, and returns an int. If x
is less than y, it should return a negative value. If they’re equal, it should return zero. And if x is
greater than y, it should return a positive value.

Your List will sort differently depending on how you implement IComparer<T>.

Here’s an example of how you’d declare a comparer class to compare Duck objects by size. Add it to
your project as a new class:

Create an instance of your comparer object
When you want to sort using IComparer<T>, you need to create a new instance of the class that
implements it. That object exists for one reason — to help List.Sort() figure out how to sort the
array. But like any other (nonstatic) class, you need to instantiate it before you use it.

Multiple IComparer implementations, multiple ways to sort your
objects
You can create multiple IComparer<Duck> classes with different sorting logic to sort the ducks in
different ways. Then you can use the comparer you want when you need to sort in that particular way.
Here’s another duck comparer implementation to add to your project:

IComparer can do complex comparisons
If you don’t provide Sort() with an IComparer<T> object, it uses a default one that can sort value types or compare
references. Flip to Leftover #6 in the Appendix to learn a little more about comparing objects.

One advantage to creating a separate class for sorting your ducks is that you can build more complex
logic into that class — and you can add members that help determine how the list gets sorted.

EXERCISE

Create five random cards and then sort them.

➊ CREATE CODE TO MAKE A JUMBLED SET OF CARDS.
Create a new Console Application and add code to the Main() method that creates five random Card objects. After you create
each object, use the built-in Console.WriteLine() method to write its name to the output. Use Console.ReadKey() at the end of
the program to keep your window from disappearing when the program finishes.
➋ CREATE A CLASS THAT IMPLEMENTS ICOMPARER<CARD> TO SORT THE CARDS.
Here’s a good chance to use that IDE shortcut to implement an interface:

class CardComparer_byValue : IComparer<Card>

Then click on IComparer<Card> and hover over the I. You’ll see a box appear underneath it. When you click on the box, the IDE
pops up its “Implement interface” window:

NOTE

Sometimes it’s a little hard to get this box to pop up, so the IDE has a useful shortcut.: just press
Ctrl-period.

Click on “Implement interface IComparer<Card>” in the box to tell the IDE to automatically fill in all of the methods and
properties that you need to implement. In this case, it creates an empty Compare() method to compare two cards, x and y. Write
the method so that it returns 1 if x is bigger than y, –1 if it’s smaller, and 0 if they’re the same card. In this case, make sure that
any King comes after any Jack, which comes after any 4, which comes after any Ace.
➌ MAKE SURE THE OUTPUT LOOKS RIGHT.
Here’s what your output window should look like after you click the button.

EXERCISE SOLUTION

Create five random cards and then sort them.

Overriding a ToString() method lets an object describe itself
Every .NET object has a method called ToString() that converts it to a string. By default, it just
returns the name of your class (MyProject.Duck). The method is inherited from Object (remember,
that’s the base class for every object). This is a really useful method, and it’s used a lot. For example,
the + operator to concatenate strings automatically calls an object’s ToString() method. And
Console.WriteLine() or String.Format() will automatically call it when you pass objects to
them, which can really come in handy when you want to turn an object into a string.

NOTE

So instead of passing a value to Console.WriteLine(), String.Format(), etc., you can pass an object — its ToString() method is called
automatically. That also works with value types like ints and enums, too!

Go back to your duck sorting program. Put a breakpoint in the Main() method anywhere after the list
is initialized and debug your program. Then hover over any ducks variable so it shows the value in
a window. Any time you look at a variable in the debugger that’s got a reference to a List, you can
explore the contents of it by clicking the + button:

Hmm, that’s not as useful as we’d hoped. You can see that there are six Duck objects in the list
(“MyProject” is the namespace we used). If you click the + button next to a duck, you can see its Kind
and Size values. But wouldn’t it be easier if you could see all of them at once?
Luckily, ToString() is a virtual method on Object, the base class of every object. So all you need
to do is override the ToString() method — and when you do, you’ll see the results immediately in
the IDE’s Watch window! Open up your Duck class and start adding a new method by typing
override. As soon as you press space, the IDE will show you the methods you can override:

Click on ToString() to tell the IDE to add a new ToString() method. Replace the contents so it
looks like this:

public override string ToString()
{
 return "A " + Size + " inch " + Kind.ToString();
}

Run your program and look at the list again. Now the IDE shows you the contents of your Duck
objects!

Update your foreach loops to let your Ducks and Cards print
themselves
You’ve seen two different examples of programs looping through a list of objects and calling
Console.WriteLine() to print a line to the console for each object — like this foreach loop that
prints every card in a List<Card>:

foreach (Card card in cards)
{
 Console.WriteLine(card.Name);
}

The PrintDucks() method did something similar for Duck objects in a List:

This is a pretty common thing to do with objects. But now that your Duck has a ToString() method,
your PrintDucks() method should take advantage of it:

Add this to your Ducks program and run it again. It prints the same output. And now if you want to
add, say, a Gender property to your Duck object, you just have to update the ToString() method, and
everything that uses it (including the PrintDucks() method) will reflect that change.

Add a ToString() method to your Card object, too
Your Card object already has a Name property that returns the name of the card:

That’s exactly what its ToString() method should do. So add a ToString() method to the Card
class:

public override string ToString()
{
 return Name;
}

NOTE

ToString() is useful for a lot more than just making your objects easier to identify in the IDE. Keep your eyes open over the next few
chapters, and you’ll see how useful it is for every object to have a way to convert itself to a string. That’s why every object has a
ToString() method.

Now your programs that use Card objects will be easier to debug.

FOREACH LOOPS UP CLOSE

When you write a foreach loop, you’re using IEnumerable<T>

NOTE

Collection initializers work with ANY IEnumerable<T> class — as long as it also has a method
called Add().

Go to the IDE, find a List<Duck> variable, and use IntelliSense to take a look at its GetEnumerator() method. Start typing
“.GetEnumerator” and see what comes up:

Add a line to create a new array of Duck objects:

Duck[] duckArray = new Duck[6];

Then type duckArray.GetEnumerator — the array also has a GetEnumerator() method. That’s because all Lists, and arrays
implement an interface called IEnumerable<T>, which contains one method. That method, GetEnumerator(), returns an Enumerator
object.

It’s the Enumerator object that provides the machinery that lets you loop through a list in order. Here’s a foreach loop that loops
through a List<Duck> with a variable called duck:

foreach (Duck duck in ducks) {
 Console.WriteLine(duck);
}

And here’s what that loop is actually doing behind the scenes:

IEnumerator<Duck> enumerator = ducks.GetEnumerator();
while (enumerator.MoveNext()) {
 Duck duck = enumerator.Current;
 Console.WriteLine(duck);
}
IDisposable disposable = enumerator as IDisposable;
if (disposable != null) disposable.Dispose();

(Don’t worry about the last two lines for now. You’ll learn about IDisposable in Chapter 9.)

NOTE

Technically, there’s a little more than this, but you get the idea....

Those two loops print out the same ducks. You can see this for yourself by running both of them; they’ll both have the same output.

When a collection implements IEnumerable<T>, it’s giving you a way to write a loop that goes through its contents
in order.

Here’s what’s going on. When you’re looping through a list or array (or any other collection), the MoveNext() method returns true if
there’s another element in the list, or false if the enumerator has reached the end of the list. The Current property always returns a
reference to the current element. Add it all together, and you get a foreach loop!

What do you think would happen during a foreach loop if your ToString() method changes one of the object’s fields?

NOTE

Try experimenting with this by changing your Duck’s ToString() to increment the Size property.
Debug your program and hover over a Duck. Then do it again. Remember, each time you do it, the
IDE calls its ToString() method.

You can upcast an entire list using IEnumerable
Remember how you can upcast any object to its superclass? Well, when you’ve got a List of objects,
you can upcast the entire list at once. It’s called covariance, and all you need for it is an
IEnumerable<T> interface reference.
Create a Console Application and add a base class, Bird (for Duck to extend), and a Penguin class.
We’ll use the ToString() method to make it easy to see which class is which.

DO THIS!

Here are the first few lines of your Main() method to initialize your list and then upcast it.
List<Duck> ducks = new List<Duck>() { /* initialize your list as usual */ }
IEnumerable<Bird> upcastDucks = ducks;

Take a close look at that last line of code. You’re taking a reference to your List<Duck> and
assigning it to an IEnumerable<Bird> interface variable. Debug through it, and you’ll see it’s
pointing to the same object.

NOTE

Copy the same collection initializer you’ve been using to initialize your List of ducks.

Combine your birds into a single list
Covariance is really useful when you want to take a collection of objects and add them to a more
general list. Here’s an example: if you have a list of Bird obects, you can add your Duck collection to
it in one easy step. Here’s an example that uses the List.AddRange() method, which you can use to
add the contents of one list into another.

List<Bird> birds = new List<Bird>();

birds.Add(new Bird() { Name = "Feathers" });
birds.AddRange(ducks);
birds.Add(new Penguin() { Name = "George" });

foreach (Bird bird in birds) {
 Console.WriteLine(bird);
}

Next, change birds to a List<Object> variable — you’ll also need to change Bird to Object in the
List constructor and the foreach loop. Now you can any type of object to your list! See if you can
figure out how to get your program to match this screenshot.

You’ll need to add the Shoe class and Style enum from earlier in the chapter and override the
Shoe.ToString() method.

You can build your own overloaded methods
You’ve been using overloaded methods and even an overloaded constructor that were part of the
built-in .NET Framework classes and objects, so you can already see how useful they are. Wouldn’t it
be cool if you could build overloaded methods into your own classes? Well, you can — and it’s easy!
All you need to do is write two or more methods that have the same name but take different
parameters.

NOTE

You can also use a using statement instead of changing the namespace. If you want to learn more about namespaces, take a minute
and flip to Leftover #3 in the appendix.

DO THIS!

➊ Create a new Console Application project and add the Card class to it.
You can do this easily by right-clicking on the project in the Solution Explorer and selecting Existing Item from the Add menu. The
IDE will make a copy of the class and add it to the project. The file will still have the namespace from the old project, so go
to the top of the Card.cs file and change the namespace line to match the name of the new project you created. Then do the
same for the Values and Suits enums.

NOTE

If you don’t do this, you’ll only be able to access the Card class by specifying its namespace (like oldnamespace.Card).

➋ Add some new overloaded methods to the Card class.
Create two static DoesCardMatch() methods. The first one should check a card’s suit. The second should check its value. Both
return true only if the card matches.

public static bool DoesCardMatch(Card cardToCheck, Suits suit) {
 if (cardToCheck.Suit == suit) {
 return true;
 } else {
 return false;
 }
}
public static bool DoesCardMatch(Card cardToCheck, Values value) {
 if (cardToCheck.Value == value) {
 return true;
 } else {
 return false;
 }
}

NOTE

Overloaded methods don’t have to be static, but it’s good to get a little more practice writing static methods.

➌ Add code to Main() to use the new methods.
Add this code to the Main() method in Program.cs:

Card cardToCheck = new Card(Suits.Clubs, Values.Three);
bool doesItMatch = Card.DoesCardMatch(cardToCheck, Suits.Hearts);
Console.WriteLine(doesItMatch);

As soon as you type DoesCardMatch(the IDE will show you that you really did build an overloaded method:

Take a minute and play around with the two methods so you can get used to overloading.

EXERCISE

Get some practice using Lists by building a class to store a deck of cards, along with a form that uses it.

➊ BUILD A FORM THAT LETS YOU MOVE CARDS BETWEEN TWO DECKS.
You’ve built a Card class already. Now it’s time to build a class to hold any number of cards, which we’ll call Deck. A real-life
deck has 52 cards, but the Deck class can hold any number of cards — or no cards at all.
Then you’ll build a form that shows you the contents of two Deck objects. When you first start the program, deck #1 has up to 10
random cards, and deck #2 is a complete deck of 52 cards, both sorted by suit and then value — and you can reset either deck to

its initial state using two Reset buttons. The form also has buttons (labeled “<<” and “>>”) to move cards between the decks.

Remember, you can use a control’s Name property to give it a name to make your code easier to read. Then when you
double-click on the button, its event handler is given a matching name.
In addition to the event handlers for the six buttons, you’ll need to add two methods for the form. First add a ResetDeck()
method, which resets a deck to its initial state. It takes an int as a parameter: if it’s passed 1, it resets the first Deck object by
reinitializing it to an empty deck and a random number of up to 10 random cards; if it’s passed 2, it resets the second Deck object
so that it contains a full 52-card deck. Then add this method:

➋ BUILD THE DECK CLASS.
Here’s the skeleton for the Deck class. We’ve filled in several of the methods for you. You’ll need to finish it by writing the
Shuffle() and GetCardNames() methods, and you’ll have to get the Sort() method to work. We also added two useful
overloaded constructors: one that creates a complete deck of 52 cards, and another that takes an array of Card objects and
loads them into the deck.

NOTE

When you have the declarations for a class without the implementation, it’s called a “skeleton.”

EXERCISE SOLUTION

Build a class to store a deck of cards, along with a form that uses it.

You’ve already got the form’s RedrawDeck() method from the exercise instructions.

 We’re not done yet — flip the page!

Use a dictionary to store keys and values
A list is like a big long page full of names. But what if you also want, for each name, an address? Or
for every car in the garage list, you want details about that car? You need a dictionary. A dictionary
lets you take a special value — the key — and associate that key with a bunch of data — the value.
And one more thing: a specific key can only appear once in any dictionary.

Here’s how you declare a Dictionary in C#:

And here’s a Dictionary in action:

The dictionary functionality rundown
Dictionaries are a lot like lists. Both types are flexible in letting you work with lots of data types, and
also come with lots of built-in functionality. Here are the basic Dictionary methods:

Add an item.
You can add an item to a dictionary by passing a key and a value to its Add() method.

Dictionary<string, string> myDictionary = new Dictionary<string, string>();
myDictionary.Add("some key", "some value");

Look up a value using its key.
The most important thing you’ll do with a dictionary is look up values — which makes sense,
because you stored those values in a dictionary so you could look them up using their unique keys.
For this Dictionary<string, string>, you’ll look up values using a string key, and it’ll return a
string.

string lookupValue = myDictionary["some key"];

Remove an item.
Just like a List, you can remove an item from a dictionary using the Remove() method. All you
need to pass to the Remove method is the Key value to have both the key and the value removed.

Get a list of keys.
You can get a list of all of the keys in a dictionary using its Keys property and loop through it using
a foreach loop. Here’s what that would look like:

Count the pairs in the dictionary.
The Count property returns the number of key-value pairs that are in the dictionary:

int howMany = myDictionary.Count;

Your key and value can be different types
Dictionaries are really versatile and can hold just about anything, from strings to numbers and even
objects. Here’s an example of a dictionary that’s storing an integer as a key and a Duck object
reference as a value.

Dictionary<int, Duck> duckDictionary = new Dictionary<int, Duck>();
duckDictionary.Add(376, new Duck()
 { Kind = KindOfDuck.Mallard, Size = 15 });

NOTE

It’s common to see a dictionary that maps integers to objects when you’re assigning unique ID numbers to objects.

Build a program that uses a dictionary
Here’s a quick program that any New York baseball fan will like. When an important player retires,
the team retires the player’s jersey number. Let’s build a program that looks up who wore famous
numbers and when those numbers were retired. Here’s a class to keep track of a jersey number:

DO THIS!

class JerseyNumber {
 public string Player { get; private set; }
 public int YearRetired { get; private set; }

 public JerseyNumber(string player, int numberRetired) {
 Player = player;
 YearRetired = numberRetired;
 }
}

Yogi Berra was #8 for one team and Cal Ripken, Jr., was #8 for another. But in a dictionary only one key can map to a
single value, so we’ll only include numbers from one team here. Can you think of a way to store retired numbers for
multiple teams?

Here’s the form:

And here’s all of the code for the form:

LONG EXERCISE

Build a game of Go Fish! that you can play against the computer.

This exercise is a little different....

There’s a good chance that you’re learning C# because you want a job as a professional developer. That’s why we modeled this
exercise after a professional assignment. When you’re working as a programmer on a team, you don’t usually build a complete
program from start to finish. Instead, you’ll build a piece of a bigger program. So we’re going to give you a puzzle that’s got some of
the pieces already filled in. The code for the form is given to you in step #3. You just have to type it in — which may seem like a
great head start, but it means that your classes have to work with that code. And that can be a challenge!

➊ START WITH THE SPEC.
Many professional software projects start with a specification, and this one is no exception. You’ll be building a game of the
classic card game Go Fish! Different people play the game by slightly different rules, so here’s a recap of the rules you’ll be
using:

The game starts with a deck of 52 cards. Five cards are dealt to each player. The pile of cards that’s left after everyone’s dealt a
hand is called the stock. Each player takes turns asking for a value (“Do you have any sevens?”). Any other player holding
cards with that value must hand them over. If nobody has a card with that value, then the player must “go fish” by taking a card
from the stock.
The goal of the game is to make books, where a book is the complete set of all four cards that have the same value. The player
with the most books at the end of the game is the winner. As soon as a player collects a book, he places it face-up on the table so
all the other players can see what books everyone else has.
When placing a book on the table causes a player to run out of cards, then he has to draw five more cards from the stock. If
there are fewer than five cards left in the stock, he takes all of them. The game is over as soon as the stock is out of cards. The
winner is then chosen based on whoever has the most books.
For this computer version of Go Fish, there are two computer players and one human player. Every round starts with the human
player selecting one of the cards in his hand, which is displayed at all times. He does this by choosing one of the cards and
indicating that he will ask for a card. Then the two computer players will ask for their cards. The results of each round will be

displayed. This will repeat until there’s a winner.
The game will take care of all of the trading of cards and pulling out of books automatically. Once there’s a winner, the game is
over. The game displays the name of the winner (or winners, in case of a tie). No other action can be taken — the player will
have to restart the program in order to start a new game.

If you don’t know what you’re building before you start, then how would you know when you’re done? That’s
why many professional software projects start with a specification that tells you what you’re going to build.

➋ BUILD THE FORM.
Build the form for the Go Fish! game. It should have a ListBox control for the player’s hand, two TextBox controls for the
progress of the game, and a button to let the player ask for a card. To play the game, the user will select one of the cards from
the hand and click the button to ask the computer players if they have that card.

 We’re not done yet — flip the page!
➌ HERE’S THE CODE FOR THE FORM.
Enter it exactly like you see here. The rest of the code that you write will have to work with it.

➍ YOU’LL NEED THIS CODE, TOO.
You’ll need the code you wrote before for the Card class, the Suits and Values enums, the Deck class, and the
CardComparer_byValue class. But you’ll need to add a few more methods to the Deck class...and you’ll need to understand them
in order to use them.

 Still not done — flip the page!
➎ NOW COMES THE HARD PART: BUILD THE PLAYER CLASS.
There’s an instance of the Player class for each of the three players in the game. They get created by the buttonStart button’s
event handler.

➏ YOU’LL NEED TO ADD THIS METHOD TO THE PLAYER CLASS.
Here’s the PullOutBooks() method for the Player class. It loops through each of the 13 card values. For each of the values, it
counts all of the cards in the player’s cards field that match the value. If the player has all four cards with that value, that’s a
complete book — it adds the value to the books variable to be returned, and it removes the book from the player’s cards.

public IEnumerable<Values> PullOutBooks() {
 List<Values> books = new List<Values>();
 for (int i = 1; i <= 13; i++) {
 Values value = (Values)i;
 int howMany = 0;
 for (int card = 0; card < cards.Count; card++)
 if (cards.Peek(card).Value == value)

 howMany++;
 if (howMany == 4) {
 books.Add(value);
 cards.PullOutValues(value);
 }
 }
 return books;
}

NOTE

A couple more things to think about

That Peek() method we added to the Deck class will come in handy. It lets the program look at
one of the cards in the deck by giving its index number, but unlike Deal() it doesn’t remove the
card.

And you’ll have to build TWO overloaded versions of theAskForACard() method. The first one
is used by the opponents when they ask for cards — it’ll look through their hands and find a card
to ask for. The second one is used when the player asks for the card. Both of them ask EVERY
other player (both computer and human) for any cards that match the value.

➐ YOU’LL NEED TO ADD THIS METHOD TO THE CARD CLASS.
It’s a static method to take a value and return its plural — that way a 10 will return “Tens” but a 6 will return “Sixes” (with “es”
on the end). Since it’s static, you call it with the class name — Card.Plural() — and not from an instance.

 Nearly there — keep flipping!
➑ THE REST OF THE JOB: BUILD THE GAME CLASS.
The form keeps one instance of Game. It manages the game play. Look closely at how it’s used in the form.

NOTE

Here’s a hint for writing the GetWinnerName() method: you’ll need to create a new
Dictionary<string, int> called winners at the top of the method. The winners dictionary will let
you use each player’s name to look up the number of books he made during the game. First
you’ll use a foreach loop to go through the books that the players made and build the dictionary.
Then you’ll use another foreach loop to find the highest number of books associated with any
player. But there might be a tie — more than one player might have the most books! So you’ll
need one more foreach loop to look for all the players in winners that have the number of books
that you found in the second loop and build a string that says who won.

public string GetWinnerName() {
 // This method is called at the end of the game. It uses its own dictionary
 // (Dictionary<string, int> winners) to keep track of how many books each player
 // ended up with in the books dictionary. First it uses a foreach loop
 // on books.Keys — foreach (Values value in books.Keys) — to populate
 // its winners dictionary with the number of books each player ended up with.
 // Then it loops through that dictionary to find the largest number of books
 // any winner has. And finally it makes one last pass through winners to come
 // up with a list of winners in a string ("Joe and Ed"). If there's one winner,
 // it returns a string like this: "Ed with 3 books". Otherwise, it returns a
 // string like this: "A tie between Joe and Bob with 2 books."
}

// Here are a couple of short methods that were already written for you:

public IEnumerable<string> GetPlayerCardNames() {
 return players[0].GetCardNames();
}

public string DescribePlayerHands() {
 string description = "";
 for (int i = 0; i < players.Count; i++) {
 description += players[i].Name + " has " + players[i].CardCount;
 if (players[i].CardCount == 1)
 description += " card." + Environment.NewLine;
 else
 description += " cards." + Environment.NewLine;
 }
 description += "The stock has " + stock.Count + " cards left.";
 return description;
}

USE ENVIRONMENT.NEWLINE TO ADD LINE B REAKS

You’ve been using \n throughout the book to add line breaks to message boxes. .NET also gives you
a convenient constant for adding line breaks: Environment.NewLine. It always contains the constant
value “\r\n”. If you actually look at the characters that make up a Windows-formatted text file, at
the end of every line you’ll see two characters: ‘\r’ and ‘\n’. Other operating systems (like Unix)
only use a ‘\n’ to indicate the end of each line. The MessageBox.Show() method is smart enough to
automatically convert ‘\n’ characters to line breaks, but your code can be easier to read if you use
Environment.NewLine instead of escape characters. Also, Environment.NewLine is what gets
appended to the end of each line when you use Console.WriteLine().

Go to the Watch window and type (int)’\r’ to cast the character \r to a number. It turns into 13.
‘\n’ turns into 10. Every char turns into its own unique number called its Unicode value. You’ll
learn more about that in the next chapter.

LONG EXERCISE SOLUTION

Here are the filled-in methods in the Game class.

Bonus mini-exercise: When the game is done, the Start button stays disabled and the player just sees the results of the
game. Can you figure out how to reenable the Start button when the game is over and have it start up a new game?

 We’re not done yet — flip the page!

Here are the filled-in methods in the Player class.

Bonus mini-exercise: Can you figure out a way to improve encapsulation and design in your Player class by replacing
List<Player> with IEnumerable<Player> in the two AskForACard() methods without changing the way the software works? Flip to
Leftover #8 in the Appendix for a useful tool to help with that.

And yet MORE collection types...
List and Dictionary objects are two of the built-in generic collections that are part of the .NET
Framework. Lists and dictionaries are very flexible — you can access any of the data in them in any
order. But sometimes you need to restrict how your program works with the data because the thing
that you’re representing inside your program works like that in the real world. For situations like this,
you’ll use a Queue or a Stack. Those are generic collections like List<T>, but they’re especially
good at making sure that your data is processed in a certain order.

NOTE

There are other types of collections, too — but these are the ones that you’re most likely to come in contact with.

Use a Queue when the first object you store will be the
first one you’ll use, like:

Cars moving down a one-way street
People standing in line
Customers on hold for a customer service support line
Anything else that’s handled on a first-come, first-served
basis

NO TE

A queue is first-in first-out, which means that the first
object that you put into the queue is the first one you pull
out of it to use.

Use a Stack when you always want to use the object you
stored most recently, like:

Furniture loaded into the back of a moving truck
A stack of books where you want to read the most recently
added one first
People boarding or leaving a plane
A pyramid of cheerleaders, where the ones on top have to
dismount first...imagine the mess if the one on the bottom
walked away first!

NO TE

The stack is last-in, first-out: the first object that goes into the
stack is the last one that comes out of it.

Generic collections are an important part of the .NET Framework
They’re really useful — so much that the IDE automatically adds this statement to the top of every
class you add to your project:

using System.Collections.Generic;

Almost every large project that you’ll work on will include some sort of generic collection, because
your programs need to store data. And when you’re dealing with groups of similar things in the real
world, they almost always naturally fall into a category that corresponds pretty well to one of these
kinds of collections.

A queue is like a list that lets you put objects on the end of the list and use the ones in the front. A stack only lets you
access the last object you put into it.

NOTE

You can, however, use foreach to enumerate through a stack or queue, because they implement IEnumerable!

A queue is FIFO — First In, First Out
A queue is a lot like a list, except that you can’t just add or remove items at any index. To add an
object to a queue, you enqueue it. That adds the object to the end of the queue. You can dequeue the
first object from the front of the queue. When you do that, the object is removed from the queue, and
the rest of the objects in the queue move up a position.

A stack is LIFO — Last In, First Out
A stack is really similar to a queue — with one big difference. You push each item onto a stack, and
when you want to take an item from the stack, you pop one off of it. When you pop an item off of a
stack, you end up with the most recent item that you pushed onto it. It’s just like a stack of plates,
magazines, or anything else — you can drop something onto the top of the stack, but you need to take
it off before you can get to whatever’s underneath it.

Don’t worry — you don’t give up anything when you use a queue or a stack.
It’s really easy to copy a Queue object to a List object. And it’s just as easy to copy a List to a
Queue, a Queue to a Stack...in fact, you can create a List, Queue, or Stack from any other object
that implements the IEnumerable interface. All you have to do is use the overloaded constructor that
lets you pass the collection you want to copy from as a parameter. That means you have the flexibility
and convenience of representing your data with the collection that best matches the way you need it to
be used. (But remember, you’re making a copy, which means you’re creating a whole new object and
adding it to the heap.)

...and you can always use a foreach loop to access all of the members in a stack or a queue!

EXERCISE

Write a program to help a cafeteria full of lumberjacks eat some flapjacks. Start with the Lumberjack class, filling in the missing code.
Then design the form, and add the button event handlers to it.

➊ Here’s the Lumberjack class. Fill in the get accessor for FlapjackCount and the TakeFlapjacks and EatFlapjacks methods.

➋ Build this form. It lets you enter the names of lumberjacks into a text box so they get in the breakfast line. You can give the
lumberjack at the front of the line a plate of flapjacks, and then tell him to move on to eat them using the “Next lumberjack”
button. We’ve given you the click event handler for the “Add flapjacks” button. Use a queue called breakfastLine to keep track
of the lumberjacks.

This program just prints lines to the console, so you need to open the Output window in the IDE to see the output.

EXERCISE SOLUTION

COLLECTIONCROSS

Across Down

3. An instance of a ______________ collection only works with one
specific type

6. A special kind of loop that works on IEnumerable<T>

9. The name of the method you use to send a string to the output

10. How you remove something from a stack

11. An object that’s like an array but more flexible

13. Two methods in a class with the same name but different parameters
are ______________

15. A method to figure out if a certain object is in a collection

19. An easy way to keep track of categories

20. All generic collections implement this interface

21. How you remove something from a queue

1. The generic collection that lets you map keys to
values

2. This collection is first-in, first-out

4. The built-in class that lets your program write text to
the output

5. A method to find out how many things are in a
collection

7. The only method in the IComparable interface

8. Most professional projects start with this

12. An object that implements this interface helps your
list sort its contents

14. How you add something to a queue

16. This collection is first-in, last-out

17. How you add something to a stack

18. This method returns the next object to come off of a
stack or queue

COLLECTIONCROSS SOLUTION

Chapter 9. Reading and Writing Files: Save
the last byte for me!

Sometimes it pays to be a little persistent.
So far, all of your programs have been pretty short-lived. They fire up, run for a while, and shut
down. But that’s not always enough, especially when you’re dealing with important information. You
need to be able to save your work. In this chapter, we’ll look at how to write data to a file, and then
how to read that information back in from a file. You’ll learn about the .NET stream classes, and
also take a look at the mysteries of hexadecimal and binary.

.NET uses streams to read and write data
A stream is the .NET Framework’s way of getting data in and out of your program. Any time your
program reads or writes a file, connects to another computer over a network, or generally does
anything where it sends or receives bytes from one place to another, you’re using streams.

Whenever you want to read data from a file or write data to a file, you’ll use a Stream object.

Let’s say you have a simple program — a form with an event handler that needs to read data
from a file. You’ll use a Stream object to do it.

And if your program needs to write data out to the file, it can use another Stream object.

Different streams read and write different things
Every stream is a subclass of the abstract Stream class, and there are a bunch of built-in stream
classes to do different things. We’ll be concentrating on reading and writing regular files, but
everything you learn in this chapter will just as easily apply to compressed or encrypted files, or
network streams that don’t use files at all.

Things you can do with a stream:
Streams let you read and write data. Use the right kind of stream for the data you’re working with.

➊ WRITE TO THE STREAM.
You can write your data to a stream through a stream’s Write() method.
➋ READ FROM THE STREAM.
You can use the Read() method to get data from a file, or a network, or memory, or just about
anything else, using a stream. You can even read data from really big files, even if they’re too big
to fit into memory.
➌ CHANGE YOUR POSITION WITHIN THE STREAM.
Most streams support a Seek() method that lets you find a position within the stream so you can
read or insert data at a specific place.

A FileStream reads and writes bytes to a file
When your program needs to write a few lines of text to a file, there are a lot of things that have to
happen:

➊ Create a new FileStream object and tell it to write to the file.

➋ The FileStream attaches itself to a file.

➌ Streams write bytes to files, so you’ll need to convert the string that you want to write to an
array of bytes.

➍ Call the stream’s Write() method and pass it the byte array.

➎ Close the stream so other programs can access the file.

Write text to a file in three simple steps
C# comes with a convenient class called StreamWriter that does all of those things in one easy step.
All you have to do is create a new StreamWriter object and give it a filename. It automatically
creates a FileStream and opens the file. Then you can use the StreamWriter’s Write() and
WriteLine() methods to write everything to the file you want.

StreamWriter creates and manages a FileStream object for you automatically.

➊ Use the StreamWriter’s constructor to open or create a file.
You can pass a filename to the StreamWriter() constructor. When you do, the writer
automatically opens the file. StreamWriter also has an overloaded constructor that lets you
specify its append mode: passing it true tells it to add data to the end of an existing file (or
append), while false tells the stream to delete the existing file and create a new file with the
same name.

➋ Use the Write() and WriteLine() methods to write to the file.
These methods work just like the ones in the Console class: Write() writes text, and
WriteLine() writes text and adds a line break to the end. If you include “{0}”, “{1}”, “{2}”,
etc., inside the string you’re writing, the methods include parameters in the strings being written:
“{0}” is replaced with the first parameter after the string being written, “{1}” is replaced with the
second, etc.

writer.WriteLine("The {0} is set to {1} degrees.", appliance, temp);

➌ Call the Close() method to release the file.
If you leave the stream open and attached to a file, then it’ll keep the file locked open and no other
program will be able to use it. So make sure you always close your files!

writer.Close();

The Swindler launches another diabolical plan
The citizens of Objectville have long lived in fear of the Swindler. Now he’s using a StreamWriter
to implement another evil plan. Let’s take a look at what’s going on. Create a new Console
Application and add this to the Main() method:

STREAMWRITER MAGNETS

Suppose you have the code for button1_Click() shown below. Your job is to use the magnets to build code for the Flobbo class so
that when the event handler is called, it produces the output shown at the bottom of the page. Good luck!

STREAMWRITER MAGNETS SOLUTION

NOTE

If you type this into the IDE, macaw.txt will be written to the bin\Debug folder inside your
project folder, because that’s where the executable is running.

Your job was to construct the Flobbo class from the magnets to create the desired output.

NOTE

Sometimes people play a little fast and loose with the word “stream.” A StreamReader (which inherits from TextReader) is
a class that reads characters from streams. It’s not a stream itself. When you pass a filename into its constructor, it
creates a stream for you, and closes it when you call its Close() method. It’s also got an overloaded constructor that
takes a Stream. See how that works?

Reading and writing using two objects
Let’s read Swindler’s secret plans with a StreamReader. StreamReader works just like
StreamWriter, except instead of writing a file you give the reader the name of the file to read in its
constructor. The ReadLine() method returns a string that contains the next line from the file. You can
write a loop that reads lines from it until its EndOfStream field is true — that’s when it runs out of
lines to read:

Data can go through more than one stream
One big advantage to working with streams in .NET is that you can have your data go through more
than one stream on its way to its final destination. One of the many types of streams that .NET ships
with is the CryptoStream class. This lets you encrypt your data before you do anything else with it:

You can CHAIN streams. One stream can write to another stream, which writes to another stream...often ending with a
network or file stream.

POOL PUZZLE

Your job is to take code snippets from the pool and place them into the blank lines in the program. You can use the same snippet more
than once, and you won’t need to use all the snippets. Your goal is to make the program produce the output shown to the right.

class Pineapple {
 const ______ d = "delivery.txt";
 public _____ ______
 { North, South, East, West, Flamingo }
 public static void Main(string[] args) {
 __________ o = new ____________("order.txt");
 Pizza pz = new Pizza(new __________(d, true));
 pz.________(Fargo.Flamingo);
 for (_____ w = 3; w >= 0; w--) {
 Pizza i = new Pizza
 (new ___________(d, false));
 i.Idaho((Fargo)w);
 Party p = new Party(new __________(d));
 p.___________(o);
 }
 o.___________("That's all folks!");
 o.__________();
 }
}

class Pizza {
 private ____________ _______;
 public Pizza(__________ _______) {
 ______.writer = writer;
 }
 public void ______(______.Fargo f) {
 writer._________(f);
 writer.__________();
 }
}

class Party {
 private ____________ reader;
 public Party(____________ reader) {
 __________.reader = reader;
 }
 public void HowMuch(__________ q) {
 q._________(reader._________());
 reader.__________();
 }
}

Note: each snippet from the pool can be used more than once!

POOL PUZZLE SOLUTION

Use built-in objects to pop up standard dialog boxes
When you’re working on a program that reads and writes files, there’s a good chance that you’ll need
to pop up a dialog box at some point to prompt the user for a filename. That’s why .NET for Windows
Desktop includes objects to pop up the standard desktop file dialog boxes.

ShowDialog() pops up a dialog box
Displaying a dialog box is easy. Here’s all you need to do:

➊ Create an instance of the dialog box object. You can do this in code using new, or you can drag
it out of the toolbox and onto your form.

NOTE

We’ll walk you through these steps in a minute.

➋ Set the dialog box object’s properties. A few useful ones include Title (which sets the text in
the title bar), InitialDirectory (which tells it which directory to open first), and FileName (for
Open and Save dialog boxes).
➌ Call the object’s ShowDialog() method. That pops up the dialog box, and doesn’t return until
the user clicks the OK or Cancel button, or closes the window.
➍ The ShowDialog() method returns a DialogResult, which is an enum. Some of its members
are OK (which means the user clicked OK), Cancel, Yes, and No (for Yes/No dialog boxes).

Dialog boxes are just another WinForms control
You can add Windows standard file dialog boxes to your program by dragging them to your form —
just drag an OpenFileDialog control out of the toolbox and drop it onto your form. Instead of it
showing up as a visual control, you’ll see it appear in the space below your form. That’s because it’s
a component, which is a special kind of nonvisual toolbox control that doesn’t appear directly on
the form, but which you can still use in your form’s code just like you use any other control.

NOTE

“Nonvisual” just means it doesn’t appear on your form when you drag it out of the toolbox.

Dialog boxes are objects, too
An OpenFileDialog object shows the standard Windows Open window, and the SaveFileDialog
shows the Save window. You can display them by creating a new instance, setting the properties on
the object, and calling its ShowDialog() method. The ShowDialog() method returns a
DialogResult enum (because some dialog boxes have more than two buttons or results, so a simple
bool wouldn’t be enough).

Use the built-in File and Directory classes to work with files and
directories
Like StreamWriter, the File class creates streams that let you work with files behind the scenes.
You can use its methods to do most common actions without having to create the FileStreams first.
Directory objects let you work with whole directories full of files.

Things you can do with File:
➊ FIND OUT IF THE FILE EXISTS.
You can check to see if a file exists using the Exists() method. It’ll return true if it does, and
false if it doesn’t.
➋ READ FROM AND WRITE TO THE FILE.
You can use the OpenRead() method to get data from a file, or the Create() or OpenWrite()
method to write to the file.
➌ APPEND TEXT TO THE FILE.
The AppendAllText() method lets you append text to an already created file. It even creates the
file if it’s not there when the method runs.
➍ GET INFORMATION ABOUT THE FILE.
The GetLastAccessTime() and GetLastWriteTime() methods return the date and time when the
file was last accessed and modified.

FILEINFO WORKS JUST LIKE FILE

If you’re going to be doing a lot of work with a file, you might want to create an instance of the FileInfo class instead of using the File
class’s static methods.

The FileInfo class does just about everything the File class does, except you have to instantiate it to use it. You can create a new
instance of FileInfo and access its Exists() method or its OpenRead() method in just the same way.

The only difference is that the File class is faster for a small number of actions, and FileInfo is better suited for big jobs.

NOTE

File is a static class, so it’s just a set of methods that let you work with files. FileInfo is an object that you instantiate, and its methods
are the same as the ones you see on File.

Things you can do with Directory:
➊ CREATE A NEW DIRECTORY.
Create a directory using the CreateDirectory() method. All you have to do is supply the path;
this method does the rest.
➋ GET A LIST OF THE FILES IN A DIRECTORY.
You can create an array of files in a directory using the GetFiles() method; just tell the method
which directory you want to know about, and it will do the rest.
➌ DELETE A DIRECTORY.
Deleting a directory is really simple too. Just use the Delete() method.

THERE ARE NO DUMB QUESTIONS

Q: Q: I still don’t get that {0} and {1} thing that was part of the StreamWriter.

A: A: When you’re printing strings to a file, you’ll often find yourself in the position of having to print the contents of a bunch of variables. For example,
you might have to write something like this:

writer.WriteLine("My name is " + name +
 "and my age is " + age);

It gets really tedious and somewhat error-prone to have to keep using + to combine strings. It’s easier to take advantage of {0} and {1}:

writer.WriteLine(
 "My name is {0} and my age is {1}",
 name, age);

It’s a lot easier to read that code, especially when many variables are included in the same line.

Q: Q: Why did you put an @ in front of the string that contained the filename?

A: A: When you add a string literal to your program, the compiler converts escape sequences like \n and \r to special characters. That makes it difficult to
type filenames, which have a lot of backslash characters in them. If you put @ in front of a string, it tells C# not to interpret escape sequences. It also
tells C# to include line breaks in your string, so you can hit Enter halfway through the string and it’ll include that as a line break in the output:

string twoLine = @"this is a string
that spans two lines.";

Q: Q: And what do \n and \t mean again?

A: A: Those are escape sequences. \n is a line feed and \t is a tab. \r is a return character, or half of a Windows return — in Windows text files, lines have
to end with \r\n (like we talked about when we introduced Environment.NewLine from Chapter 8). If you want to use an actual backslash in your string
and not have C# interpret it as the beginning of an escape sequence, just do a double backslash: \\.

Q: Q: What was that in the beginning about converting a string to a byte array? How would that even work?

A: A: You’ve probably heard many times that files on a disk are represented as bits and bytes. What that means is that when you write a file to a disk, the
operating system treats it as one long sequence of bytes. The StreamReader and StreamWriter are converting from bytes to characters for you — that’s
called encoding and decoding. Remember from Chapter 4 how a byte variable can store any number between 0 and 255? Every file on your hard drive is
one long sequence of numbers between 0 and 255. It’s up to the programs that read and write those files to interpret those bytes as meaningful data.
When you open a file in Notepad, it converts each individual byte to a character — for example, E is 69 and a is 97 (but this depends on the
encoding...you’ll learn more about encodings in just a minute). And when you type text into Notepad and save it, Notepad converts each of the
characters back into a byte and saves it to disk. If you want to write a string to a stream, you’ll need to do the same.

Q: Q: If I’m just using a StreamWriter to write to a file, why do I really care if it’s creating a FileStream for me?

A: A: If you’re only reading or writing lines to or from a text file in order, then all you need are StreamReader and StreamWriter. But as soon as you need to
do anything more complex than that, you’ll need to start working with other streams. If you ever need to write data like numbers, arrays, collections, or
objects to a file, a StreamWriter just won’t do. But don’t worry, we’ll go into a lot more detail about how that will work in just a minute.

Q: Q: What if I want to create my own dialog boxes? Can I do that?

A: A: Yes, you definitely can. You can add a new form to your project and design it to look exactly how you want. Then you can create a new instance of
it with new (just like you created an OpenFileDialog object). Then you can add a public ShowDialog() method, and it’ll work just like any other dialog box.

Q: Q: Why do I need to worry about closing streams after I’m done with them?

A: A: Have you ever had a word processor tell you it couldn’t open a file because it was “busy”? When one program uses a file, Windows locks it and
prevents other programs from using it. And it’ll do that for your program when it opens a file. If you don’t call the Close() method, then it’s possible
for your program to keep a file locked open until it ends.

SHARPEN YOUR PENCIL

.NET has two built-in classes with a bunch of static methods for working with files and folders. The File class gives you methods to
work with files, and the Directory class lets you work with directories. Write down what you think each of these lines of code does.

Code What the code does

if (!Directory.Exists(@"C:\SYP")) {
 Directory.CreateDirectory(@"C:\SYP");
}

if (Directory.Exists(@"C:\SYP\Bonk")) {
 Directory.Delete(@"C:\SYP\Bonk");
}

Directory.CreateDirectory(@"C:\SYP\Bonk");

Directory.SetCreationTime(@"C:\SYP\Bonk",
 new DateTime(1976, 09, 25));

string[] files = Directory.GetFiles(@"C:\Windows\",
 "*.log", SearchOption.AllDirectories);

File.WriteAllText(@"C:\SYP\Bonk\weirdo.txt",
 @"This is the first line
and this is the second line
and this is the last line");

File.Copy(@"C:\SYP\Bonk\weirdo.txt",
 @"C:\SYP\copy.txt");

DateTime myTime =
 Directory.GetCreationTime(@"C:\SYP\Bonk");

File.SetLastWriteTime(@"C:\SYP\copy.txt", myTime);

File.Delete(@"C:\SYP\Bonk\weirdo.txt");

Use file dialogs to open and save files (all with just a few lines of
code)
You can build a program that opens a text file. It’ll let you make changes to the file and save your
changes, with very little code, all using standard .NET controls. Here’s how:

NOTE

Here’s a trick to make your TextBox fill up the form. Drag a TableLayoutPanel from the toolbox (in Containers) onto the form, set its
Dock property to Fill, and use its Rows and Columns property editors to give it two rows and one column. Drag the TextBox into the
top cell and set its Dock property to Fill. Then drag a FlowLayoutPanel out of the toolbox into the bottom cell, set its Dock to Fill,
set its FlowDirection property to RightToLeft, and drag the two buttons onto it. Set the size of the bottom row in the
TableLayoutPanel to AutoSize and the top row to 100%, and resize the bottom row so that the two buttons just fit. Now your editor
will resize smoothly!

DO THIS

➊ Build a simple form.
All you need is a TextBox and two Buttons. Drop the OpenFileDialog and SaveFileDialog controls onto the form, too. Double-
click on the buttons to create their event handlers and add a private string field called name to the form. Don’t forget to put a
using statement up top for the System.IO namespace.

➋ Hook the Open button up to the OpenFileDialog object.
The Open button shows an OpenFileDialog and then uses File.ReadAllText() to read the file into the textbox:

private void open_Click(object sender, EventArgs e) {
 if (openFileDialog1.ShowDialog() == DialogResult.OK) {
 name = openFileDialog1.FileName;
 textBox1.Clear();
 textBox1.Text = File.ReadAllText(name);
 }
}

NOTE

Clicking Open shows the OpenFileDialog control.

➌ Now, hook up the Save button.
The Save button uses the File.WriteAllText() method to save the file:

private void save_Click(object sender, EventArgs e) {
 if (saveFileDialog1.ShowDialog() == DialogResult.OK) {
 string name = saveFileDialog1.FileName;
 File.WriteAllText(name, textBox1.Text);
 }
}

NOTE

The ReadAllText() and WriteAllText() methods are part of the File class. That’s coming up on the next page. We’ll look at
them in more detail in just a few pages.

➍ Play with the other properties of the dialog boxes.

Use the Title property of the SaveFileDialog to change the text in the title bar.
Set the InitialDirectory property to have the OpenFileDialog start in a specified directory.
Filter the OpenFileDialog so it will only show text files using the Filter property.

NOTE

— If you don’t add a filter, then the drop-down lists at the bottom of the open and save dialog boxes will be empty. Try using
this filter: “Text Files (*.txt)|*.txt”.

SHARPEN YOUR PENCIL SOLUTION

.NET has two built-in classes with a bunch of static methods for working with files and folders. The File class gives you methods to
work with files, and the Directory class lets you work with directories. Your job was to write down what each bit of code did.

Code What the code does

if (!Directory.Exists(@"C:\SYP")) {
 Directory.CreateDirectory(@"C:\SYP");
}

Check if the C:\SYP folder exists. If it doesn’t, create it.

if (Directory.Exists(@"C:\SYP\Bonk")) {
 Directory.Delete(@"C:\SYP\Bonk");
}

Check if the C:\SYP\Bonk folder exists. If it does, delete it.

Directory.CreateDirectory(@"C:\SYP\Bonk"); Create the directory C:\SYP\Bonk.

Directory.SetCreationTime(@"C:\SYP\Bonk",
 new DateTime(1976, 09, 25));

Set the creation time for the C:\SYP\Bonk folder to September 25, 1976.

string[] files =
Directory.GetFiles(@"C:\Windows\",
 "*.log",
SearchOption.AllDirectories);

Get a list of all files in C:\Windows that match the *.log pattern, including all matching
files in any subdirectory.

File.WriteAllText(@"C:\SYP\Bonk\weirdo.txt",
 @"This is the first line
and this is the second line
and this is the last line");

Create a file called “weirdo.txt” (if it doesn‘t already exist) in the C:\SYP\Bonk folder
and write three lines of text to it.

Take advantage of built-in Windows encryption to encrypt the file “weirdo.txt” using the
logged-in account’s credentials.

File.Copy(@"C:\SYP\Bonk\weirdo.txt",
 @"C:\SYP\copy.txt");

Copy the C:\SYP\Bonk\weirdo.txt file to C:\SYP\Copy.txt.

DateTime myTime =

Directory.GetCreationTime(@"C:\SYP\Bonk");

Declare the myTime variable and set it equal to the creation time of the C:\SYP\Bonk
folder.

File.SetLastWriteTime(@"C:\SYP\copy.txt",
myTime);

Alter the last write time of the copy.txt file in C:\SYP\ so it’s equal to whatever time is
stored in the myTime variable.

File.Delete(@"C:\SYP\Bonk\weirdo.txt"); Delete the C:\SYP\Bonk\weirdo.txt file.

IDisposable makes sure your objects are disposed of properly
A lot of .NET classes implement a particularly useful interface called IDisposable. It has only one
member: a method called Dispose(). Whenever a class implements IDisposable, it’s telling you that
there are important things that it needs to do in order to shut itself down, usually because it’s
allocated resources that it won’t give back until you tell it to. The Dispose() method is how you tell
the object to release those resources.
You can use the “Go To Definition” feature in the IDE to show you the official C# definition of
IDisposable. Go to your project and type IDisposable anywhere inside a class. Then right-click on
it and select “Go To Definition” from the menu. It’ll open a new tab with code in it. Expand all of the
code and this is what you’ll see:

Declare an object in a using block and that object’s Dispose() method is called automatically.

GO TO DEFINITION

There’s a handy feature in the IDE that lets you automatically jump to the definition for any variable, object, or method. Just right-click
on it and select “Go To Definition,” and the IDE will automatically jump right to the code that defines it. You can also press F12
instead of using the menu.

AL-LO-CATE, VERB .

to distribute resources or duties for a particular purpose. The programming team was irritated at their project manager because
he allocated all of the conference rooms for a useless management seminar.

Avoid filesystem errors with using statements
We’ve been telling you all chapter that you need to close your streams. That’s because some of the
most common bugs that programmers run across when they deal with files are caused when streams
aren’t closed properly. Luckily, C# gives you a great tool to make sure that never happens to you:
IDisposable and the Dispose() method. When you wrap your stream code in a using statement,
it automatically closes your streams for you. All you need to do is declare your stream reference
with a using statement, followed by a block of code (inside curly brackets) that uses that reference.
When you do that, the using statement automatically calls the stream’s Dispose() method as soon
as it finishes running the block of code. Here’s how it works:

NOTE

These “using” statements are different from the ones at the top of your code.

All streams implement IDisposable, so any time you use a stream, you should ALWAYS declare it inside a using
statement. That makes sure it’s always closed!

Every stream has a Dispose() method that closes the stream. So if you declare your stream in
a using statement, it will always close itself!

Use multiple using statements for multiple objects
You can pile using statements on top of each other — you don’t need extra sets of curly brackets or
indents.

using (StreamReader reader = new StreamReader("secret_plan.txt"))
using (StreamWriter writer = new StreamWriter("email.txt"))
{
 // statements that use reader and writer
}

NOTE

You don’t need to call Close() on the streams now, because the using statement will close them automatically.

Trouble at work
Meet Brian. He likes his job as a C# developer, but he loves taking the occasional day off. His boss
hates when people take vacation days, so Brian’s got to come up with a good excuse.

You can help Brian out by building a program to manage his
excuses
Use what you know about reading and writing files to build an Excuse Manager that Brian can use to
keep track of which excuses he’s used recently and how well they went over with the boss.

EXERCISE

Build the Excuse Manager so Brian can manage his excuses at work.

➊ BUILD THE FORM.
This form has a few special features:

When the form’s first loaded, only the Folder button should be enabled — disable the other three buttons until the user
selects a folder.
When the form opens or saves an excuse, it displays the file date for the excuse file using a Label control with AutoSize set to
False and BorderStyle set to Fixed3D.
After an excuse is saved, the form pops up an “Excuse Written” message box.
The Folder button brings up a folder browser dialog box. If the user selects a folder, it enables the Save, Open, and Random
buttons.
The form knows when there are unsaved changes. When there are no unsaved changes, the text on the form’s title bar is
“Excuse Manager”. But when the user has changed any of the three fields, the form adds an asterisk (*) to the title bar. The
asterisk goes away when the data is saved or a new excuse is opened.
The form will need to keep track of the current folder and whether or not the current excuse has been saved. You can figure out
when the excuse hasn’t been saved by using the Changed event handlers for the three input controls.

NOTE

— When you drag a textbox to a form and double-click on it, you create a Changed event
handler for that field.

➋ CREATE AN EXCUSE CLASS AND STORE AN INSTANCE OF IT IN THE FORM.
Now add a currentExcuse field to the form to hold the current excuse. You’ll need three overloaded constructors: one for
when the form’s first loaded, one for opening up a file, and one for a random excuse. Add methods OpenFile() to open an
excuse (for the constructors to use), and Save() to save the excuse. Then add this UpdateForm() method to update the controls
(it’ll give you some hints about the class):

And make sure you initialize the excuse’s LastUsed value in the form’s constructor: public Form1() {
InitializeComponent();

public Form1() {
 InitializeComponent();
 currentExcuse.LastUsed = lastUsed.Value;
}

➌ MAKE THE FOLDER BUTTON OPEN A FOLDER BROWSER.
When the user clicks on the Folder button, the form should pop up a “Browse for Folder” dialog box. The form will need to store
the folder in a field so that the other dialog boxes can use it. When the form first loads , the Save, Open, and Random Excuse
buttons are disabled, but if the user selects a folder, then the Folder button enables them.
➍ MAKE THE SAVE BUTTON SAVE THE CURRENT EXCUSE TO A FILE.
Clicking the Save button should bring up the Save As dialog box.

Each excuse is saved to a separate text file. The first line of the file is the excuse, the second is the result, and the third is the
date last used (using the DateTimePicker’s ToString() method). The Excuse class should have a Save() method to save an
excuse out to a specified file.
When the Save As dialog box is opened, its folder should be set to the folder that the user selected using the Folder button, and
the filename should be set to the excuse plus a .txt extension.
The dialog box should have two filters: Text Files (*.txt) and All Files (*.*). If the user tries to save the current excuse but has
left either the excuse or the result blank, the form should pop up a warning dialog box:

➎ MAKE THE OPEN BUTTON OPEN A SAVED EXCUSE.
Clicking the Open button should bring up the Open dialog box.

When the Open dialog box is opened, its folder should be set to the folder that the user selected using the Folder button.
Add an Open() method to the Excuse class to open an excuse from a given file.
Use Convert.ToDateTime() to load the saved date into the DateTimePicker control.
If the user tries to open a saved excuse but the current excuse hasn’t been saved, it pops up this dialog box:

➐ FINALLY, MAKE THE RANDOM EXCUSE BUTTON LOAD A RANDOM EXCUSE.
When the user clicks the Random Excuse button, it looks in the excuse folder, chooses one of the excuses at random, and opens
it.

The form will need to save a Random object in a field and pass it to one of the overloaded constructors of the Excuse object.
If the current excuse hasn’t been saved, the button should pop up the same warning dialog box as the Open button.

EXERCISE SOLUTION

Build the Excuse Manager so Brian can manage his excuses at work.

There’s at a bug somewhere in this exercise solution! Can you spot it?

Writing files usually involves making a lot of decisions
You’ll write lots of programs that take a single input, maybe from a file, and have to decide what to
do based on that input. Here’s code that uses one long if statement — it’s pretty typical. It checks the
part variable and prints different lines to the file based on which enum it uses. There are lots of
choices, so lots of else ifs:

B RAIN POWER

What sort of things can go wrong when you write code that has this many if/else statements? Think about typos and bugs caused
by brackets, a single equals sign, etc.

Use a switch statement to choose the right option
Comparing one variable against a bunch of different values is a really common pattern that you’ll see
over and over again. It’s especially common when you’re reading and writing files. It’s so common,
in fact, that C# has a special kind of statement designed specifically for this situation.

NOTE

There’s nothing about a switch statement that’s specifically related to files. It’s just a useful C# tool that we can use here.

A switch statement lets you compare one variable against many values in a way that’s compact and
easy to read. Here’s a switch statement that does exactly the same thing as the series of if/else
statements on the opposite page:

A switch statement compares ONE variable against MULTIPLE possible values.

Use a switch statement to let your deck of cards read from a file or
write itself out to one

The switch statement lets you test one value against a bunch of cases and execute different statements depending on
which one it matches.

Writing a card out to a file is straightforward — just make a loop that writes the name of each card
out to a file. Here’s a method you can add to the Deck object that does exactly that:

public void WriteCards(string filename) {
 using (StreamWriter writer = new StreamWriter(filename)) {
 for (int i = 0; i < cards.Count; i++) {
 writer.WriteLine(cards[i].Name);
 }
 }
}

But what about reading the file in? It’s not quite so simple. That’s where the switch statement can
come in handy.

Add an overloaded Deck() constructor that reads a deck of cards in
from a file
You can use a switch statement to build a new constructor for the Deck class that you wrote in the
last chapter. This constructor reads in a file and checks each line for a card. Any valid card gets
added to the deck.
There’s a method that you can find on every string that’ll come in handy: Split(). It lets you split the
string into an array of substrings by passing it a char[] array of separator characters that it’ll use to
split up the string.

There’s an easier way to store your objects in files. It’s called serialization.
Instead of painstakingly writing out each field and value to a file line by line, you can save your
object the easy way by serializing it out to a stream. Serializing an object is like flattening it out so
you can slip it into a file. And on the other end, you can deserialize it, which is like taking it out of the
file and inflating it again.

NOTE

OK, just to come clean here: there’s also a method called Enum.Parse() — you’ll learn about it in Chapter 14 — that will convert the
string “Spades” to the enum value Suits.Spades. But serialization still makes a lot more sense here. You’ll find out more about that
shortly....

What happens to an object when it’s serialized?
It seems like something mysterious has to happen to an object in order to copy it off of the heap and
put it into a file, but it’s actually pretty straightforward.

➊ Object on the heap

When you create an instance of an object, it has a state. Everything that an object “knows” is what
makes one instance of a class different from another instance of the same class.
➋ Object serialized

When C# serializes an object, it saves the complete state of the object, so that an identical
instance (object) can be brought back to life on the heap later.

➌ And later on...
Object on the heap again

Later — maybe days later, and in a different program — you can go back to the file and
deserialize it. That pulls the original class back out of the file and restores it exactly as it was,
with all of its fields and values intact.

But what exactly IS an object’s state? What needs to be saved?
We already know that an object stores its state in its fields. So when an object is serialized, every
one of those fields needs to be saved to the file.
Serialization starts to get interesting when you have more complicated objects. Chars, ints, doubles,
and other value types have bytes that can just be written out to a file as is. But what if an object has an
instance variable that’s an object reference? What about an object that has five instance variables that
are object references? What if those object instance variables themselves have instance variables?
Think about it for a minute. What part of an object is potentially unique? Imagine what needs to be
restored in order to get an object that’s identical to the one that was saved. Somehow everything on
the heap has to be written to the file.

B RAIN B ARB ELL

What has to happen for this Car object to be saved so that it gets restored back to its original state? Let’s say the car has three
passengers and a 3-liter engine and all-weather radial tires...aren’t those things all part of the Car object’s state? What should happen
to them?

When an object is serialized, all of the objects it refers to get
serialized, too...
...and all of the objects they refer to, and all of the objects those other objects refer to, and so on and
so on. But don’t worry — it may sound complicated, but it all happens automatically. C# starts with
the object you want to serialize and looks through its fields for other objects. Then it does the same
for each of them. Every single object gets written out to the file, along with all the information C#
needs to reconstitute it all when the object gets deserialized.

NOTE

This whole group of connected objects is sometimes referred to as a graph.

Serialization lets you read or write a whole object graph all at once
You’re not just limited to reading and writing lines of text to your files. You can use serialization to
let your programs copy entire objects to files and read them back in...all in just a few lines of code!
There’s a tiny amount of prep work you need to do — add one [Serializable] line to the top of the
class to serialize — but once you do that, everything’s ready to write.

It’s quick to copy an object out to a file or read it in from one. You can serialize or deserialize it.

You’ll need a BinaryFormatter object
If you want to serialize an object graph, the first thing you do is create an instance of
BinaryFormatter. It’s really straightforward to do — and all it takes is one line of code (and an
extra using line at the top of the class file).

using System.Runtime.Serialization.Formatters.Binary;
...
BinaryFormatter formatter = new BinaryFormatter();

Now just create a stream and read or write your objects
Use the Serialize() method from the BinaryFormatter object to write any object out to a stream.

And once you’ve got an object serialized out to a file, use the BinaryFormatter object’s
Deserialize() method to read it back in. The method returns a reference, so you need to cast the
output so that it matches the type of the reference variable you’re copying it to.

If you want your class to be serializable, mark it with the
[Serializable] attribute
An attribute is a special tag that you can add to the top of any C# class. It’s how C# stores metadata
about your code, or information about how the code should be used or treated. When you add
[Serializable] to the top of a class just above the class declaration, you’re telling C# that your
class is safe for serialization. And you only use it with classes that include fields that are either value
types (like an int, decimal, or enum) or other serializable classes. If you don’t add the attribute to
the class you want to serialize, or if you include a field with a type that isn’t serializable, then your
program will have an error when you try to run it. See for yourself...

NOTE

Attributes are a way to add information to your class or member declaration. The [Serializable] attribute is in the
System namespace.

DO THIS

➊ Create a class and serialize it.
Let’s serialize Joe so we can keep a file that knows how much money he’s got in his pocket even after you close your program.
Open the “Fun with Joe and Bob” project from Chapter 3 and update the Guy class:

Next, add a “Save Joe” button and a “Load Joe” button to the form. Here’s code for their event handler methods to serialize the
Joe object to a file called Guy_file.dat and read it back:

➋ Run the program and play around with it.
If Joe had two hundred dollars saved up from his transactions with Bob during your time running the program, it would be a pain
to lose all that money just because you needed to exit. Now your program can save Joe out to a file and restore him whenever
you want.
What happens if you delete Guy_File.dat from the bin/Debug folder and then click Load Joe?

Let’s serialize and deserialize a deck of cards
Take a deck of cards and write it out to a file. C# makes serializing objects really easy. All you need
to do is create a stream and write out your objects.

DO THIS

➊ CREATE A NEW PROJECT AND ADD THE DECK AND CARD CLASSES.
Right-click on the project in the Solution Explorer and choose Add→Existing Item, and add the Card and Deck classes (and the
Suits and Values enums and CardComparer_bySuit and CardComparer_byValue interfaces) you used in Go Fish! in Chapter 8.
You’ll also need to add the two card comparer classes, since Deck uses them. The IDE will copy the files into the new project —
make sure you change the namespace line at the top of each class file to match your new project’s namespace.
➋ MARK THE CLASSES SERIALIZABLE.
Add the [Serializable] attribute to both classes you added to the project.

NOTE

If you don’t do this, C# won’t let you serialize the classes to a file.

➌ ADD A COUPLE OF USEFUL METHODS TO THE FORM.
The RandomDeck method creates a random deck of cards, and the DealCards method deals all of the cards and prints them to the
console.

Don’t forget to open the IDE’s Ouptut window to view the console output from a WinForms program.
➍ OK, PREP WORK’S DONE...NOW SERIALIZE THAT DECK.
Start by adding buttons to serialize a random deck to a file and read it back. Check the console output to make sure the deck you
wrote out is the same as the deck you read.

➎ NOW SERIALIZE A BUNCH OF DECKS TO THE SAME FILE.
Once you open a stream, you can write as much as you want to it. You can serialize as many objects as you need into the same
file. So now add two more buttons to write out a random number of decks to the file. Check the output to make sure everything
looks good.

➏ TAKE A LOOK AT THE FILE YOU WROTE.
Open up Deck1.dat in Notepad (File.Create() created it in the bin\Debug folder under your project folder). It may not be
something you’d read on the beach, but it’s got all the information to restore your whole deck of cards.

When you serialize objects out to a file, they’re written in a binary format.
But that doesn’t mean it’s indecipherable — just compact. That’s why you can recognize the strings
when you open up a file with serialized objects in it: that’s the most compact way C# can write
strings to a file — as strings. But writing out a number as a string would be really wasteful. Any int
can be stored in four bytes. Storing the number 49,369,144 as an 8-character string that you could
read takes 8 characters (10 if you include commas), but a binary formatted int only takes 4 bytes.
Later in the book you’ll learn about a less compact, more human-readable (and editable!)
serialization format.

B EHIND THE SCENES

.NET uses Unicode to encode a char or string into bytes. Luckily, Windows has a useful little tool to help us figure out how Unicode
works. Open up the Character Map (use the Search charm on the Start page to find it, or press Windows-R and type
“charmap.exe”).

When you look at all the letters and symbols that are used in languages all around the world, you realize just how many different
things need to be written to a file just to store text. That’s why .NET encodes all of its strings and characters in a format called
Unicode. Encoding just means taking the logical data (like the letter H) and turning it into bytes (the number 72). It needs to do that
because letters, numbers, enums, and other data all end up in bytes on disk or in memory. And that’s why Character Map is useful —
it shows you how letters are encoded into numbers.

.NET uses Unicode to store characters and text
The two C# types for storing text and characters — string and char — keep their data in memory as
Unicode. When that data’s written out as bytes to a file, each of those Unicode numbers is written out
to the file. So start a new project and drag three buttons onto a form, and we’ll use the
File.WriteAllBytes() and ReadAllBytes() methods to get a sense of exactly how Unicode data
is written out to a file.

DO THIS!

➊ WRITE A NORMAL STRING OUT TO A FILE AND READ IT BACK.
Use the same WriteAllText() method that you used in the text editor to have the first button write the string “Eureka!” out to a
file called eureka.txt. Then create a new byte array called eurekaBytes, read the file into it, and then print out all of the bytes
read:

You’ll see these bytes written to the output: 69 117 114 101 107 97 33. Now open up the file in the Simple Text Editor that
you wrote earlier in the chapter. It says “Eureka!”
➋ MAKE THE SECOND BUTTON DISPLAY THE BYTES AS HEX NUMBERS.
It’s not just Character Map that shows numbers in hex. Almost anything you read that has to do with encoding data will show that
data in hex, so it’s useful to know how to work with it. Make the code for the second button’s event handler in your program
identical to the first one , except change the Console.Write() line so it looks like this instead:

Console.Write("{0:x2} ", b);

NOTE

Hex uses the numbers 0 through 9 and letters A through F to represent numbers in base 16, so 6B is equal to 107.

That tells Write() to print parameter 0 (the first one after the string to print) as a two-character hex code. So it writes the same
seven bytes in hex instead of decimal: 45 75 72 65 6b 61 21
➌ MAKE THE THIRD BUTTON WRITE OUT HEBREW LETTERS.
Go back to Character Map and double-click on the Shin character (or click the Select button). It’ll add it to the “Characters to
copy” box. Then do the same for the rest of the letters in “Shalom”: Lamed (U+05DC), Vav (U+05D5), and Final Mem
(U+05DD). Now add the code for the third button’s event handler. It’ll look exactly like button 2, except for one change. Click
the Copy button in Character Map, and then paste the letters over “Eureka!” and add the Encoding.Unicode parameter, so it
looks like this:

File.WriteAllText("eureka.txt", "שלום", Encoding.Unicode);

Did you notice that the IDE pasted the letters in backward? That’s because it knows that Hebrew is read right-to-left, so any
time it encounters Hebrew Unicode letters, it displays them right-to-left. Put your cursor in the middle of the letters — the left and
right arrow keys reversed! That makes it a lot easier if you need to type in Hebrew. Now run the code, and look closely at the
output: ff fe e9 05 dc 05 d5 05 dd 05. The first two characters are “FF FE”, which is the Unicode way of saying that we’re
going to have a string of two-byte characters. The rest of the bytes are the Hebrew letters — but they’re reversed, so U+05E9
appears as e9 05. Now open the file up in your simple text editor — it looks right!

C# can use byte arrays to move data around
Since all your data ends up encoded as bytes, it makes sense to think of a file as one big byte array.
And you already know how to read and write byte arrays.

Use a BinaryWriter to write binary data
You could encode all of your strings, chars, ints, and floats into byte arrays before writing them out to
files, but that would get pretty tedious. That’s why .NET gives you a very useful class called
BinaryWriter that automatically encodes your data and writes it to a file. All you need to do is
create a FileStream and pass it into the BinaryWriter’s constructor (they’re in the System.IO
namespace, so you’ll need using System.IO;). Then you can call its methods to write out your data.
So let’s create a new Console Application that uses BinaryWriter to write binary data to a file.

NOTE

StreamWriter also encodes your data. It just specializes in text and text encoding.

DO THIS!

➊ Start by creating a Console Application and setting up some data to write to a file.

int intValue = 48769414;
string stringValue = "Hello!";
byte[] byteArray = { 47, 129, 0, 116 };
float floatValue = 491.695F;
char charValue = 'E';

➋ To use a BinaryWriter, first you need to open a new stream with File.Create():

NOTE

If you use File.Create(), it’ll start a new file — if there’s one there already, it’ll blow it away and start a brand-new one.
There’s also the File. OpenWrite() method, which opens the existing one and starts overwriting it from the beginning.

using (FileStream output = File.Create("binarydata.dat"))
using (BinaryWriter writer = new BinaryWriter(output)) {

➌ Now just call its Write() method. Each time you do, it adds new bytes onto the end of the file that contain an encoded version
of whatever data you passed it as a parameter.

SHARPEN YOUR PENCIL

➍ Now use the same code you used before to read in the file you just wrote.

byte[] dataWritten = File.ReadAllBytes("binarydata.dat");
foreach (byte b in dataWritten)
 Console.Write("{0:x2} ", b);
Console.WriteLine(" - {0} bytes", dataWritten.Length);

Console.ReadKey();

Write down the output in the blanks below. Can you figure out what bytes correspond to each of the five Write() statements?
Mark each group of bytes with the name of the variable.

__ - ___ bytes

NOTE

Here’s a hint: strings can be different lengths, so the string has to start with a number to tell
.NET how long it is. Also, you can look up the string and char Unicode values using Character
Map.

SHARPEN YOUR PENCIL SOLUTION

Use BinaryReader to read the data back in
The BinaryReader class works just like BinaryWriter. You create a stream, attach the
BinaryReader object to it, and then call its methods. But the reader doesn’t know what data’s in
the file! And it has no way of knowing. Your float value of 491.695F was encoded as d8 f5 43 45.
But those same bytes are a perfectly valid int — 1,140,185,334. So you’ll need to tell the
BinaryReader exactly what types to read from the file. Add the following code to your program, and
have it read the data you just wrote.

NOTE

Don’t take our word for it. Replace the line that reads the float with a call to ReadInt32(). (You’ll need to change the type of
floatRead to int.) Then you can see for yourself what it reads from the file.

➊ Start out by setting up the FileStream and BinaryReader objects:
using (FileStream input = File.OpenRead("binarydata.dat"))
using (BinaryReader reader = new BinaryReader(input)) {

➋ You tell BinaryReader what type of data to read by calling its different methods.

➌ You tell BinaryReader what type of data to read by calling its different methods.

Here’s the output that gets printed to the console:
int: 48769414 string: Hello! bytes: 47 129 0 116 float: 491.695 char: E

You can read and write serialized files manually, too
Serialized files don’t look so pretty when you open them up in Notepad. You’ll find all the files you
write in your project’s bin\Debug folder — let’s take a minute and get more acquainted with the inner
workings of a serialized file.

DO THIS!

➊ Serialize two Card objects to different files.
Use the serialization code you’ve already written to serialize the Three of Clubs to three-c.dat and Six of Hearts to six-h.dat.
Check to make sure that both files were written out and are now in a folder, and that they both have the same file size. Then open
one of them in Notepad:

➋ Write a loop to compare the two binary files.
We used the ReadByte() method to read the next byte from a stream — it returns an int that contains the value of that byte. We
also used the stream’s Length field to make sure we read the whole file.

WATCH IT!

When you write to a file, you don’t always start from a clean slate!

Be careful if you use File.OpenWrite(). It doesn’t delete the file — it just starts overwriting the data starting at the
beginning. That’s why we’ve been using File.Create() — it creates a new file.

 We’re not done yet — flip the page!

Find where the files differ, and use that information to alter them
The loop you just wrote pinpoints exactly where the two serialized Card files differ. Since the only
difference between the two objects were their Suit and Value fields, then that should be the only
difference in their files, too. So if we find the bytes that hold the suit and value, we should be able to
change them to make a new card with whatever suit and value we want!

➌ Take a look at the console output to see how the two files differ.
The console should show that two bytes differ:

That should make a lot of sense! Go back to the Suits enum from the last chapter, and you’ll find
the value for Clubs is 1 and the value for Hearts is 3, so that’s the first difference. And the second
difference — six versus three — is pretty obviously the card’s value. You might see different byte
numbers, which isn’t surprising: you might be using a different namespace, which would change
the length of the file.

NOTE

Hmm, if byte #307 in the serialized file represents the suit, then we should be able to change the suit of the card by reading that
file in, changing that one byte, and writing it out again. (Remember, your own serialized file might store the suit at a different
location.)

➍ Write code to manually create a new file that contains the King of Spades.
We’ll take one of the arrays that we read, alter it to contain a new card, and write it back out.

Now deserialize the card from king-s.dat and see if it’s the King of Spades!

Working with binary files can be tricky
What do you do if you have a file and you aren’t quite sure what’s inside it? You don’t know what
application created it, and you need to know something about it — but when you open it in Notepad, it
looks like a bunch of garbage. What if you’ve exhausted all your other options, and really need to just
look inside? Looking at that picture, it’s pretty clear that Notepad just isn’t the right tool.

There’s another option — it’s a format called a hex dump, and it’s a pretty standard way to look at
binary data. It’s definitely more informative than looking at the file in Notepad. Hexadecimal — or
“hex” — is a convenient way to display bytes in a file. Every byte takes 2 characters to display in
hex, so you can see a lot of data in a really small space, and in a format that makes it easy to spot
patterns. Also, it’s useful to display binary data in rows that are 8, 16, or 32 bytes long because most
binary data tends to break down in chunks of 4, 8, 16, or 32...like all the types in C#. For example, an
int takes up 4 bytes, and is 4 bytes long when serialized on disk. Here’s what that same file looks
like as a hex dump, using one of any number of free hex dump programs available for Windows:

Use file streams to build a hex dumper
A hex dump is a hexadecimal view of the contents of a file, and it’s a really common way for
programmers to take a deep look at a file’s internal structure. Most operating systems ship with a
built-in hex dump utility. Unfortunately, Windows doesn’t. So let’s build one!

How to make a hex dump
Start with some familiar text:

We the People of the United States, in Order to form a more perfect Union...

Here’s what a hex dump of that text would look like:

Each of those numbers — 57, 65, 6F — is the value of one byte in the file. The reason some of the
“numbers” have letter values is that they’re hexadecimal (or hex). That’s just another way of writing
a number. Instead of using 10 digits from 0 to 9, it uses 16 digits from 0 to 9 plus the letters A through
F.
Each line in our hex dump represents 16 characters in the input that was used to generate it. In our
dump, the first four characters are the offset in the file — the first line starts at character 0, the next at
character 16 (or hex 10), then character 32 (hex 20), etc. (Other hex dumps look slightly different, but
this one will do for us.)

Working with hex
You can put hex numbers directly into your program — just add the characters 0x (a zero followed by
an x) in front of the number:

int j = 0x20;
MessageBox.Show("The value is " + j);

When you use the + operator to concatenate a number into a string, it gets converted to decimal. You
can use the static String.Format() method to convert your number to a hex-formatted string instead:

string h = String.Format("{0:x2}", j);

NOTE

String.Format() uses parameters just like Console.WriteLine(), so you don’t need to learn anything new to use it.

StreamReader and StreamWriter will do just fine (for now)
Our hex dumper will write its dump out to a file, and since it’s just writing text a StreamWriter will
do just fine. But we can also take advantage of the ReadBlock() method in StreamReader. It reads a
block of characers into a char array — you specify the number of characters you want to read, and
it’ll either read that many characters or, if there are fewer than that many left in the file, it’ll read the
rest of the file. Since we’re displaying 16 characters per line, we’ll read blocks of 16 characters.

NOTE

The reason the method’s called ReadBlock() is that when you call it, it “blocks” (which means it keeps executing and doesn’t return
to your program) until it’s either read all the characters you asked for or run out of data to read.

So add one more button to your program — add this hex dumper to it. Change the first two lines so
that they point to real files on your hard drive. Start with a serialized Card file — copy it to a folder,
then put its path in the StreamReader’s constructor.

Use Stream.Read() to read bytes from a stream
Do this
The hex dumper works just fine for text files. But there’s a problem. Try using
File.WriteAllBytes() to write an array of bytes with values over 127 to a file and then run it
through your dumper. Uh oh — they’re all read in as “fd”! That’s because StreamReader is built to
read text files, which only contain bytes with values under 128. So let’s do this right — by reading
the bytes directly from the stream using the Stream.Read() method. And as a bonus, we’ll build it
just like a real hex dump utility: we’ll make it take a filename as a command-line argument.
Create a new Console Application and call it HexDumper. The code for the program is on the facing
page. Here’s what it will look like when you run the program:

USING COMMAND-LINE ARGUMENTS

Every time you create a new Console Application project, Visual Studio creates a Program class with an entry point method that has
this declaration: static void Main(string[] args). If you run your program with command-line arguments, the args parameter will
contain those arguments. And it’s not just for Console Applications, either: open up any Windows Forms Application project’s
Program.cs file, and you’ll see the same thing.

You’ll want to pass command-line arguments when you’re debugging your program. To pass arguments when you run your program
in the IDE’s debugger, choose “Properties...” from the Project menu and enter them on the Debug tab.

NOTE

If you use Start Without Debugging (Ctrl-F5) from the Debug menu to run a Console App, you’ll get a convenient pause
and a “Press any key to continue...” prompt after the program exits.

THERE ARE NO DUMB QUESTIONS

Q: Q: Why didn’t I have to use the Close() method to close the file after I used File.ReadAllText() and File.WriteAllText()?

A: A: The File class has several very useful static methods that automatically open up a file, read or write data, and then close it automatically. In
addition to the ReadAllText() and WriteAllText() methods, there are ReadAllBytes() and WriteAllBytes(), which work with byte arrays, and
ReadAllLines() and WriteAllLines(), which read and write string arrays, where each string in the array is a separate line in the file. All of these methods
automatically open and close the streams, so you can do your whole file operation in a single statement.

Q: Q: If the FileStream has methods for reading and writing, why do I ever need to use StreamReader and StreamWriter?

A: A: The FileStream class is really useful for reading and writing bytes to binary files. Its methods for reading and writing operate with bytes and byte
arrays. But a lot of programs work exclusively with text files — like the first version of the Excuse Generator, which only wrote strings out to files.
That’s where the StreamReader and StreamWriter come in really handy. They have methods that are built specifically for reading and writing lines of text.
Without them, if you wanted to read a line of text in from a file, you’d have to first read a byte array and then write a loop to search through that array
for a linebreak — so it’s easy to see how they make your life easier.

Q: Q: When should I use File, and when should I use FileInfo?

A: A: The main difference between the File and FileInfo classes is that the methods in File are static, so you don’t need to create an instance of them. On
the other hand, FileInfo requires that you instantiate it with a filename. In some cases, that would be more cumbersome, like if you only need to
perform a single file operation (like just deleting or moving one file). On the other hand, if you need to do many file operations to the same file, then it’s
more efficient to use FileInfo, because you only need to pass it the filename once. You should decide which one to use based on the particular situation
you encounter.
In other words, if you’re doing one file operation, use File. If you’re doing a lot of file operations in a row, use FileInfo.

Q: Q: Back up a minute. Why was “Eureka!” written out with one byte per character, but when I wrote out the Hebrew letters they took up two
bytes? And what was that “FF FE” thing at the beginning of the bytes?

A: A: What you’re seeing is the difference between two closely related Unicode encodings. Plain English letters, numbers, normal punctuation marks, and
some standard characters (like curly brackets, ampersands, and other things you see on your keyboard) all have very low Unicode numbers — between
0 and 127. (If you’ve used ASCII before, they’re the same as the ASCII characters.) If a file only contains those Unicode characters with low numbers,
it just prints out their bytes.
Things get a little more complicated when you add higher-numbered Unicode characters into the mix. One byte can only hold a number between 0 and
255. But two bytes in a row can store numbers between 0 and 65,536 — which, in hex, is FFFF. The file needs to be able to tell whatever program
opens it up that it’s going to contain these higher-numbered characters. So it puts a special reserved byte sequence at the beginning of the file: FF FE.
That’s called the byte order mark. As soon as a program sees that, it knows that all of the characters are encoded with two bytes each. (So an E is
encoded as 00 45 — with leading zeroes.)

Q: Q: Why is it called a byte order mark?

A: A: Remember how your bytes were reversed? Shin’s Unicode value of U+05E9 was written to the file as E9 05. That’s called “little endian.” Go back to
the code that wrote out those bytes and change the third parameter to WriteAllText(): Encoding.BigEndianUnicode. That tells it to write the data out in
“big endian,” which doesn’t flip the bytes around. You’ll see the bytes come out as “05 E9” this time. You’ll also see a different byte order mark: FE
FF. And your simple text editor is smart enough to read both of them!

If you’re writing a string that only has Unicode characters with low numbers, it writes one byte per character. But if it’s got high-
numbered characters, they’ll be written using two or more bytes each.

NO TE

The encoding is called UTF-8, which .NET uses by default. You can tell File.WriteAllText() to use a different
encoding by passing it a different encoding value. You can learn more about Unicode encodings at
http://unicode.org.

http://unicode.org

EXERCISE

Change Brian’s Excuse Manager so it uses binary files with serialized Excuse objects instead of text files.

➊ Make the Excuse class serializable.
Mark the Excuse class with the [Serializable] attribute to make it serializable. Also, you’ll need to add the using line: using
System.Runtime.Serialization.Formatters.Binary;

➋ Change the Excuse.Save() method to serialize the excuse.
When the Save() method writes a file out to the folder, instead of using StreamWriter to write the file out, have it open a file and
serialize itself out. You’ll need to figure out how the current class can deserialize itself.

NOTE

Hint: What keyword can you use inside of a class that returns a reference to itself?

➌ Change the Excuse.OpenFile() method to deserialize an excuse.
You’ll need to create a temporary Excuse object to deserialize from the file, and then copy its fields into the current class.
➍ Now just change the form so it uses a new file extension.
There’s just one very small change you need to make to the form. Since we’re no longer working with text files, we shouldn’t use
the .txt extension anymore. Change the dialog boxes, default filenames, and directory search code so that they work with
*.excuse files instead.

That’s right! Your code was very easy to change because the class was well encapsulated.
When you’ve got a class that hides its internal operations from the rest of the program and only
exposes the behavior that needs to be exposed, it’s called a well-encapsulated class. In the Excuse
Manager program, the form doesn’t have any information about how excuses are saved to files. It just
passes a filename into the excuse class, and the class takes care of the rest. That makes it very easy to
make big changes to how your class works with files. The better you encapsulate your classes, the
easier they are to alter later on.

NOTE

Remember how encapsulation was one of the four core OOP principles? Here’s an example of how using those principles makes
your programs better.

EXERCISE SOLUTION

Change Brian’s Excuse Manager so it uses binary files with serialized Excuse objects instead of text files.

NOTE

You only need to change these three statements in the form: two in the Save button’s
Click event, and one in the Open button’s — they just change the dialogs to use the
.excuse extension, and set the default save filename.

FILECROSS

Across Down

6. The method in the File class that checks whether or not a specific file is
on the drive

9. This statement indicates the end of a case inside a switch statement

10. The abstract class that FileStream inherits from

11. A nonvisual control that lets you pop up the standard Windows Save
As dialog box

15. How you write numbers in base-16

16. If you don’t call this method, your stream could be locked open so
other methods or programs can’t open it

17. The StreamReader method that reads data into a char[] array

18. An encoding system that assigns a unique number to each character

19. Use this statement to indicate which statements should be executed
when the value being tested in a switch statement does not match any of
the cases

1. This class has a method that writes a type to a file

2. The static method in the Array class that turns an array
backward

3. The event handler that gets run whenever someone
modifies the data in an input control

4. This class has many static methods that let you
manipulate folders

5. Using this OOP principle makes it a lot easier to
maintain your code

7. If you don’t use this attribute to indicate that a class
can be written to a stream, BinaryFormatter will generate
an error

8. This BinaryFormatter method reads an object from a
stream

12. \n and \r are examples of this kind of sequence

13. This class lets you perform all the operations in the
File class for a specific file

14. This method sends text to a stream followed by a
line break

FILECROSS SOLUTION

Part II. C# Lab: The Quest
Name: ____________________ Date: ____________________

This lab gives you a spec that describes a program for you to build, using the knowledge you’ve
gained over the last few chapters.
This project is bigger than the ones you’ve seen so far. So read the whole thing before you get started,
and give yourself a little time. And don’t worry if you get stuck — there’s nothing new in here, so you
can move on in the book and come back to the lab later.
We’ve filled in a few design details for you, and we’ve made sure you’ve got all the pieces you
need...and nothing else.
It’s up to you to finish the job. There are too many ways to build this lab for us to you a “right”
answer. But if you need a hint, other readers have claimed their bragging rights by publishing their
solutions on CodePlex, GitHub, and other collaborative source code hosting sites.

The spec: build an adventure game
Your job is to build an adventure game where a mighty adventurer is on a quest to defeat level after
level of deadly enemies. You’ll build a turn-based system, which means the player makes one move
and then the enemies make one move. The player can move or attack, and then each enemy gets a
chance to move and attack. The game keeps going until the player either defeats all the enemies on all
seven levels or dies.

It’s possible to build Windows Desktop programs that automatically scale to any size display, but that’s beyond the scope
of what we’re teaching. (You’ll learn all about how to do that with XAML in the next chapter, but that obviously won’t help
with WinForms.) However, this means that the inventory PictureBoxes, GroupBoxes, and TableLayoutPanel on the form
may look right in the designer, but end up in strange places when you run the program. Just drag them so they look right
for your screen when you run the program.

The player picks up weapons...
There are weapons and potions scattered around the dungeon that the player can pick up and use to
defeat his enemies. All he has to do is move onto a weapon, and it disappears from the floor and
appears in his inventory.

...and attacks enemies with them
Every level in the game has a weapon that the player can pick up and use to defeat his enemies. Once
the weapon’s picked up, it should disappear from the game floor.

Higher levels bring more enemies
There are three different kinds of enemies: a bat, a ghost, and a ghoul. The first level has only a bat.
The seventh level is the last one, and it has all three enemies.

The design: building the form
The form gives the game its unique look. Use the form’s BackgroundImage property to display the
image of the dungeon and the inventory, and a series of PictureBox controls to show the player,
weapons, and enemies in the dungeon. You’ll use a TableLayoutPanel control to display the hit points
for the player, bat, ghost, and ghoul as well as the buttons for moving and attacking.

Use the form’s BackgroundImage property to set the background image to the dungeon graphic. When you do this, setting
controls’ background colors to Transparent shows the background behind them. Set the BackgroundImageLayout property
to Stretch and the FormBorderStyle property to FixedSingle, then stretch out the form until there’s enough room to add
the GroupBoxes and Buttons to the form.

Download the background image and the graphics for the weapons, enemies, and player from the Head First Labs
website: www.headfirstlabs.com/books/hfcsharp

http://www.headfirstlabs.com/books/hfcsharp

Everything in the dungeon is a PictureBox
Players, weapons, and enemies should all be represented by icons. Add nine PictureBox controls, and
set their Visible properties to False. Then, your game can move around the controls, and toggle
their Visible properties as needed.

The inventory contains PictureBox controls, too
You can represent the inventory of the player as five 50×50 PictureBox controls. Set the BackColor
property of each to Color.Transparent (if you use the Properties window to set the property, just
type it into the BackColor row). Since the picture files have a transparent background, you’ll see the
scroll and dungeon behind them:

Build your stats window
The hit points are in a TableLayoutPanel, just like the attack and movement buttons. For the hit
points, create two columns in the panel, and drag the column divider to the left a bit. Add four rows,
each 25% height, and add in Label controls to each of the eight cells:

The architecture: using the objects
You’ll need several types of objects in your game: a Player object, several subclasses of an Enemy
object, and several subclasses of a Weapon object. And you’ll also need one object to keep up with
everything that’s going on: the Game object.

The Game object handles turns
When one of your form’s movement buttons is clicked, the form will call the Game object’s Move()
method. That method will let the player take a turn, and then let all the enemies move. So it’s up to
Game to handle the turn-based movement portion of the game.
For example, here’s how the move buttons work:

Gameplay concerns are separated into the Game object
Movement, attacking, and inventory all begin in the form. So clicking a movement or attack button, or
an item in inventory, triggers code in your form. But it’s the Game object that controls the objects in
the game. So the form has to pass on anything that happens to the Game object, and then the Game
object takes it from there:

Building the Game class
We’ve gotten you started with the Game class in the code below. There’s a lot for you to do — so read
through this code carefully, get it into the IDE, and get ready to go to work:

Finish the rest of the levels
It’s your job to finish the NewLevel() method. Here’s the breakdown for each level:

Level Enemies Weapons

2 Ghost Blue potion

NO TE

We’ve only got room in the inventory for one blue potion and one red potion. So if the player already has a red
potion, then the game shouldn’t add a red potion to the level (and the same goes for the blue potion).

So if the blue potion is still in the player’s inventory from Level 2, nothing appears on this level.

3 Ghoul Bow

4 Bat,
Ghost

Bow, if not picked up on 3; otherwise, blue potion

5 Bat,
Ghoul

Red potion

6 Ghost,
Ghoul

Mace

7 Bat,
Ghost,
Ghoul

Mace, if not picked up on 6; otherwise, red potion

NO TE

This only appears if the red potion from Level 5 has already been used up.

8 N/A N/A - end the game with Application.Exit()

Finding common behavior: movement
You already know that duplicate code is bad, and duplicate code usually shows up when two or more
objects share the same behavior. Well, you’ve got a player that moves and enemies that move, so
you’ll need a way to avoid having the same movement code duplicated in all of those classes.
Create an abstract Mover class to put that common behavior into a single place. Player and Enemy
will inherit from Mover. And even though weapons don’t move around much, they have a location and
need to be placed in the dungeon, so they’ll inherit from Mover, too. Mover has a Move() method for
moving around the dungeon, and a read-only Location property that the form can use to position a
subclass of Mover.

Add a Direction enum
The Mover class, as well as several other classes, need a Direction enum. Create this enum, and
give it four enumerated values: Up, Down, Left, and Right.

The Mover class source code
Here’s the code for Mover:

The Player class keeps track of the player
Here’s a start on the Player class. Start with this code in the IDE, and then get ready to add to it.

NOTE

The Player and Enemy objects need to stay inside the dungeon, which means they need to know the boundaries of the playing area.
Use the Contains() method of the boundaries Rectangle to make sure they don’t move out of bounds.

Write the Move() method for the Player
Game calls the Player’s Move() method to tell a player to move in a certain direction. Move() takes
the direction to move as an argument (using the Direction enum you should have already added).
Here’s the start of that method:

NOTE

This happens when one of the movement buttons on the form is clicked.

You’ll fill in the rest of this method. Check and see if the weapon is near the player (within a single
unit of distance). If so, pick up the weapon and add it to the player’s inventory.

NOTE

When the player picks up a weapon, it needs to disappear from the dungeon and appear in the inventory.

The Weapon and form will handle making the weapon’s PictureBox invisible when the player picks it up...that’s not the job of the
Player class.

If the weapon is the only one that the player has, go ahead and equip it immediately. That way, the
player can use it right away, on the next turn.

Add an Attack() method, too
Next up is the Attack() method. This is called when one of the form’s attack buttons is clicked, and
carries with it a direction (again, from the Direction enum). Here’s the method signature:

NOTE

The weapons all have an Attack() method that takes a Direction enum and a Random object. The player’s Attack() will figure out
which weapon is equipped and call its Attack().

If the weapon is a potion, then Attack() removes it from the inventory after the player drinks it.

public void Attack(Direction direction, Random random) {
 // Your code goes here
}

If the player doesn’t have an equipped weapon, this method won’t do anything. If the player does have
an equipped weapon, this should call the weapon’s Attack() method.
But potions are a special case. If a potion is used, remove it from the player’s inventory, since it’s not
available anymore.

NOTE

Potions will implement an IPotion interface (more on that in a minute), so you can use the “is” keyword to see if a Weapon is an
implementation of IPotion.

Bats, ghosts, and ghouls inherit from the Enemy class
We’ll give you another useful abstract class: Enemy. Each different sort of enemy has its own class
that inherits from the Enemy class. The different kinds of enemies move in different ways, so the
Enemy abstract class leaves the Move method as an abstract method — the three enemy classes will
need to implement it differently, depending on how they move.

Write the different Enemy subclasses
The three subclasses of Enemy are pretty straightforward. Each enemy has a different number of
starting hit points, moves differently, and does a different amount of damage when it attacks. You’ll
need to have each one pass a different startingHitPoints parameter to the Enemy base constructor,
and you’ll have to write different Move() methods for each subclass.
Here’s an example of how one of those classes might look:

The bat starts with six hit points. It’ll keep moving toward the player and attacking as long as it has
one or more hit points. When it moves, there’s a 50% chance that it’ll move toward the player, and a
50% chance that it’ll move in a random direction. After the bat moves, it checks if it’s near the player
— if it is, then it attacks the player with up to two hit points of damage.

NOTE

The bat flies around somewhat randomly, so it uses Random to fly in a random direction half the time.

Once an enemy has no more hit points, the form will no longer display it. But it’ll still be in the game’s Enemies list until the player
finishes the level.

We’ll have to make sure the form sees if an enemy should be visible at every turn.

The ghost is harder to defeat than the bat. But like the bat, it will only move and attack if its hit points
are greater than zero. It starts with eight hit points. When it moves, there’s a one in three chance that
it’ll move toward the player, and a two in three chance that it’ll stand still. If it’s near the player, it
attacks the player with up to three hit points of damage.
The ghoul is the toughest enemy. It starts with 10 hit points, and only moves and attacks if its hit points
are greater than zero. When it moves, there’s a two in three chance that it’ll move toward the player,
and a one in three chance that it’ll stand still. If it’s near the player, it attacks the player with up to
four hit points of damage.

NOTE

The ghost and ghoul use Random to make them move more slowly than the player.

Weapon inherits from Mover; each weapon inherits from Weapon
We need a base Weapon class, just like we had a base Enemy class. And each weapon has a location,
as well as a property indicating whether or not it’s been picked up. Here’s the base Weapon class:

We gave you a simple DamageEnemy() method that checks a series of points in the direction the weapon is attacking, and
returns true if an enemy is near that point. Take a close look at the iterator in the for loop (distance < radius / 2). Can
you figure out why we’re dividing the weapon’s radius by 2? The Nearby() method in the Mover class takes only two
parameters, a Point and an int, compares the Point to the current location, and returns true if the Point is near the
location. For the DamageEnemy calculation, you’ll need to add an overloaded Nearby() method that compares two points and
returns true if they’re within the specified distance of each other. You’ll also need an overloaded Move method to move a
Point in a direction and return the new Point. Can you figure out how to modify the Nearby() and Move() methods so that
the overloaded methods don’t duplicate code?

Different weapons attack in different ways
Each subclass of Weapon has its own name and attack logistic. Your job is to implement these classes.
Here’s the basic skeleton for a Weapon subclass:

NOTE

The player can use the weapons over and over — they never get dropped or used up.

The sword is the first weapon the player picks up. It’s got a wide angle of attack: if he attacks up, then it first tries to attack an
enemy that’s in that direction. If there’s no enemy there, it looks in the direction that’s clockwise from the original attack and
attacks any enemy there. If it still fails to hit, then it attempts to attack an enemy counterclockwise from the original direction of
attack. It’s got a radius of 10, and causes 3 points of damage.

NO TE

Think carefully about this...what is to the right of the direction left? What is to the left of up?

The bow has a very narrow angle of attack, but it’s got a very long range — it’s got an attack radius of 30, but only causes 1 point
of damage. Unlike the sword, which attacks in three directions (because the player swings it in a wide arc), when the player shoots
the bow in a direction, it only shoots in that one direction.

The mace is the most powerful weapon in the dungeon. It doesn’t matter in which direction the player attacks with it — since he
swings it in a full circle, it’ll attack any enemy within a radius of 20 and cause up to 6 points of damage.

NOTE

The different weapons will call DamageEnemy() in various ways. The Mace attacks in all directions, so if the player’s attacking to
the right, it’ll call DamageEnemy(Direction.Right, 20, 6, random). If that didn’t hit an enemy, it’ll attack Up. If there’s no enemy there,
it’ll try Left, then Down — that makes it swing in a full circle.

Potions implement the IPotion interface
There are two potions, a blue potion and a red potion, which increase the player’s health. They act
just like weapons — the player picks them up in the dungeon, equips them by clicking on the
inventory, and uses them by clicking one of the attack buttons. So it makes sense for them to inherit
from the abstract Weapon class.
But potions act a little differently, too, so you’ll need to add an IPotion interface so they can have
extra behavior: increasing the player’s health. The IPotion interface is really simple. Potions only
need to add one read-only property called Used that returns false if the player hasn’t used the
potion, and true if he has. The form will use it to determine whether or not to display the potion in
the inventory.

The BluePotion class’s Name property should return the string Blue Potion. Its Attack() method will be called when the player
uses the blue potion — it should increase the player’s health by up to five hit points by calling the IncreasePlayerHealth()
method. After the player uses the potion, the potion’s Used property should return true.

NO TE

If the player picks up a blue potion on level 2, uses it, and then picks up another one on level 4, the game will end up creating two
different BluePotion instances.

The RedPotion class is very similar to BluePotion, except that its Name property returns the string Red Potion, and its Attack()
method increases the player’s health by up to 10 hit points.

The form brings it all together
There’s one instance of the Game object, and it lives as a private field in your form object. It’s created
in the form’s Load event, and the various event handlers in the form use the fields and methods on the
Game object to keep the game play going.
Everything begins with the form’s Load event handler, which passes the Game a Rectangle that
defines the boundaries of the dungeon play area. Here’s some form code to get you going:

USING A RECTANGLE

You’ll find a lot of Rectangles any time you work with WinForms. You can create one by passing it X, Y, Width, and Height values, or
two Points (for opposite corners). Once you’ve got a Rectangle value, you can also access its Left, Right, Top, and Bottom, as well as
its X, Y, Width, and Height values.

The form has a separate event handler for each of these PictureBox’s Click events. When the player
clicks on the sword, it first checks to make sure the sword is in the player’s inventory using the Game
object’s CheckPlayerInventory() method. If the player’s holding the sword, the form calls
game.Equip() to equip it. It then sets each PictureBox’s BorderStyle property to draw a box
around the sword, and make sure none of the other icons has a box around it.

There’s an event handler for each of the four movement buttons. They’re pretty simple. First, the button calls game.Move() with
the appropriate Direction value, and then it calls the form’s UpdateCharacters() method.

The four attack button event handlers are also really simple. Each button calls game.Attack(), and then calls the form’s
UpdateCharacters() method. If the player equips a potion, it’s still used the same way — by calling game.Attack() — but potions
have no direction. So make the Left, Right, and Down buttons invisible when the player equips a potion, and change the text on the
Up button to say Drink.

NOTE

Make sure you change the buttons back when the player equips the sword, bow, or mace.

The form’s UpdateCharacters() method moves the PictureBoxes
into position
The last piece of the puzzle is the form’s UpdateCharacters() method. Once all the objects have
moved and acted on each other, the form updates everything...so weapons that been dropped have
their PictureBoxes’ Visible properties set to false, enemies and players are drawn in their new
locations (and dead ones are made invisible), and inventory is updated.
Here’s what you need to do:

➊ UPDATE THE PLAYER’S POSITION AND STATS.
The first thing you’ll do is update the player’s PictureBox location and the label that shows his hit
points. Then you’ll need a few variables to determine whether you’ve shown each of the various
enemies.

➋ UPDATE EACH ENEMY’S LOCATION AND HIT POINTS.
Each enemy could be in a new location and have a different set of hit points. You need to update
each enemy after you’ve updated the player’s location:

Once you’ve looped through all the enemies on the level, check the showBat variable. If the bat
was killed, then showBat will still be false, so make its PictureBox invisible and clear its hit
points label. Then do the same for showGhost and showGhoul.
➌ UPDATE THE WEAPON PICTUREBOXES.
Declare a weaponControl variable and use a big switch statement to set it equal to the
PictureBox that corresponds to the weapon in the room.

The rest of the cases should set the variable weaponControl to the correct control on the form.
After the switch, set weaponControl.Visible to true to display it.
➍ SET THE VISIBLE PROPERTY ON EACH INVENTORY ICON PICTUREBOX.
Check the Game object’s CheckPlayerInventory() method to figure out whether or not to
display the various inventory icons.
➎ HERE’S THE REST OF THE METHOD.
The rest of the method does three things. First, it checks to see if the player’s already picked up the
weapon in the room, so it knows whether or not to display it. Then it checks to see if the player
died. And finally, it checks to see if the player’s defeated all of the enemies. If he has, then the
player advances to the next level.

The fun’s just beginning!
Seven levels, three enemies...that’s a pretty decent game. But you can make it even better. Here are a
few ideas to get you started....

Make the enemies smarter.
Can you figure out how to change the enemies’ Move() methods so that they’re harder to defeat?
Then see if you can change their constants to properties, and add a way to change them in the
game.
Add more levels.
The game doesn’t have to end after seven levels. See if you can add more...can you figure out how
to make the game go on indefinitely? If the player does win, make a cool ending animation with
dancing ghosts and bats! And the game ends pretty abruptly if the player dies. Can you think of a
more user-friendly ending? Maybe you can let the user restart the game or retry his last level.
Add different kinds of enemies.
You don’t need to limit the dangers to ghouls, ghosts, and bats. See if you can add more enemies.
Add more weapons.
The player will definitely need more help defeating any new enemies you’ve added. Think of new
ways that the weapons can attack, or different things that potions can do. Take advantage of the fact
that Weapon is a subclass of Mover — make magic weapons the player has to chase around!
Add more graphics.
You can go to www.headfirstlabs.com/books/hfcsharp/ to find more graphics files for additional
enemies, weapons, and other images to help spark your imagination.
Make it an action game.
Here’s an interesting challenge. Can you figure out how to use the KeyDown event and Timer you
used in the Key Game in Chapter 4 to change this from a turn-based game into an action game?
This is your chance to show off! Did you come up with a cool new version of the game? Post it to CodePlex or another
project hosting site. Then join the Head First C# forum and post about it to claim your bragging rights:
http://www.headfirstlabs.com/books/hfcsharp/

http://www.headfirstlabs.com/books/hfcsharp/
http://www.headfirstlabs.com/books/hfcsharp/

Chapter 10. Designing Windows Store Apps
with XAML: Taking your apps to the next level

You’re ready for a whole new world of app development.
Using WinForms to build Windows Desktop apps is a great way to learn important C# concepts, but
there’s so much more you can do with your programs. In this chapter, you’ll use XAML to design
your Windows Store apps, you’ll learn how to build pages to fit any device, integrate your data into
your pages with data binding, and use Visual Studio to cut through the mystery of XAML pages by
exploring the objects created by your XAML code.

Brian’s running Windows 8
Too bad Brian’s old-fashioned, old-style desktop app looks so outdated! He’s sick of poking at tiny
checkboxes in the desktop. Brian wants his excuse generator to be a true Windows app. Can we give
him one?

B EHIND THE SCENES

Do this!

Want to get these ideas into your brain fast? Then do these things before starting this chapter!

Windows Store apps are more complex than WinForms programs. That’s why WinForms are a really effective teaching
tool, but not nearly as effective for building killer apps. It’s useful to take a step back and think about how you’re
learning, because that will help you learn more effectively. Let’s do that now.

You’ve laid down a good foundation of core knowledge about C#, objects, collections, and other .NET tools. Now we’ll
get back to building Windows Store apps with XAML. Over the next few pages, we’re going to use the IDE to explore
the objects that WinForms programs create and manage. Try to stay aware of what’s different — and, just as importantly,
what’s the same — when exploring those objects, and then when you use the IDE to explore the objects that make up a
Windows Store app built with XAML.

Before you continue on with this chapter, do these things:

We spent Chapter 1 and much of Chapter 2 introducing you to building Windows Store apps with XAML and the .NET Framework
for Windows Store. We’re going to build on knowledge from those chapters. If you want the best learning experience, we recommend
that you do a few things:

Switching gears from WinForms back to XAML is totally fine for some people, but for others it’s really jarring. This will help
you get these ideas into your brain faster!
Go back to Chapter 1 and build the Save the Humans game again from scratch. This time, make sure you type in all of the
code.
And actually read the code! There are still some things in it that we haven’t covered yet, but you should recognize enough of it to
start to lay down a good mental foundation.
Try to piece together how the game works. Don’t give yourself a hard time, though. Like we said, there’s still a lot we haven’t
covered yet.
Pay special attention to what you do with the Basic Page template and how you swap it in for the default MainPage.xaml,
because you’ll be doing that several times in this chapter.
Redo the XAML projects in Chapter 2, too. Even the exercise. Now you’re ready!

NOTE

One more thing...

You haven’t covered 100% of what WinForms apps can do. In fact, WinForms has a graphics engine called GDI+ that’s
capable of surprisingly good graphics, printing, and user interaction (but it’s lot more work than doing the same thing in
XAML). One of the most important ways to learn programming principles is to see the same thing done in more than
one way.

SCAVENGER HUNT!

You’ve learned a whole bunch of important C# concepts since you built Save the Humans in Chapter 1, and you’ve gotten plenty of
practice using them. Now it’s time to put on your detective hat and test your sleuthing skills. See if you can find all of these C# items
in the Save the Humans code. We got you started with one of the answers. Can you find the rest?

(Some of these items have more than one correct answer.)

 Use a string as a key to look up an object in a Dictionary.

__

__

__

 Use an object initializer.

__

__

__

 Add two different types of object to the same collection.

__

__

__

 Call a static method.

__

__

__

 Use an event handler method.

__

__

__

 Use the as keyword to downcast an object.

__

__

__

 Pass a reference to an object into a method.

__

__

__

 Instantiate an object and one of its methods.

_A new StoryBoard object is instantiated in the_______

_AnimateEnemy() method, and its Begin() method is___

_called._____________________________________

 Use an enum to assign a value.

__

__

__

SCAVENGER HUNT! SOLUTION

You’ve learned a whole bunch of important C# concepts since you built Save the Humans in Chapter 1, and you’ve gotten plenty of
practice using them. Now it’s time to put on your detective hat and test your sleuthing skills. See if you can find all of these C# items
in the Save the Humans code. We got you started with one of the answers. Can you find the rest?

(Some of these items have more than one correct answer.)

NOTE

These are the ones we found; you may have found others!

 Use a string as a key to look up an object in a Dictionary.

In the second line of the AddEnemy() method,____

the string “EnemyTemplate” is used to look up a___

ControlTemplate object in the Resources dictionary.

 Use an object initializer.

The From, To, and Duration properties of the_____

DoubleAnimation object are initialized with an object

initializer in the AnimateEnemy() method._________

 Add two different types of object to the same collection.

A StackPanel object (human) and a Rectangle object

(target) are added to the playArea.Children collection

in the StartGame() method.___________________

 Call a static method.

The static SetLeft() and SetTop() methods on the___

Canvas class are called in the target_PointerEntered()

event handler method.________________________

 Use an event handler method.

The Properties window is used to create an event

handler method for the PointerPressed event of the

“human” StackPanel.______________________

 Use the as keyword to downcast an object.

The Resources dictionary has the type <object, object>,

so the return value of Resources[“EnemyTemplate”] is

downcast to the specific type ControlTemplate._____

 Pass a reference to an object into a method.

A reference to a ContentControl object is passed as

the first parameter to the AnimateEnemy() method.__

__

 Instantiate an object and one of its methods.

A new StoryBoard object is instantiated in the

AnimateEnemy() method, and its Begin() method is

called.__________________________________

 Use an enum to assign a value.

The Visibility enum is used in the EndTheGame()

method to set startButton.Visibility to the value

Visibility.Collapsed._____________________

Windows Forms use an object graph set up by the IDE
When you create a Windows Desktop program, the IDE sets up your form and generates a bunch of
code in the Form1.Designer.cs file. But what’s actually in that file? There’s no mystery there. You
already know that each control that’s on your form is an object, and you know that you can store
references to objects in fields. So somewhere in that generated code is a field declaration for each
object, code to instantiate it, and code to display it on the form. Let’s go find those lines so we can
see exactly what’s going on with your forms.

➊ Open up the Simple Text Editor project you built in Chapter 9 and open Form1.Designer.cs.
Scroll to the bottom and find the field declarations. You should see one declaration for each
control:

➋ Expand the Windows Form Designer–generated code section and find the code that instantiates
the controls:

➌ Controls like the TableLayoutPanel and FlowLayoutPanel that contain other controls have a
public property called Controls. It’s a ControlCollection object, which in a lot of ways is
very similar to a List<Control> object. Every control on your form is a subclass of Control,
and adding it to a panel’s Controls collection causes it to draw itself inside that panel. Scroll
down and find where the Open and Save buttons are added to the FlowLayoutPanel:

The FlowLayoutPanel is in a cell in the TableLayoutPanel. Find where it and the TextBox are
added:

Your Form object is also a container, and it contains the TableLayoutPanel:

SHARPEN YOUR PENCIL

Look at the new and Controls.Add() statements that the IDE generated for the Simple Text Editor form and draw the object graph
that they create when they’re executed.

NOTE

You’ll need to open up the Form1.Designer.cs file in the code that you built for the Simple Text
Editor in Chapter 9.

SHARPEN YOUR PENCIL SOLUTION

Look at the new and Controls.Add() statements that the IDE generated for the Simple Text Editor form and draw the object graph
that they create when they’re executed.

NOTE

This is going to come in really handy when you’re doing exercises. Have a look at the other methods
in that Debug class, too.

 Debugging tip

System.Diagnostics.Debug.WriteLine() will write text to the output window while you’re debugging. You can use it just like you
used Console.WriteLine() in Windows Forms apps.

Use the IDE to explore the object graph
DO THIS!

Go back to your Simple Text Editor project and put a breakpoint on the call to InitializeComponent() in the form’s constructor, then
start debugging the program. When it hits the breakpoint, press F10 to step over the method. Then go to the Watch window and
enter this to explore the object graph.

Add a watch for tableLayoutPanel1.Controls and expand Results View to see the objects it
contains:

The System.Windows.Form class doesn’t actually have a Controls property. It inherits that property
from its superclass, ContainerControl, which inherits it from ScrollableControl, which inherits
it from Control. Keep expanding in the Watch window to move up the inheritance
hierarchy to System.Windows.Forms.Control. (That’s where Form inherits its Controls collection.)
Expand at the Controls collection’s Results View. You’ll see an object for each control on the form!
Expand “base” to see the properties an object inherits from its base class:

NOTE

That’s your last look at WinForms apps for a few chapters! We’ll come back to them a couple more times, though, because they do
make really good tools for learning and exploring C#.

Windows Store apps use XAML to create UI objects
DO THIS!

When you use XAML to build the user interface for a Windows Store app, you’re building out an object graph. And just like with
WinForms, you can explore it with IDE’s Watch window. Open the program from the Chapter 2 “practice using if-else
statements” exercise . Then open MainPage.xaml.cs, place a breakpoint on the first lne of changeText_Click(), and use the
IDE to explore the app’s UI objects .

➊ Start debugging, then press the button so the program hits the breakpoint. Visual Studio 2013 for Windows has a slightly
different window layout than VS2013 for Desktop because it has more features, including multiple watch windows (which comes
in handy when you need to watch many things). Choose Debug→Windows→Watch→Watch 1 to display one of the watch
windows and watch this:

➋ Now have another look at the XAML that defines the page:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Button x:Name="changeText" Content="Change the label if checked"
 HorizontalAlignment="Center" Click="changeText_Click"/>

 <CheckBox x:Name="enableCheckbox" Content="Enable label changing"
 HorizontalAlignment="Center" IsChecked="true"
 Grid.Column="1"/>

 <TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
 Text="Press the button to set my text"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Grid.ColumnSpan="2"/>
</Grid>

If you get deployment errors when you open your program from Chapter 2, try choosing “Clean” from the Build
menu.

The XAML that defines the controls on a page is turned into a Page object with fields and properties that
contain references to UI controls.

➌ Add some of the labelToChange properties to the Watch window:

The app automatically sets the properties based on your XAML:

<TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
 Text="Press the button to set my text" ←
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Grid.ColumnSpan="2"/>

But try putting labelToChange.Grid or labelToChange.ColumnSpan into the Watch window. The control is a
Windows.UI.Controls.TextBlock object, and that object doesn’t have those properties. Can you guess what’s going on with
those XAML properties?
➍ Place a breakpoint in the constructor. Then open MainPage.xaml.cs, and find the class declaration for MainPage. Take a look
at the declaration — it’s a subclass of Page. Hover over Page so the IDE:

Now start your program again and press F10 to step over the call to InitializeComponent(). Go back to the Watch window and
expand this >> base >> base to traverse back up the inheritance hierarchy.

Take a little time and explore the objects that your XAML generated. We’ll dig into some of these objects later on in the book. For
now, just poke around and get a sense of how many objects are behind your app.

If you used the WPF Learner’s Guide in Appendix B to build desktop versions of the projects in
Chapter 1 and Chapter 2, flip to the appendix now to find the replacement pages for Chapter 10
and beyond.

Redesign the Go Fish! form as a Windows Store app page
The Go Fish! game that you built in Chapter 8 would make a great Windows Store app. Open Visual
Studio 2013 for Windows and create a new Windows Store project, then delete MainPage.xaml
and replace it with a Basic Page (just like you did when you built Save the Humans). Over the next
few pages, you’ll redesign your Go Fish! game in XAML as a page that adjusts to different sized
devices. And instead of using Windows Desktop controls on a form, you’ll use Windows Store app
controls on a page.

DO THIS!

Here’s how those controls will look on the app’s main page:

The controls will be contained in a grid, with rows and columns that expand or contract based on the
size of the display. This will allow the game to shrink or grow to fit the screen. You can use the
Device window in the IDE to test different screen configurations.

Page layout starts with controls
XAML and WinForms have one thing in common: they both rely on controls to lay out your page. The
Go Fish! page has two buttons, a ListBox to show the hand, a TextBox for the user to enter the name,
and four TextBlock labels. It also has two ScrollViewer controls with a white background to display
the game progress and books.

The Basic Page template includes a grid that has two rows. The top row contains the header with the
app name. The second row holds the contents, which are defined by this grid. This whole grid will be
contained in row 1 of the Basic Page (it only has one column, column #0). Drag a out of the
Toolbox and drop it in the bottom part of the page to put it in the second row. Here’s the XAML —
you can find <Grid> that you just added to the page in the XAML window and modify it by hand, or
you can use the IDE to lay out the page:

We’ll use a StackPanel to put the TextBox for the player’s name and the Start button in one cell:

Each label on the page (“Your name,” “Game progress,” etc.) is a TextBlock with a small margin
above it and SubHeaderTextBlockStyle applied:

<TextBlock Text="Game progress"
 Style="{StaticResource SubheaderTextBlockStyle}"
 Margin="0,20,0,20" Grid.Row="2"/>

A ScrollViewer control displays the game progress, with scrollbars that appear if the text is too
big for the window:

<ScrollViewer Grid.Row="3" FontSize="24"

 Background="White" Foreground="Black" />

Here’s another TextBlock and ScrollViewer to display the books. The default vertical and
horizontal alignment for the ScrollViewer is Stretch, and that’s going to be really useful. We’ll
set up the rows and columns so the ScrollViewer controls expand to fit any screen size.

<TextBlock Text="Books" Style="{StaticResource SubheaderTextBlockStyle}"

 Margin="0,20,0,20" Grid.Row="4"/>

<ScrollViewer FontSize="24" Background="White" Foreground="Black"
 Grid.Row="5" Grid.RowSpan="2" />

We used a small 40-pixel column to add space, so the ListBox and Button controls need to go in
the third column. The ListBox spans rows 2 through 6, so we gave it Grid.Row="1" and
Grid.RowSpan="5" — this will also let the ListBox grow to fill the page.

The “Ask for a card” button has its horizontal and vertical alignment set to Stretch so that it fills
up the cell. The 20-pixel margin at the bottom of the ListBox adds a small gap.

<Button x:Name="askForACard" Content="Ask for a card"

HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
Grid.Row="6" Grid.Column="2"/>

We’ll finish this grid on the next page

Rows and columns can resize to match the page size
Grids are very effective tools for laying out pages because they help you design pages that can be
displayed on many different devices. Heights or widths that end in * adjust automatically to different
screen geometries. The Go Fish! page has three columns. The first and third have widths of 5* and 2*,
so they will grow or shrink proportionally and always keep a 5:2 ratio. The second column has a
fixed width of 40 pixels to keep them separated. Here’s how the rows and columns for the page are
laid out (including the controls that live inside them):

Here’s how the row and column definitions make the page layout work:

Use the grid system to lay out app pages
Ever notice how different Windows Store apps have a similar look? That’s because they use a grid
system to give every app what Microsoft designers call a “consistent silhouette.” The grid consists of
squares called units and subunits — and you’ve already seen them, because they’re built into the
IDE.

If you didn’t use these buttons at the bottom of the designer to turn on the grid lines, snapping, and snapping to grid lines
back in Chapter 1, use them now.

In the Go Fish! app, you use the Margin property in the <Grid> that contained all of your controls to
create the spacing. The Margin property consists of either one number (a thickness value for left, top,
right, and bottom), two numbers (where the first is left and right, and the second is top and bottom), or
four comma-separated numbers specifying left, top, right, and bottom thickness.
Your Go Fish! app’s main page has a left margin of 120 pixels (6 units), top margin of 0 pixels, and
right and bottom margins of 60 pixels (3 units):

<Grid Grid.Row="1" Margin="120,0,60,60">

It also has a 1-unit margin above and below each label:
<TextBlock Text="Books"
 Style="{StaticResource SubheaderTextBlockStyle}"
 Margin="0,20,0,20" Grid.Row="4"/>

THERE ARE NO DUMB QUESTIONS

Q: Q: What does setting the row height or column width to “Auto” do?

A: A: When you set a row’s Height property or a column’s Width property to Auto, that causes the row or column to expand or contract so that it exactly
fits its contents. You can try this out yourself to see how it works. Create a new Blank App, edit the grid in MainPage.xaml, and add a bunch of rows
and columns with heights and widths set to Auto. You won’t see anything in the designer because the rows and columns are empty and collapsed down
to zero height. Add controls with different heights to the cells, and you’ll see the rows and columns expand to fit the controls.

Q: Q: So how is that different from setting the row height or column width to 1*, 2*, or 5*?

A: A: Using the * for the row height or column width causes the rows or columns to expand proportionally to fill the entire grid. If you have three
columns with widths of 3*, 3*, and 4*, the 3* columns will have a width of 30% of the total grid width minus the fixed and auto columns, and the 4*
column will have 40% of that total.
This is one reason why the default width or height of 1* makes sense. If all of the rows or columns have that default setting, then they will evenly
distribute themselves as the grid grows or shrinks.

Q: Q: “Pixels.” You keep using that word. I do not think it means what you think it means.

A: A: Many XAML developers use the term pixel, but you’re right — technically you aren’t using the same kind of pixels you see on your screen. The
technical term for the numbers in the Margin, Height, Width, and other properties is device-independent unit. Windows Store apps need to work on
many different screen sizes and shapes, so no matter how big or small a device your app is displayed on, each device-independent unit will always be a
1/96th of an inch. A five-by-five square of these device-independent units combine to make a page layout subunit, and a four-by-four square of subunits
make a page layout unit. It’s a little confusing talking about units for page layout versus device-independent unit, so we’ll keep using the word pixel to
mean device-independent unit.
You can specify any XAML height or width in different units by adding in (inches), cm (centimeters), or pt (points, where a typographer’s point is
1/72nd of an inch). Try laying out a page using inches or centimeters. Then take a physical ruler and hold it up to your screen to prove to yourself that
Windows resizes your app properly.

Q: Q: Is there an easy way to make sure that my app looks good on many different monitors?

A: A: Yes, the IDE gives you useful tools for doing that. The IDE’s XAML page designer gives you a few different ways to see how your page will look
on different devices. You can use the Device window to show your page in different resolutions or split modes. And later on, we’ll show you how to
run your app in a simulator that lets you interact with your app in simulated devices that have various sizes and shapes.

When a row or column has a height or width of Auto, that tells it to grow or shrink to exactly fit its contents.

You can read more about laying out app pages in the Dev Center: http://msdn.microsoft.com/en-
us/library/windows/apps/hh872191.aspx

EXERCISE

Use XAML to redesign each of these Windows Desktop forms as Windows Store apps. Create a new Windows Store Blank App
project for each of them, add a new Basic Page item for each of these apps (just like you did for Save the Humans), and modify
each page by updating the grid and adding controls. You don’t need to get them working. Just create the XAML so they match the
screenshots.

http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx

Find the right spot in each Basic Page XAML to add your new Grid or StackPanel to contain the rest of the controls for the page.
You’ll add them to the second row (Grid.Row="1") of a newly added Blank Page.

XAML IS FLEXIB LE AB OUT TAG ORDER

We asked you to add the XAML code for your page layout below the row definitions because it’s an
easy location to find in your XAML file. Some developers like to keep the XAML code in the same
order that it’s displayed on the page. They might put it underneath the closing </Grid> tag for the
grid that contains the back button and page title instead. We encourage you to experiment with this,
because it’s good to get a feel for what seems most intuitive for you.

Use StackPanels to design this form. It’s broken into two groups. Subheaders have SubheaderTextBlockStyle applied, a 40-pixel
margin between groups, and a 20-pixel margin after the group header. The labels above the items have BodyTextBlockStyle applied,
and a 10-pixel margin above the item. There’s a 20-pixel margin between items.

Use a Grid to design this form. It has eight rows with height set to Auto so they expand to fit their contents. Use StackPanels to put
multiple controls in the same row.

Get your pages to look just like these screenshots by adding dummy data to the controls that would normally be filled in using the
methods and properties in your classes.

When you use the IDE’s “New Item...” option to add a Basic Page to your project, you might see an error message in
the designer because it’s expecting the project to be built. Rebuild the solution to make the error go away.

EXERCISE SOLUTION

Use XAML to redesign each of these Windows Desktop forms as Windows Store apps. Create a new Windows Store Blank App
project for each of them, add a new Basic Page item for each of these apps (just like you did for Save the Humans), and modify
each page by updating the grid and adding controls. You don’t need to get them working. Just create the XAML so they match the
screenshots.

B RAIN POWER

What do you think of this page layout? Would it make more sense to move the Add and Next buttons into a standard Windows 8 app
bar?

Data binding connects your XAML pages to your classes
Your TextBlocks, ScrollViewers, TextBoxes, and other controls are built for displaying data. When
you were using WinForms, you had to use properties to display text or add list items. That will work
with XAML too, but there’s another way: you can use data binding to automatically populate the
controls on your page with data. Even better, you can also use data binding to have your controls
update properties in your classes.

Data binding only works with properties. If you try to bind to a public field, you won’t see anything — and you won’t get an
error, either!

Context, path, and binding
Data binding in XAML is a relationship between the source property of an object that feeds data to a
control and the target property of the control that displays the data. To set up data binding, the
control’s data context must be set to a reference to the data object. The binding for the control must
be set to a binding path, which is the property on the object to bind to. Once these things are set, the
control will automatically read the source property and display the data as its content.
To set up data binding in XAML, set the property that you want to bind to {Binding Path}:

Then you just need an object to bind to — in this case, a Guy object named joe whose Cash property
is set to the decimal value 325.50. Giving the TextBlock’s DataContext a reference to the Guy object
sets up the context.

Now your binding is set up! You’ve set the data context to an instance of Guy, you’ve set the binding
path to the Cash property. The TextBlock sees its binding is set to Cash, then looks for a property
called Cash on its data object.
You can actually leave out the path and just set the property to {Binding}. In this case, it will call the
Guy object’s ToString() method.

Two-way binding can get or set the source property
Binding can read data from the data object. It can also use two-way binding to modify the source
property:

<TextBox x:Name="ageTextBox" Text="{Binding Age, Mode=TwoWay}"/>

This TextBox’s binding path is the Age property, and the binding is set to two-way mode. When the
page is displayed, the TextBox will show the value of the Age property of whatever object it’s bound
to. If you change the value in the TextBox, the control will call the Age property’s set accessor to
update the value.

Data binding is built to cause you as few headaches as possible. If you set the binding path to a property that isn’t in the
data context, it won’t display or set any data, but it also won’t cause your program to break.

Bind to collections with ObservableCollection
Some controls like TextBlock or TextBox display a string. Other controls like ScrollViewer display
content from an object. But you’ve also seen controls that display a collection: ListBox and
ComboBox. That’s why .NET comes with ObservableCollection<T>, a collection class that’s built
specifically for data binding. It works a lot like List<T> (you’ll see it in action on the next page).

NOTE

When you bind the ListBox’s ItemsSource property to an ObservableCollection, it displays all of the items in the collection.

Use code for binding (without using any XAML at all!)
If you examine a control, you won’t actually see a property called Binding. There’s no direct way in
C# to get a reference to a property on an object, just the whole object. When you create the XAML
code for a data binding, it sets up the binding using an instance of a Binding object that stores the
name of the target property as a string. Here’s code-behind that creates a Guy object, then sets up
binding for a TextBlock called walletTextBlock so its Text property is bound to the Guy object’s
Cash property.

XAML controls can contain text...and more
Let’s talk a little more about XAML markup (that’s what the M in XAML stands for, and it refers to
the tags that define the page) and code-behind (the code in the .cs file that’s joined with the markup).
When you use a Grid or StackPanel control, you add the controls that they contain between the
opening and closing tags. You can also use the same thing for other kinds of controls. For controls like
TextBlock and TextBox, you can set the Text property by adding text and a closing tag:

When you do this, you’ll use <LineBreak/> instead of  to add line breaks. What you’re really
doing here is specifying the Unicode character U+0013, which is interpreted as a line break. You can
also specify it in hex:  gives you a line break, £ gives you a £ character (remember
Charmap?).

<TextBlock>First line<LineBreak/>Second line</TextBlock>

Try adding that TextBlock to a XAML page, then use Edit Text to edit it and press Shift-Enter to add a
break. The IDE will add this:

<TextBlock>
 <Run Text="First line"/>
 <LineBreak/>
 <Run Text="Second line"/>
</TextBlock>

All three of those options may look the same on the screen, but they create different object graphs.
Each <Run> tag is turned into its own string object, and each of those strings can be given its own
name:

<Run Text="First line" x:Name="firstLine" />

You can use this to modify that string in your C# code behind the XAML form:
firstLine.Text = "This is new text for the first line";

Content controls like ScrollViewer have a Content property (instead of a Text property) that doesn’t
have to be text — it can contain any control. And there are many content controls. One useful one is
Border, which you can use to add a background and border to controls like TextBlock that don’t have
one:

<Border Background="Blue"
 BorderBrush="Green" BorderThickness="3">
</Border>

NOTE

ScrollViewer inherits from ContentControl, which is the same control you used to create your enemy in Save the Humans. Your
ContentControl contained a Grid, which contained three Ellipses.

THERE ARE NO DUMB QUESTIONS

Q: Q: My page had a Grid that contained another Grid, which contained a StackPanel. Is there a limit to how many controls can live inside
other controls?

A: A: No. You can nest controls inside of other controls, and those controls can in turn contain additional controls. In fact, later on in the book you’ll learn
about how to build up your own controls by starting with a container and adding content to it. You can put a Grid into any content control — you
already did this once when you created the enemy out of a Grid and three Ellipse controls in Save the Humans. That’s one of the strengths of using
XAML to design your apps: it gives you the ability to create complex pages out of simple controls.

Q: Q: If I can lay out the same page using either a Grid or a StackPanel, which one should I use?

A: A: It depends a lot on the situation. There is no “right” answer: sometimes it makes more sense to use a StackPanel, sometimes it makes sense to use a
Grid, and sometimes it makes sense to combine them. And those aren’t the only options, either. You used a Canvas in Save the Humans, which is a
container control that allows you to use the Canvas.Left and Canvas.Top properties to position controls at specific coordinates. All three of these
controls are subclasses of Panel, and among the behaviors they inherit from that base class is the ability to host multiple other controls.

Q: Q: Does that mean there are controls that can only host a single control?

A: A: Yes. Try adding a ScrollViewer to a page. Then nest two other controls inside it. Here’s what you’ll see:

That’s because this XAML sets the Content property on the ScrollViewer object, and that property is of type object. If you replace the ScrollViewer
tags with Grid tags:

This will work just fine, because the contained controls are added to a collection called Children. (Your code in Save the Humans used the Children
collection to add enemies.)

Q: Q: Why do some controls like TextBlock have a Text property instead of a Content property?

A: A: Because those controls can only host text, so they have a string property called Text instead of an object property called Content. This is called the
default property of the control. The default property of a Grid or StackPanel is its Children collection.

Q: Q: Should I be typing in my XAML code, or using the IDE’s designer to drag controls out of the toolbox?

A: A: You should try both, and do what’s most comfortable to you. A lot of developers rely heavily on the designer in the IDE, but many developers
rarely use the designer at all because they find it faster to type the XAML. The IDE’s IntelliSense makes it especially easy to type XAML.

Q: Q: Remind me again why I had to learn WinForms? Why couldn’t I just jump straight to XAML and Windows Store apps?

A: A: Because there are a lot of concepts that make XAML much easier to understand. Take the Children collection, for example. If you didn’t understand
collections, would the answer to the third question on this page make sense? Maybe. But it’s a lot more obvious once you do understand collections.
On the other hand, it’s really easy to drag controls out of the toolbox and onto the form. There’s a lot less depth to WinForms than there is to page
design with XAML (which makes sense, since XAML is a much newer and more flexible technology). Spending several chapters on WinForms made it
easy for you to get the hang of designing visual applications and building interesting projects. That, in turn, helped you get many of these concepts into
your brain. You’ll absorb XAML much faster now that you have them there. There’s also a lot of value in seeing the same project done two different
ways. That’s why we’re revisiting some of the projects from previous chapters: you’ll understand more about both WinForms and Windows Store apps
by seeing the same app done in both.

WinForms is a great tool for learning and exploring C#, but XAML is a much more capable tool for building flexible
and effective apps.

Use data binding to build Sloppy Joe a better menu
Remember Sloppy Joe from Chapter 4? Well, he’s using Windows 8 now, and he wants a Window
Store app for his sandwich menu. Let’s build him one.
Here’s the page we’re going to build.
It uses one-way data binding to populate a ListView and a Run inside a TextBlock, and it uses two-
way data binding for a TextBox, using one of its <Run> tags to do the actual binding.

We’ll need an object with properties to bind to.
The Page object will have an instance of the MenuMaker class, which has three public properties: an
int called NumberOfItems, an ObservableCollection of menu items called Menu, and a DateTime
called GeneratedDate.

The Page object creates an instance of MenuMaker and uses it for the data context.
The constructor for the Page object will set the StackPanel’s DataContext property to an instance of
MenuMaker. The binding will all be done in XAML.

The TextBox uses two-way binding to set the number of menu items.
That means the TextBox doesn’t need an x:Name property. Since it’s bound to the NumberOfItems
property in the MenuMaker object, we don’t need to write any C# code that refers to it.
The button tells the MenuMaker to update.
The button calls the MenuMaker’s UpdateMenu() method, which updates its menu by clearing the
ObservableCollection and then adding new MenuItems to it. The ListView will automatically
update any time the ObservableCollection changes.
Here’s a coding challenge. Based on what you’ve read so far, how much of the new and
improved Sloppy Joe app can you build before you flip the page and see the code for it?

DO THIS!

➊ Create the new project and replace MainPage.xaml with a Basic Page.
Create a new Windows Store app. Then delete MainPage.xaml, and add a new Basic Page called MainPage.xaml to
replace it. You’ll need to rebuild the project after you replace the page. This is exactly the same thing you did with Save the
Humans (flip back to Chapter 1 if you need a refresher).
➋ Add the new and improved MenuMaker class.
You’ve come a long way since Chapter 4. Let’s build a well-encapsulated class that lets you set the number of items with a
property. You’ll create an ObservableCollection of MenuItem in its constructor, which is updated every time the UpdateMenu()
is called. That method will also update a DateTime property called GeneratedDate with a timestamp for the current menu. Add
this MenuMaker class to your project:

USE DATETIME TO WORK WITH DATES

You’ve already seen the DateTime type that lets you store a date. You can also use it to create and modify dates and times. It has a
static property called Now that returns the current time. It also has methods like AddSeconds() for adding and converting seconds,
milliseconds, days, etc., and properties like Hour and DayOfWeek to break down the date. How timely!

➌ Add the MenuItem class.
You’ve already seen how you can build more flexible programs if you use classes instead of
strings to store data. Here’s a simple class to hold a menu item — add it to your project, too:

➍ Build the XAML page.
Here’s the screenshot. Can you build it using StackPanels? The TextBox has a width of 100. The
bottom TextBlock has the style CaptionTextBlockStyle, and it has two <Run> tags (the second
one just holds the date).

NOTE

Don’t add dummy data this time. We’ll let data binding do that for us.

Can you build this page on your own just from the screenshot before you see the XAML?
➎ Add object names and data binding to the XAML.
Here’s the XAML that gets added to MainPage.xaml. Make sure you add it to the outermost grid
just above the XAML comment, just like you did in
the Save the Humans main page. We named the button newMenu. Since we used data binding of the
ListView, TextBlock, and TextBox, we didn’t need to give them names. (Here’s a shortcut. We
didn’t even really need to name the button, we did it just to get the IDE to automatically add an
event handler named newMenu_Click when we double-clicked it in the IDE. Try it out!)

➏ Add the code-behind for the page to MainPage.xaml.cs.
The page constructor creates the menu collection and the MenuMaker instance, and sets the data
contexts for the controls that use data binding. It also needs a MenuMaker field called menuMaker.

You just need to set the data context for the outer StackPanel. It will pass that data context on to all
of the controls contained inside it.
Finally, double-click on the button to generate a method stub for its Click event handler. Here’s
the code for it — it just updates the menu:

private void newMenu_Click(object sender, RoutedEventArgs e) {
 menuMaker.UpdateMenu();
}

There’s an easy way to rename an event handler so that it updates XAML and C# code at
the same time. Flip to leftover #8 in the appendix to learn more about the refactoring tools in

the IDE.

RELAX

There’s a lot of code-behind in the Blank Page template.

Open up MainPage.xaml.cs — there’s a lot of C# code in there already! You’ll learn what it does later in the book. Just add your
code-behind methods, fields, etc., just like you did in Chapter2..

Now run your program! Try changing the TextBox to different values. Set it to 3, and it generates a
menu with three items:

Now you can play with binding to see just how flexible it is. Try entering “xyz” or no data at all into
the TextBox. Nothing happens! When you enter data into the TextBox, you’re giving it a string. The
TextBox is pretty smart about what it does with that string. It knows that its binding path is
NumberOfItems, so it looks in its data context to see if there are any properties with that name, and
then does its best to convert the string to whatever that property’s type is.

NOTE

Keep your eye on the generated date. It’s not updating, even though the menu updates. Hmm, maybe there’s still something we need
to do.

Use static resources to declare your objects in XAML
When you build a page with XAML, you’re creating an object graph with objects like StackPanel,
Grid, TextBlock, and Button. And you’ve seen that there’s no magic or mystery to any of that — when
you add a <TextBox> tag to your XAML, then your page object will have a TextBox field with a
reference to an instance of TextBox. And if you give it a name using the x:Name property, your code-
behind C# code can use that name to access the TextBox.
You can do exactly the same thing to create instances of almost any class and store them as fields in
your page by adding a static resource to your XAML. And data binding works particularly well with
static resources, especially when you combine it with the visual designer in the IDE. Let’s go back to
your program for Sloppy Joe and move the MenuMaker to a static resource.

THERE ARE NO DUMB QUESTIONS

Q: Q: Hey, there’s no Close button! How do I quit my app?

A: A: Windows Store apps don’t have Close buttons by default, because you typically never quit most apps. Windows Store apps follow an application
lifecycle with three states: not running, running, and suspended. Apps can be suspended if the user switches away or Windows enters a low power
state. And if it needs to reclaim the memory, Windows can terminate it. Later in the book you’ll learn how to make your app work with this lifecycle.

➊ DELETE THE MENUMAKER FIELD FROM THE CODE-BEHIND.
You’re going to be setting up the MenuMaker class and the data context in the XAML, so delete
these lines from your C# code:

MenuMaker menuMaker = new MenuMaker();

public MainPage() {
 this.InitializeComponent();

 pageLayoutStackPanel.DataContext = menuMaker;

➋ TAKE A CLOSE LOOK AT THE NAMESPACES FOR YOUR PAGE.
Look at the top of the XAML code for your page, and you’ll see that the page’s opening tag has a
set of xmlns properties. Each of these properties defines a namespace. Look for the one that starts
with xmlns:local and has your project’s namespace. It should look like this:

➌ ADD THE STATIC RESOURCE TO YOUR XAML AND SET THE DATA CONTEXT.
Find the <Page.Resources> section of your page and type <local: to pop up an IntelliSense
window:

You can only add static resources if their classes have parameterless consructors. This makes sense! If the
constructor has a parameter, how would the XAML page know what arguments to pass to it?

The window shows all of the classes in the namespace that you can use. Choose MenuMaker, and
give it the name menuMaker:

<local:MenuMaker x:Name="menuMaker"/>

Now your page has a static MenuMaker resource called menuMaker.
➍ SET THE DATA CONTEXT FOR YOUR STACKPANEL AND ALL OF ITS CHILDREN.
Then go to the outermost StackPanel, remove the x:Name tag, and set its DataContext property:

<StackPanel Grid.Row="1" Margin="120,0"
 DataContext="{StaticResource ResourceKey=menuMaker}">

Your program will still work, just like before. But did you notice what happened in the IDE when
you added the data context to the XAML? As soon as you added it, the IDE created an instance of
MenuMaker and used its properties to populate all of the controls that were bound to it. You got a
menu generated immediately, right there in the designer — before you even ran your program.
Neat!

Use a data template to display objects
When you show items in a list, you’re showing contents of ListViewItem (which you use for
ListViews), ListBoxItem, or ComboBoxItem controls, which get bound to objects in an
ObservableCollection. Each ListViewItem in the Sloppy Joe menu generator is bound to a
MenuItem object in its Menu collection. The ListViewItem objects call the MenuItem objects’
ToString() methods by default, but you can use a data template that uses data binding to display
data from the bound object’s properties.
Modify the <ListView> tag to add a basic data template. It uses the basic {Binding} to call the
item’s ToString().

Change your data template to add some color to your menu.

Go crazy! The data template can contain any controls you want.

THERE ARE NO DUMB QUESTIONS

Q: Q: So I can use a StackPanel or a Grid to lay out my page. I can use XAML static resources, or I can use fields in code-behind. I can set
properties on controls, or I can use data binding. Why are there so many ways to do the same things?

A: A: Because C# and XAML are extremely flexible tools for building apps. That flexibility makes it possible to design very detailed pages that work on
many different devices and displays. This gives you a very large toolbox that you can use to get your pages just right. So don’t look at it as a confusing
set of choices; look at it as many different options that you can choose from.

Q: Q: I’m still not clear on how static resources work. What happens when I add a tag inside <Page.Resources>?

A: A: When you add that tag, it udpates the Page object. Find the AppName resource that you changed to set the page header:

<x:String x:Key="AppName">Welcome to Sloppy
Joe's</x:String>

Now go through the code that the IDE added as part of the Basic Page template to find where it uses the resource:

<TextBlock x:Name="pageTitle"
 Grid.Column="1"
 Text="{StaticResource AppName}"
 Style="{StaticResource ...

The page uses this static resource to set the text. So what’s going on behind the scenes? You can use the IDE to see what’s going on. Put a breakpoint in
your button event handler, then run the code and press the button. Add this.Resources["AppName"] to the Watch window, and you’ll see that it contains
a reference to a string. And every static resource works the same way — when you add a static resource to the code, it creates an object and adds it to a
collection called Resources.

Q: Q: Can I use that {StaticResource} syntax in my own code, or is it just for templates like Blank Page?

A: A: Absolutely, you can set up resources and use them just like that. There’s nothing special about the Blank Page template, or any other templates
you’ll use in this book. They just use regular XAML and C#, and they don’t do anything that you can’t do yourself.

Q: Q: I used x:Name to set my MenuMaker resource’s name, but the AppName resource uses x:Key. What’s the difference?

A: A: When you use the x:Key property in a static resource, it adds the resource to the Resources collection using that key, but it doesn’t create a field (so
you can’t enter AppName into your C# code, you can only access it using the Resources collection). When you use the x:Name property, it adds it to the
Resources collection, but it also adds a field to the Page object. That’s how you were able to call the UpdateMenu() method on the MenuMaker static resource.

Q: Q: Does my binding path have to be a string property?

A: A: No, you can bind a property of any type. If it can be converted between the source and property types, then the binding will work. If not, the data
will be ignored. And remember, not all properties on your controls are text, either. Let’s say you’ve got a bool in your data context called EnableMyObject.
You can bind it to any Boolean property, like IsEnabled. This will enable or disable the control based on the value of the EnableMyObject property:

IsEnabled="{Binding EnableMyObject}"

Of course, if you bind it to a text property it’ll just print True or False (which, if you think about it, makes perfect sense).

Q: Q: Why did the IDE display the data in my form when I added the static resource and set the data context in XAML, but not when I did it in
C#?

A: A: Because the IDE understands your XAML, which has all of the information that it needs to create the objects to render your page. As soon as you
added the MenuMaker resource to your XAML code, the IDE created an instance of MenuMaker. But it couldn’t do that from the new statement in its
constructor, because there could be many other statements in the constructor, and they would need to be run. The IDE only runs the code-behind C#
code when the program is executed. But if you add a static resource to the page the IDE will create it, just like it creates instances of TextBlock,
StackPanel, and the other controls on your page. It sets the controls’ properties to show them in the designer, so when you set up the data context and
binding paths, those got set as well, and your menu items showed up in the IDE’s designer.

The static resources in your page are instantiated when the page is first loaded and can be used at any time by the
objects in the app.

NOTE

The name “static resource” is a little misleading. Static resources are definitely created for each
instance; they’re not static fields!

INotifyPropertyChanged lets bound objects send updates
When the MenuMaker class updates its menu, the ListView that’s bound to it gets updated. But the
MenuMaker updates the GeneratedDate property at the same time. Why doesn’t the TextBlock that’s
bound to it get updated too? The reason is that every time an ObservableCollection changes, it
fires off an event to tell any bound control that its data has changed. This is just like how a Button
control raises a Click event when it’s clicked, or a Timer raises a Tick event when its interval
elapses. Whenever you add, remove, or delete items from an ObservableCollection, it raises an
event.
You can make your data objects notify their target properties and bound controls that data has
changed, too. All you need to do is implement the INotifyPropertyChanged interface, which
contains a single event called PropertyChanged. Just fire off that event whenever a property
changes, and watch your bound controls update themselves automatically.

WATCH IT!

Collections work almost the same way as data objects.

The ObservableCollection<T> object doesn’t actually implement INotifyPropertyChanged. Instead, it implements a closely
related interface called INotifyCollectionChanged that fires off a CollectionChanged event instead of a PropertyChanged
event. The control knows to look for this event because ObservableCollection implements the INotifyCollectionChanged
interface. Setting a ListView’s DataContext to an INotifyCollectionChanged object will cause it to respond to these events.

Modify MenuMaker to notify you when the GeneratedDate
property changes
INotifyPropertyChanged is in the System.ComponentModel namespace, so start by adding this
using statement to the top of the MenuMaker class file:

using System.ComponentModel;

Update the MenuMaker class to implement INotifyPropertyChanged, and then use the IDE to
automatically implement the interface:

RELAX

This is the first time you’re raising events.

You’ve been writing event handler methods since Chapter 1, but this is the first time you’re firing an event. You’ll learn all about how
this works and what’s going on in Chapter 15. For now, all you need to know is that an interface can include an event, and that your
OnPropertyChanged() method is following a standard C# pattern for raising events to other objects.

This will be a little different than what you saw in Chapter 7 and Chapter 8. It won’t add any methods
or properties. Instead, it will add an event:

public event PropertyChangedEventHandler PropertyChanged;

Next, add this OnPropertyChanged() method, which you’ll use to raise the PropertyChanged
event.

Now all you need to do to notify a bound control that a property is changed is to call
OnPropertyChanged() with the name of the property that’s changing. We want the TextBlock that’s
bound to GeneratedDate to refresh its data every time the menu is updated, so all we need to do is
add one line to the end of UpdateMenu():

public void UpdateMenu() {
 Menu.Clear();
 for (int i = 0; i < NumberOfItems; i++) {
 Menu.Add(CreateMenuItem());
 }
 GeneratedDate = DateTime.Now;

 OnPropertyChanged("GeneratedDate");
}

Now the date should change when you generate a menu.

WATCH IT!

Don’t forget to implement INotifyPropertyChanged.

Data binding only works when the controls implement that interface. If you leave : INotifyPropertyChanged out of the class
declaration, your bound controls won’t get updated — even if the data object fires PropertyChanged events.

EXERCISE

Finish porting the Go Fish! game to a Windows Store app. You’ll need to modify the XAML from earlier in this chapter to add data
binding, copy all of the classes and enums from the Go Fish! game in Chapter 8 (or download them from our website), and update the
Player and Game classes.

➊ Add the existing class files and change their namespace to match your app.
Add these files to your project from the Chapter 8 Go Fish! code: Values.cs, Suits.cs, Card.cs, Deck.cs,
CardComparer_bySuit.cs, CardComparer_byValue.cs, Game.cs, and Player.cs. You can use the Add Existing Item option in
the Solution Explorer, but you’ll need to change the namespace in each of them to match your new project’s namespace (just
like you did with multipart projects earlier in the book).
Try building your project. You should get errors in Game.cs and Player.cs that look like this:

➋ Remove all references to WinForms classes and objects; add using lines to Game.
You’re not in the WinForms world anymore, so delete using System.Windows.Forms; from the top of Game.cs and Player.cs.
You’ll also need to remove all mentions of TextBox. You’ll need to modify the Game class to use INotifyPropertyChanged and
ObservableCollection<T>, so add these using lines to the top of Game.cs:

using System.ComponentModel;
using System.Collections.ObjectModel;

➌ Add an instance of Game as a static resource and set up the data context.
Modify your XAML to add an instance of Game as a static resource and use it as the data context for the grid that contains the Go
Fish! page you built earlier in the chapter. Here’s the XAML for the static resource: <local:Game x:Name="game"/> — and
you’re going to need a new constructor because you can only include resources that have parameterless constructors:

public Game() {
 PlayerName = "Ed";
 Hand = new ObservableCollection<string>();
 ResetGame();
}

➍ Add public properties to the Game class for data binding.
Here are the properties you’ll be binding to properties of the controls in the page:

public bool GameInProgress { get; private set; }
public bool GameNotStarted { get { return !GameInProgress; } }
public string PlayerName { get; set; }
public ObservableCollection<string> Hand { get; private set; }
public string Books { get { return DescribeBooks(); } }
public string GameProgress { get; private set; }

➎ Use binding to enable or disable the TextBox, ListBox, and Buttons.
You want the “Your Name” TextBox and the “Start the game!” Button to be enabled only when the game is not started, and you
want the “Your hand” ListBox and “Ask for a card” Button to be enabled only when the game is in progress. You’ll add code to
the Game class to set the GameInProgress property. Have a look at the GameNotStarted property. Figure out how it works, then
add the following property bindings to the TextBox, ListBox, and two Buttons:

➏ Modify the Player class so it tells the Game to display the game’s progress.
The WinForms version of the Player class takes a TextBox as a parameter for its constructor. Change that to take a reference to
the Game class and store it in a private field. (Look at the StartGame() method below to see how this new constructor is used
when adding players.) Find the lines that use the TextBox reference and replace them with calls to the Game object’s
AddProgress() method.
➐ Modify the Game class.
Change the PlayOneRound() method so that it’s void instead of returning a Boolean, and have it use the AddProgress() method
instead of the TextBox to display progress. If a player won, display that progress, reset the game, and return. Otherwise, refresh
the Hand collection and describe the hands.
You’ll also need to add/update these four methods, and figure out what they do and how they work.

public void StartGame() {
 ClearProgress();
 GameInProgress = true;
 OnPropertyChanged("GameInProgress");
 OnPropertyChanged("GameNotStarted");
 Random random = new Random();
 players = new List<Player>();
 players.Add(new Player(PlayerName, random, this));
 players.Add(new Player("Bob", random, this));
 players.Add(new Player("Joe", random, this));
 Deal();
 players[0].SortHand();
 Hand.Clear();
 foreach (String cardName in GetPlayerCardNames())
 Hand.Add(cardName);
 if (!GameInProgress)
 AddProgress(DescribePlayerHands());
 OnPropertyChanged("Books");
}

 public void ClearProgress() {
 GameProgress = String.Empty;
 OnPropertyChanged("GameProgress");
 }

public void AddProgress(string progress)
{
 GameProgress = progress +
 Environment.NewLine +
 GameProgress;
 OnPropertyChanged("GameProgress");
}

You’ll also need to implement the INotifyPropertyChanged interface and add the same OnPropertyChanged() method that you used in the
MenuMaker class. The updated methods use it, and your modified PullOutBooks() method will also use it.

public void ResetGame() {
 GameInProgress = false;
 OnPropertyChanged("GameInProgress");
 OnPropertyChanged("GameNotStarted");
 books = new Dictionary<Values, Player>();
 stock = new Deck();
 Hand.Clear();
}

EXERCISE SOLUTION

Here’s all of the code-behind that you had to write:

private void startButton_Click(object sender, RoutedEventArgs e) {
 game.StartGame();
}
private void askForACard_Click(object sender, RoutedEventArgs e) {

 if (cards.SelectedIndex >= 0)
 game.PlayOneRound(cards.SelectedIndex);
}
private void cards_DoubleTapped(object sender, DoubleTappedRoutedEventArgs e) {
 if (cards.SelectedIndex >= 0)
 game.PlayOneRound(cards.SelectedIndex);
}

These are the changes needed for the Player class:

class Player {
 private string name;
 public string Name { get { return name; } }
 private Random random;
 private Deck cards;
 private Game game;
 public Player(String name, Random random, Game game) {
 this.name = name;
 this.random = random;
 this.game = game;
 this.cards = new Deck(new Card[] { });
 game.AddProgress(name + " has just joined the game");
 }
 public Deck DoYouHaveAny(Values value)
 {
 Deck cardsIHave = cards.PullOutValues(value);
 game.AddProgress(Name + " has " + cardsIHave.Count + " " + Card.Plural(value));
 return cardsIHave;
 }
 public void AskForACard(List<Player> players, int myIndex, Deck stock, Values value) {
 game.AddProgress(Name + " asks if anyone has a " + value);
 int totalCardsGiven = 0;
 for (int i = 0; i < players.Count; i++) {
 if (i != myIndex) {
 Player player = players[i];
 Deck CardsGiven = player.DoYouHaveAny(value);
 totalCardsGiven += CardsGiven.Count;
 while (CardsGiven.Count > 0)
 cards.Add(CardsGiven.Deal());
 }
 }
 if (totalCardsGiven == 0) {
 game.AddProgress(Name + " must draw from the stock.");
 cards.Add(stock.Deal());
 }
 }
 // ... the rest of the Player class is the same ...

These are the changes needed for the XAML:

EXERCISE SOLUTION

Here’s everything that changed in the Game class, including the code we gave you with the instructions.

Chapter 11. Async, Await, and Data Contract
Serialization: Pardon the interruption

Nobody likes to be kept waiting...especially not users.
Computers are good at doing lots of things at once, so there’s no reason your apps shouldn’t be able
to as well. In this chapter, you’ll learn how to keep your apps responsive by building asynchronous
methods. You’ll also learn how to use the built-in file pickers and message dialogs and
asynchronous file input and output without freezing up your apps. Combine this with data contract
serialization, and you’ve got the makings of a thoroughly modern app.

Brian runs into file trouble
Brian’s got his XAML, he’s got his data binding, and he’s all ready to start porting his Excuse
Manager to a Windows Store app. Everything’s going great, until...

Windows Store apps have superior I/O tools.
When you build a Windows Store app, it needs to be responsive, intuitive, and consistent. That’s why
the .NET Framework for Windows Store Apps includes classes and methods that let you display file
dialogs and do file I/O asynchronously — which means they don’t lock up your app while dialogs
are displayed or files are written. And by using data contracts for serialization, your apps can write
files that are easier to work with, and much clearer to understand.

NOTE

When you see an hourglass, that means you’re using a program that’s locked up and has become unresponsive...and users hate that!
(Don’t you?)

Windows Store apps use await to be more responsive
What happens when you call MessageBox.Show() from a WinForms program? Everything stops, and
your program freezes until the dialog disappears. That’s literally the most unresponsive that a
program can be! Windows Store apps should always be responsive, even when they’re waiting for
feedback from a user. But some things — like waiting for a dialog, or reading or writing all the bytes
in a file — take a long time. When a method sits there and makes the rest of the program wait for it to
complete, programmers call that blocking, and it’s one of the biggest causes of program
unresponsiveness.
Windows Store apps use the await operator and the async modifier to keep from becoming
unresponsive during operations that block. You can see how it works by looking at how Windows
Apps pop up dialogs without blocking the app by using the MessageDialog class:

The await operator causes the method that’s running this code to stop and wait until the
ShowAsync() method completes — and that method will block until the user chooses one of the
commands. In the meantime, the rest of the program will keep responding to other events. As soon as
the ShowAsync() method returns, the method that called it will pick up where it left off (although it
may wait until after any other events that started up in the meantime have finished).
If your method uses the await operator, then it must be declared with the async modifier:

public async void ShowADialog() {
 // ... some code ...
 UICommand result = await dialog.ShowAsync() as UICommand;
 // ... some more code:
}

When a method is declared with async, you have some options with how you call it. You can call the
method as usual. When you do, as soon as it hits the await statement it returns, which keeps the
blocking call from freezing your app.

DO THIS!

You can see exactly how this works by creating a new Blank App and adding the following XAML:

<StackPanel VerticalAlignment="Top" HorizontalAlignment="Center">
 <Button Click="Button_Click_1" FontSize="36">Are you happy?</Button>
 <TextBlock x:Name="response" FontSize="36"/>
 <TextBlock x:Name="ticker" FontSize="36"/>
</StackPanel>

Here’s the code-behind. You’ll need to add using Windows.UI.Popups; because MessageDialog and UICommand are in that
namespace.

When you run the program, you can see the timer ticking while the dialog is open. Your app remains responsive! It doesn’t stop ticking
until after you click on one of the dialog options, at which point the method resumes.

Use the FileIO class to read and write files
WinForms use the System.IO.File class to read and write files, but you’ve already seen that class
doesn’t exist in the .NET Framework for Windows Store apps. And that’s a good thing! If you use
File.WriteAllText() to write a giant file that will fill up a big portion of your hard drive, it will
block and cause your program to become unresponsive.
Windows Store apps can use Windows.Storage classes to read and write files. That namespace
includes a class called FileIO, which has some familiar-looking methods that pop up in its
IntelliSense window.

These methods look similar to the ones in the File class. The FileIO class has
AppendLinesAsync() and ReadTextAsync(), where the File class had AppendLines() and
ReadText(). The difference is that each of these methods is declared using the async modifier,
and uses the await operator to do the actual file reading. That lets you write code that can read
and write files without blocking.

Use the file pickers to locate file paths
MessageBoxes aren’t the only kinds of dialogs that cause your WinForms programs to become
unresponsive. File dialogs do exactly the same thing. Windows Store apps have their own file pickers
to access files and folders, and they’re asynchronous, too (so they don’t block). Here’s how to create
and use a FileOpenPicker to find a file to open, and ReadTextAsync() to read the text from it into
a file:

The FileSavePicker lets the user pick a file to save. Here’s how it can be used in conjunction with
FileIO.WriteTextAsync() to write text to a file:

Build a slightly less simple text editor
DO THIS!

Let’s rebuild the Simple Text Editor from Chapter 9 as a Windows Store app. You’ll use the FileIO class, a FileOpenPicker, and a
FileSavePicker to load and save the files. But first you’ll build the main page. And since this is a Windows Store app that can open
and save files, it should have an app bar with Open and Save buttons , so you’ll use the IDE to add one.

An AppBar control is a lot like a ScrollViewer or Border, because it can contain another control. It
knows how to hide and show itself, and acts just like any other app bar. All you need to do is add it to
the <BottomAppBar> or <TopAppBar> section of a page.

➊ Create a new Windows Store Blank App project, and replace MainPage.xaml with a new
Basic Page. Here’s XAML for the page contents:

Right-click on text_TextChanged and choose from the menu. The IDE
will create the TextChanged event handler for your TextBox.
➋ Use the Document Outline to select the Page (it’s named pageRoot — or select any control and
press Escape a few times). Go to the Properties window, expand the Common section, and find the
BottomAppBar property:

Click the button — this will pop up a Select Object window so you can choose what type of
object to add. Choose to add a bottom app bar. The IDE will add this code to your page:

<Page.BottomAppBar>
 <AppBar/>
</Page.BottomAppBar>

➌ The AppBar is a container control. When you display a page’s app bar, its AppBar control
displays itself and any controls that it contains. But most of the time it’s hidden. Click anywhere
in the page outside of the app bar and you’ll see it disappear from the designer — just like it

does in a typical Windows Store app.
You want your AppBar to contain buttons, and you want those buttons to look like normal,
everyday app bar buttons. .NET for Windows Store has a control for exactly that: the
AppBarButton control. But your app bar disappeared when yo clicked outside of it! No problem
— just select the app bar by either clicking on <AppBar/> in the XAML designer or using the
Document Outline to select it, and the app bar will appear again.
Next, drag an out of the Toolbox and onto your app bar. (You can also double-
click it in th Toolbox.) The default app bar button has a smiley face icon and the label
“AppBarButton,” so use the Properties window to change its name, icon and label. You can also
just edit the XAML to change the x:Name, Label, and Icon properties:

<Page.BottomAppBar>
 <AppBar>
 <AppBarButton x:Name="openButton"
 Label="Open File" Icon="OpenFile"/>
 </AppBar>
</Page.BottomAppBar>

➍ You also need a Save button, so try dragging another AppBarButton out of the toolbar onto the
app bar. Uh-oh — something’s not right! You should see two error messages, one for the AppBar
telling you that the property ‘Content’ can only be set once, and one for the AppBarButton telling
you that property is set more than once. That’s beause when a containr like an AppBar, Button, or
Border bas a Content property, that property can only contain a single control. So how do we get
two AppBarButton controls into our AppBar?
You probably already guessed the answer: we’ll use a horizontal StackPanel. Add a StackPanel
to the AppBar with horizontal orientation, and set its horizontal alignment to Right (so the
buttons are on the right-hand side of the page when the app bar pops up), and put the Open File
AppBarButton inside of it. Next, add a second AppBarButton to the StackPanel. Give it the Save
icon, the label Save, name it saveButton, and set its IsEnabled property to false so it’s disabled
when the app first starts. Finally, add Click event handlers to both app bar buttons (call them
openButton_Click() and saveButton_Click()). Here’s the complete app bar XAML:

<Page.BottomAppBar>
 <AppBar>
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Right">
 <AppBarButton x:Name="openButton" Click="openButton_Click"
 Label="Open File" Icon="OpenFile"/>
 <AppBarButton x:Name="saveButton" IsEnabled="false"
 Label="Save" Icon="Save" Click="saveButton_Click"/>
 </StackPanel>
 </AppBar>
</Page.BottomAppBar>

Now your app has a working app bar!

➎ Here’s the code-behind for the entire program. It uses the TextBox.Text property to modify
the text in the textbox. We’re modifying a property on the object instead of using data binding in
order to keep the code in this program as similar as possible to the Simple Text Editor in
Chapter 9. That will give you a reference point for comparison if you want to flip back and forth to
see how things change between WinForms and Windows Store apps. You’ll also need these using
statements at the top of the file:

using Windows.System;
using Windows.Storage;
using Windows.Storage.Pickers;
using Windows.UI.Popups;

Here’s the rest of the code. It should all go into the MainPage class.

You can hold the Windows key and press Z to show the app bar for the current app.

You’re all done. Fire it up!

There is! It’s called data contract serialization.
Writing text files is great, because you can just open up a file in Notepad and see what’s in it. But text
files are also pretty lousy, because you need to write a lot of code to parse your data.
Binary serialization with a BinaryFormatter is great because it’s so convenient. But it’s pretty lousy in
its own way! Binary files are fragile. Make one tiny change to your class, and suddenly you can’t
load any of your files anymore! And you’ve already seen the mess that appears when you open up
binary files in Notepad. Good luck getting a human to read or edit a binary file.
Data contract serialization is the best of both worlds. It’s true serialization, so entire object graphs
are automatically written out for you. But it generates XML files, which turn out to be really easy to
read and can even be edited by hand (especially if you’re used to working with XAML!).

NOTE

When you use binary serialization, you’re writing “pure”(-ish) data: actual bytes in memory get glued together and written to a file,
along with just enough information for the binary formatter to figure out which bytes go with which class members in the object graph.
One little change to just one class, and suddenly none of the bytes line up anymore, and when you try to deserialize you’ll get an error.

A data contract is an abstract definition of your object’s data
A data contract is a formal agreement that’s attached to your class. The contract uses the
[DataContract] and [DataMember] attributes to define exactly what data gets read or written
during serialization.

If you want to serialize instances of a class, you can set up a data contract for it by adding the
[DataContract] attribute to the top, and [DataMember] attributes to each class member to be
serialized. Here’s a simple Guy class with a data contract:

In the XML snippet for <Guy> below, xmlns is called an attribute, not a property. In your XAML files you’ll find tags with
attributes like Fill, Text, and x:Name. The designer in the IDE calls them properties because they’re used to define
properties on objects.

Data contract serialization uses XML files
Luckily, you already know a lot about XML files, because XAML is an XML-based language. All
XML files use opening tags, closing tags, and attributes to define data. Each member gets a name, but
the contract itself also needs a name — or, more specifically, a unique namespace — because the
serializer needs to be able to distinguish the data files for a contract from other XML files. Here’s the
XML file that’s created when the Guy class on this page is serialized. As usual, we added spaces and
line breaks to make it easier to read:

Use async methods to find and open files
Data contract serialization works a lot like binary serialization. You need to open a file, create a
stream for reading or writing, and then call methods to read or write objects. But there are
differences, too: Windows Store apps have async methods for opening files. They’re based around
the IStorageFile and IStorageFolder interfaces. You can use the IDE to explore these interfaces
and discover their members.
Go to any line in any method and type Windows.Storage.IStorageFolder, then right-click on
IStorageFolder and choose Go To Definition (F12) to see the definition in the IDE:

Each IStorageFolder object represents a folder in the filesystem, with methods to work with its
files, including:

CreateFileAsync() is an async method to create a file in the folder.
CreateFolderAsync() is an async method to create a subfolder.
GetFileAsync() gets a file in the folder and returns an IStorageFile object.
GetFolderAsync() gets a subfolder and returns another IStorageFolder object.
GetItemAsync() gets either a file or a folder, and returns an IStorageItem object.
GetFilesAsync(), GetFoldersAsync(), and GetItemsAsync() return collections of items —
these methods return collections of type IReadOnlyList, a very simple kind of collection that lets
you get items by index but doesn’t have methods to add, sort, or compare.

WINDOWS STORE APPS PROTECT YOUR FILESYSTEM

Flip back to the first code sample in Chapter 9. We warned you that it’s probably not a good idea to write to the C:\ folder, so
hopefully you picked a safe folder to write to. Hopefully. It’s really easy for Windows Desktop programs to damage important system
files. That’s one reason that every Windows Store app gets its own folder to store its files where it’s safe to read and write files.

The Windows.Storage namespace has two additional interfaces to help you manage items in your
filesystem. The IStorageFile interface and the objects that implement it (of course!) move, copy,

and open files. And if you look closely at the declaration for IStorageFolder, you’ll see that it
extends the IStorageItem interface. IStorageFile extends the same interface, which makes sense
if you think about the operations that apply to both files and folders: deleting, renaming, and getting
the name, creation date, path, and attributes.
Every Windows Store app has a local folder where it’s safe to read and write files, which you can
access using an IStorageFolder called ApplicationData.Current.LocalFolder. Then you can
use an IStorageFile object to open files for reading and writing by calling its OpenAsync()
method (which returns an IRandomAccessStream).

Once you have a data contract and a stream, you just need a new DataContractSerializer, and you
can read and write objects to XML files:

KnownFolders helps you access high-profile folders
The Windows.Storage namespace includes the KnownFolders class, which has properties to help
you access the documents library, music library, or other standard folder for a typical Windows
account. KnownFolders.PicturesLibrary is a StorageFolder object (which implements
IStorageFolder) that you can use to access the current user’s pictures library. It also has properties
for the other known folders, including the music and video libraries, removable and media server
devices, camera roll, and home group.

But there’s a catch. Windows Store apps are free to read and write to the local storage folder. But if
you want your app to write to another folder, you’ll need to give it special permission by adding
capabilities to the package manifest. When you explicitly allow your app to read and write to the
local folder, anyone who installs it from the Windows Store can see that it has this capability.
To add the Pictures Library capability to your app, double-click on Package.appxmanifest in the
Solution Explorer, click on the Capabilities tab, and check Pictures Library.

WATCH IT!

Your apps should always use a FolderPicker to access folders unless you have a really good reason not to.

Technically, you can manually edit the App Manifest and add the Documents Library capability. If you do that, don’t bother
trying to get your app certified for the Windows Store — it’ll almost certainly fail certification.

Take a close look at the Package.appxmanifest screenshot. Do you notice anything missing? What about a Documents
Library capability? That’s right — you can’t write directly to the Documents library unless you go through a FolderPicker. If
your Windows Store app needs to write files, there’s a good chance that some of your users will want to write to their
OneDrive folders, while others may want to write to the local hard drive. So do your users a favor... use a FolderPicker and
give them a choice!

The whole object graph is serialized to XML
When the data contract serializer writes an object, it goes through the entire object graph. Every
instance of a class with a data contract is written to the XML output. You can customize the XML
output by choosing a namespace and naming members using parameters of the DataContract and
DataMember attributes.

Data contract member names don’t need to match property names. This Guy class has a property
called TrumpCard, but we used the Name parameter of the DataMember attribute to give it the name
MyCard. That’s what shows up in the serialized XML.
Did you notice that the serialized XML does not contain the Card type? That’s because you can add
these data contract attributes to any class with compatible members — like the Suit and Value

properties of the Card class, which the serializer knew how to set using values like Hearts and
Three by matching with corresponding enum values.

Stream some Guy objects to XML files
DO THIS!

Here’s a project to help you experiment with data contract serialization. Create a new Windows Store app and replace the
MainPage.xaml with a new Basic Bage. Then open Package.appxmanifest, enable access to the Pictures Library. Add both
classes with the data contracts from the previous page (you’ll need using System.Runtime.Serialization; in each of them). And
add the familiar Suits and Values enums, too (for the Card class). Here’s the page you’ll build next:

➊ Add a static GuyManager resource to the page (and set the app name). You’ll add the
GuyManager class on the next page.

➋ Here’s the XAML to add to the page.

 We’re not done yet — flip the page!

➌ Add the GuyManager class.

NOTE

The ReadGuyAsync() method uses the path in the TextBox to set the latestGuyFile IStorgeFile field. It uses the serializer to read
the objects from the XML file, then fires off PropertyChanged events for properties that use IStorageFile attributes.

The String class also has a method called IsNullOrWhiteSpace() that detects nulls, empty strings, or strings with only
whitespace characters. Would it make more sense to use it in the ReadGuyAsync() method instead of
IsNullOrEmpty()?

➍ Here are the event handler methods for MainPage.xaml.cs:
private void WriteJoe_Click(object sender, RoutedEventArgs e) {
 guyManager.WriteGuyAsync(guyManager.Joe);
}
private void WriteBob_Click(object sender, RoutedEventArgs e) {
 guyManager.WriteGuyAsync(guyManager.Bob);
}
private void WriteEd_Click(object sender, RoutedEventArgs e) {
 guyManager.WriteGuyAsync(guyManager.Ed);
}

private void ReadNewGuy_Click(object sender, RoutedEventArgs e) {
 guyManager.ReadGuyAsync();
}

Keep in mind that this is a toy program to help you learn how file access works in Windows 8. You should always use a
file picker unless you have a very specific need to add a specific capability to the App Manifest.

Take your Guy Serializer for a test drive
Use the Guy Serializer to experiment with data contract serialization:

Write each Guy object to the Document Library folder. Click the ReadGuy button to read the guy
that was just written. It uses the path in the TextBox to read the file, so try updating that path to
read a different guy. Try reading a file that doesn’t exist. What happens?
Open up the Simple Text Editor you built earlier in the chapter. You added XML files as options
for the open and save file pickers, so you can use it to edit Guy files. Open one of the Guy files,
change it, save it, and read it back into your Guy Serializer. What happens if you add invalid
XML? What if you change the card suit or value so it doesn’t match a valid enum value?
Your Simple Text Editor doesn’t have a New button that resets it to untitled. Can you figure out
how to add one? (You can also just restart it.) Try copying a Guy file, then pasting it into a new
XML file in the Guys folder. What happens when you try to read it into the Guy Serializer?
Try adding or removing the DataMember names ([DataMember(Name="...")]). What does that
do to the XML? What happens when you update the contract and then try to load a previously
saved XML file? Can you fix the XML file to make it work?
Try changing the namespace of the Card data contract. What happens to the XML?

THERE ARE NO DUMB QUESTIONS

Q: Q: I didn’t set the app capabilities in my Simple Text Editor. Why was it able to write to my documents library?

A: A: When your app uses the File Picker, the user can gain access to files and folders without setting app capabilities in the package manifest because the
File Picker is built to keep your filesystem safe: the pickers won’t let you access install folders, local folders, temporary folders, and a lot of other unsafe
locations in your filesystem that your app could accidentally damage. You only need to set capabilities if you need to write code to access locations
directly.

Q: Q: Sometimes I make a change in my XAML or my code, and the IDE’s designer gives me a message that I need to rebuild. What’s going on?

A: A: The XAML designer in the IDE is really clever. It’s able to show you an updated page in real time as you make changes to your XAML code. You
already know that when the XAML uses static resources, that adds object references to the Page class. Well, those objects need to get instantiated in
order for them to be displayed in the designer. If you make a change to the class that’s being used for a static resource, the designer doesn’t get updated
until you rebuild that class. That makes sense — the IDE only rebuilds your project when you ask it to, and until you do that it doesn’t actually have
the compiled code in memory that it needs to instantiate the static resources.
You can use the IDE to see exactly how this works. Open your Guy Serializer and edit the Guy.ToString() method to add some extra words to the return
value. Then go back to the main page designer. It’s still showing the old output. Now choose Rebuild from the Build menu. The designer will update
itself as soon as the code finishes rebuilding. Try making another change, but don’t rebuild yet. Instead, add another TextBlock that’s bound to a Guy
object. The IDE will use the old version of the object until you rebuild.

Q: Q: I’m confused about namespaces. How is the namespace in the program different from the one in an XML file?

A: A: Let’s take a step back and understand why namespaces are necessary. C#, XML files, the Windows filesystem, and web pages all use different (but
often related) naming systems to give each class, XML document, file, or web page its own unique name. So why is this important? Well, let’s say back
in Chapter 9, you created a class called KnownFolders to help Brian keep track of excuse folders. Uh oh! Now you find out that the .NET Framework
already has a KnownFolders class. No worries. The .NET KnownFolders class is in the Windows.Storage namespace, so it can exist happily alongside your
class with the same name, and that’s called disambiguation.
Data contracts also need to disambiguate. You’ve seen several different versions of a Guy class throughout this book. What if you wanted to have two
different contracts to serialize different versions of Guy? You can put them in different namespaces to disambiguate them. And it makes sense that these
namespaces would be separate from the ones for your classes, because you can’t really confuse classes and contracts.

Use a Task to call one async method from another
When you mark a method with the async modifier, that method can also be awaited by other async
methods. But you’ll need to make one change to an asynchronous method in order to do that. Try
adding this method to your GuyManager.cs:

You’ll get an error, with a squiggly underline — and a very useful error message in the Error List
window:

In order to make one async method call another, the method being called has to have the return type be
the Task class (or its subclass, Task<T>, if the method needs to return a value). Since
ReadGuyAsync() has a void return value, all you need to do is replace void with Task in the
declaration:

Now the method can be called with the await operator, and it will act just like any other
asynchronous method and return control when it hits an asynchronous operation. If you wanted the
method to return a value, you’d make it type Task<T>. For example, if you wanted ReadGuyAsync()
to return the Guy object that it read, you would change its return type to Task<Guy>.

Yes! The Task class represents an asynchronous operation.
The async modifier, await keyword, and Task class make writing asynchronous code easier, and the
way they do that is by encaspulating all of the work of yielding control into that Task class. Use “Go
to Definition” to have a quick look at the properties and methods of the Task class. It has methods like
Run(), Continue(), and Wait(), and properties like IsCompleted and IsFaulted. This should
give you a hint about what’s going on behind the scenes...and all of the things it does automatically in
order to make it easier to write asynchronous methods.

You can read more about asynchronous programming here: http://msdn.microsoft.com/en-
us/library/vstudio/hh191443.aspx

http://msdn.microsoft.com/en-us/library/vstudio/hh191443.aspx

Build Brian a new Excuse Manager app
You know how to build XAML pages, read and write files, and serialize objects. It’s time to put all of
the pieces together and rebuild Brian his Excuse Manager as a Windows Store app.
Here’s the main page:

RUN WINDOWS STORE APPS IN THE VISUAL STUDIO SIMULATOR

We captured the screenshot on this page using the simulator built into the IDE. The simulator is a desktop application that’s installed
with Visual Studio that lets you run your apps full-screen in a simulated device. This is really useful if you want to see how it responds
to touch and hardware events, which can be really handy for testing. (This is a simulator, not an emulator.)

To start the simulator, click the drop-down arrow next to and choose when you run your program. Now your
app will launch in a simulator that shows how it will respond to full-screen touch and hardware events.

Learn more about navigating the simulator here: http://msdn.microsoft.com/en-us/library/windows/apps/hh441475.aspx.

http://msdn.microsoft.com/en-us/library/windows/apps/hh441475.aspx

Separate the page, excuse, and Excuse Manager
Your old Excuse object knew how to read and write itself, and that’s not a bad way to design your
objects. But there are other design choices that you can make. Your Guy Serializer app had the
information about the Guy in one class, and methods to read and write Guy objects in the GuyManager
class. You’ll follow the same pattern for the new Excuse Manager app.
That’s another example of the separation of concerns design principle that we talked about back in
Chapter 5 and Chapter 6. The Guy just needs to expose the data contract; it’s up to another class like
GuyManager to determine what to do with that contract. And neither of those classes has any code for
updating the user interface, because they’re not concerned with displaying the excuse — that’s the
MainPage object’s job.

B RAIN POWER

The Excuse and ExcuseManager classes don’t have any code for updating the user interface... and you can use data contract
serialization or asynchronous programming in a WinForms program. Could you use them to adapt the Windows Forms version of
Brian’s Excuse Manager to read and write the same excuse files as your new Windows Store Excuse Manager?

Create the main page for the Excuse Manager
DO THIS!

Create a new Windows Store app project and replace MainPage.xaml with a new Basic Page . You’ll need a static
ExcuseManager resource. Add an empty ExcuseManager class so your code compiles, then add it as a static resource to
<Page.Resources>:

<Page.Resources>
 <local:ExcuseManager x:Name="excuseManager"/>
 <x:String x:Key="AppName">Excuse Manager</x:String>
</Page.Resources>

Here’s the XAML for the page contents — it’s a simple StackPanel-based layout. It sets the data
context for the StackPanel to the ExcuseManager resource.

Add the app bar to the main page
Add a bottom app bar to the page, just like you did with the Guy Serializer earlier in the chapter.
You’ll need to uncomment OpenFileAppBarButtonStyle, SaveAppBarButtonStyle, and
FolderppBarButtonStyle for the Open, Save, and Folder buttons.

So how did that XAML change the picture in the New Excuse button? The icon is just text in the
Segoe UI Symbol font. and the icon is a Unicode character in that font. XAML is based on XML, and
you can insert any character into a string in XML with &#x followed by its Unicode number and a
semicolon.

Next comes the ExcuseManager class

Build the ExcuseManager class
Here’s most of the code for the ExcuseManager class — you’ll finish the rest of the class and build
the Excuse class as an exercise. It has two public properties for binding: CurrentExcuse is the
currently loaded Excuse object, and FileDate is a string that either shows the file date or the string "
(no file loaded)" (if the current excuse hasn’t been saved or loaded). Since it’s firing a
PropertyChanged event, make sure you implement INotifyPropertyChanged.

The ChooseNewFolderAsync() method shows a folder picker, and returns true only if the user chose
a folder. Since it’s an async method that returns a bool value, its return type is Task<bool>.

The FolderPicker is another picker that lets you choose a folder. It works just like the other pickers you’ve seen. Have a
look at all of the pickers in the Windows.Storage.Pickers namespace:
http://msdn.microsoft.com/library/windows/apps/BR207928

http://msdn.microsoft.com/library/windows/apps/BR207928

Flip the page to finish porting the app

Add the code-behind for the page
This is all the code-behind you need. The event handlers for the buttons just call methods in the
ExcuseManager. This is a benefit of separating the concerns about managing excuses from the
concerns about displaying the user interface. Your user interface code tends to be very simple,
because the other classes do most of the work.
Still thinking about that bug on the previous page? Here’s a hint: what happens when you try to
read a random excuse from a folder that you created back in Chapter 9? What about an empty
folder?

private void OpenClick(object sender, RoutedEventArgs e) {
 excuseManager.OpenExcuseAsync();
}

private void SaveClick(object sender, RoutedEventArgs e) {
 excuseManager.SaveCurrentExcuseAsync();
}

private void NewClick(object sender, RoutedEventArgs e) {
 excuseManager.NewExcuseAsync();
}

private void SaveAsClick(object sender, RoutedEventArgs e) {
 excuseManager.SaveCurrentExcuseAsAsync();
}

private void RandomClick(object sender, RoutedEventArgs e) {
 excuseManager.OpenRandomExcuseAsync();
}

private async void FolderClick(object sender, RoutedEventArgs e) {
 bool folderChosen = await excuseManager.ChooseNewFolderAsync();
 if (folderChosen) {
 saveButton.IsEnabled = true;
 randomButton.IsEnabled = true;
 }
}

EXERCISE

Finish the Excuse and ExcuseManager classes for Brian’s new XAML Excuse Manager.

➊ Build the Excuse class.
It needs a data contract with the http://www.headfirstlabs.com/ExcuseManager namespace and three data members. The

first two data members are the Description and Results automatic string properties. The third is a DateTimeOffset automatic
property called LastUsedDate. Take another look at the XAML — it uses three controls that bind direcly to these properties like
this:

{Binding CurrentExcuse.Description, Mode=TwoWay}

When you build your Excuse class, make sure you add a constructor that uses DateTimeOffset. Now to set the LastUsedDate
property to the current date.

➋ Implement the ExcuseManager.WriteExcuseAsync() method.
This method opens a stream and serializes the current excuse to the excuse file managed by the IStorageFile currently stored in
the excuseFile field. Then it displays a message that the excuse was written correctly, and calls UpdateFileDateAsync() to
update the FileDate property.
➌ Implement the ExcuseManager.ReadExcuseAsync() method.
This method opens a stream and deserializes a new Excuse object from the excuse file managed by excuseFile. It fires a
PropertyChanged event to let the page know that the CurrentExcuse was updated, then calls the UpdateFileDateAsync()
method. You’ll also need to implement INotifyPropertyChanged and add the OnPropertyChanged() method.

➍ Implement the ExcuseManager.SaveCurrentExcuseAsAsync() method.
This method displays a FileSavePicker to let the user choose an XML file to save. If the user chooses one, it calls the
WriteExcuseAsync() method to save the file.

WINDOWS STORE APPS USE DATETIMEOFFSET

When you built Windows Forms applications, you used DateTime values to store dates and times.
Windows Store apps typically use DateTimeOffset values instead, because that’s what controls like
DatePicker and properties like BasicProperties.DateModified use. You can learn more about
DateTimeOffset here: http://msdn.microsoft.com/en-us/library/system.datetimeoffset.aspx

EXERCISE SOLUTION

Here are the methods that you needed to add to the ExcuseManager class. Make sure the class extends INotifyPropertyChanged.

http://msdn.microsoft.com/en-us/library/system.datetimeoffset.aspx

Here’s the new Excuse class. It’s got a data contract that includes the Description and Results properties and the lastUsed
backing field for the LastUsed property.

Chapter 12. Exception Handling: Putting out
fires gets old

Programmers aren’t meant to be firefighters.
You’ve worked your tail off, waded through technical manuals and a few engaging Head First books,
and you’ve reached the pinnacle of your profession. But you’re still getting panicked phone calls in
the middle of the night from work because your program crashes, or doesn’t behave like it’s
supposed to. Nothing pulls you out of the programming groove like having to fix a strange bug...but
with exception handling, you can write code to deal with problems that come up. Better yet, you can
even react to those problems, and keep things running.

Brian needs his excuses to be mobile
Brian recently got reassigned to the international division. Now he flies all over the world. But he
still needs to keep track of his excuses, so he installed the Excuse Manager app on his laptop and
takes it with him everywhere.

But the program isn’t working!
Brian chose a brand new, empty folder and clicked the Random Excuse button, and got a pretty nasty-
looking error. What gives?

SHARPEN YOUR PENCIL SOLUTION

Here’s another example of some broken code. There are five different exceptions that this code throws, and the error messages are
shown on the right. It’s your job to match the line of code that has a problem with the exception that line generates. Read the
exception messages for a good hint.

SHARPEN YOUR PENCIL SOLUTION

Your job was to match the line of code that has a problem with the exception that line generates.

You’d never actually get all these exceptions in a row — the program would throw the first exception and then stop.
You’d only get to the second exception if you fixed the first.

That DivideByZero error didn’t have to happen. You can see just by looking at the code that there’s something wrong.
The same goes for the other exceptions. These problems were preventable — and the more you know about
exceptions, the better you’ll be at keeping your code from crashing.

When your program throws an exception, .NET generates an
Exception object
You’ve been looking at .NET’s way of telling you something went wrong in your program: an
exception. In .NET, when an exception occurs, an object is created to represent the problem. It’s
called — no surprise here — Exception.

NOTE

ex-cep-tion, noun.

a person or thing that is excluded from a general statement or does not follow a rule. While Jim usually hates peanut butter, he
made an exception for Ken’s peanut butter fudge.

For example, suppose you have an array with four items. Then, you try to access the 16th item (index
15, since we’re zero-based here):

When the IDE breaks because of an exception, you can see the details of the execption by adding
$exception to the Watch window. It always shows up in the Locals window too, which is a lot like
the Watch window but only shows current local variables.
.NET goes to the trouble of creating an object because it wants to give you all the information about
what caused the exception. You may have code to fix, or you may just need to make some changes to
how you handle a particular situation in your program.
In this case, an IndexOutOfRangeException indicates you have a bug: you’re trying to access an
index in the array that’s out of range. You’ve also got information about exactly where in the code the
problem occurred, making it easier to track down (even if you’ve got thousands of lines of code).

THERE ARE NO DUMB QUESTIONS

Q: Q: Why are there so many kinds of exceptions?

A: A: There are all sorts of ways that you can write code that C# simply doesn’t know how to deal with. It would be difficult to troubleshoot your
problems if your program simply gave a generic error message (“A problem occurred at line 37”). It’s a lot easier to track down and fix problems in your
code when you know specifically what kind of error occurred.

Q: Q: So what is an exception, really?

A: A: It’s an object that .NET creates when there’s a problem. You can specifically generate exceptions in your code, too (more about that in a minute).

Q: Q: Wait, what? It’s an object?

A: A: Yes, an exception is an object. The properties in the object tell you information about the exception. For example, it’s got a Message property that
has a useful string like “Specified cast was invalid” or “Value was either too large or too small for a Single”, which is what the IDE used to populate the
$exception watch. The reason that .NET generates it is to give you as much information as it can about exactly what was going on when it executed the
statement that threw the exception.

Q: Q: OK, I still don’t get it. Sorry. Why are there so many different kinds of exceptions, again?

A: A: Because there are so many ways that your code can act in unexpected ways. There are a lot of situations that will cause your code to simply crash.
It would be really hard to troubleshoot the problems if you didn’t know why the crash happened. By throwing different kinds of exceptions under
different circumstances, .NET is giving you a lot of really valuable information to help you track down and correct the problem.

Q: Q: So exceptions are there to help me, not just cause a pain in my butt?

A: A: Yes! Exceptions are all about helping you expect the unexpected. A lot of people get frustrated when they see code throw an exception. But if you
think about an exception as .NET’s way of helping you track down and debug your program, it really helps out when you’re trying to track down
what’s causing the code to bomb out.

Q: Q: So when my code throws an exception, it’s not necessarily because I did something wrong?

A: A: Exactly. Sometimes your data’s different than you expected it to be — like you’ve got a method that’s dealing with an array that’s a lot longer or
shorter than you anticipated when you first wrote it. And don’t forget that human beings are using your program, and they almost always act in an
unpredictable way. Exceptions are .NET’s way to help you handle those unexpected situations so that your code still runs smoothly and doesn’t
simply crash or give a cryptic, useless error message.

Q: Q: Once I knew what I was looking for, it was pretty clear that the code on the previous page was going to crash. Are all exceptions easy to
spot?

A: A: No. Unfortunately, there will be times when your code will have problems, and it’ll be really hard to figure out what’s causing them just by looking
at it. That’s why the IDE has a debugger — to help you get the bugs out by letting you pause your program, execute it statement by statement, and
inspect the value of each individual variable and field as you go. That makes it a lot easier for you to figure out where your code is acting in a way that’s
different from how you expect it to act. That’s when you have the best chance of finding and fixing the exceptions — or, even better, preventing them in
the first place.

Exceptions are all about helping you find and fix situations where your code behaves in ways you didn’t expect.

Brian’s code did something unexpected
When Brian wrote his Excuse Manager, he never expected the user to try to pull a random excuse out
of an empty directory.

DO THIS!

➊ The problem happened when Brian pointed his Excuse Manager program at an empty folder on his laptop and clicked the
Random Excuse button. Let’s take a look at it and see if we can figure out what went wrong. Here’s the unhandled exception
window that popped up when he ran the program outside the IDE:

➋ OK, that’s a good starting point. It’s telling us that there’s some value that doesn’t fall inside some range. Clicking the Break
button drops the IDE back into the debugger, with the execution halted on a specific line of code:

public async void OpenRandomExcuseAsync()
{
 IReadOnlyList<IStorageFile> files = await excuseFolder.GetFilesAsync();
 excuseFile = files[random.Next(0, files.Count())];
 await ReadExcuseAsync();
}

➌ Let’s use the Watch window to track down the problem. Add a watch for files.Count(). Looks like that returns 0. Try
adding a watch for random.Next(0, files.Count()). That returns 0, too. So add a watch for files[random.Next(0,
files.Count())].

NOTE

You can call methods and use indexers in the Watch window. When one of those things throws an exception, you’ll see that
exception in the Watch window too.

➍ So what happened? It turns out that calling GetFilesAsync() from an IStorageFolder object returns an
IReadOnlyList<IStorageFile> collection. And like other collections that you’ve used, if you try to access an element that
doesn’t exist, it will throw an exception. Try to get the 0th element of an empty collection and your program will throw a
System.ArgumentException, with the message, “Value does not fall within the expected range.”
Luckily, there’s an easy fix. Just check to see if the collection has items before getting a file:

That’s right. Exceptions are a really useful tool that you can use to find places where your code
acts in ways you don’t expect.
A lot of programmers get frustrated the first time they see an exception. But exceptions are really
useful, and you can use them to your advantage. When you see an exception, it’s giving you a lot of
clues to help you figure out when your code is reacting to a situation that you didn’t anticipate. And
that’s good for you: it lets you know about a new scenario that your program has to handle, and it
gives you an opportunity to do something about it.

All exception objects inherit from Exception
.NET has lots of different exceptions it may need to report. Since many of these have a lot of similar
features, inheritance comes into play. .NET defines a base class, called Exception, that all specific
exceptions types inherit from.
The Exception class has a couple of useful members. The Message property stores an easy-to-read
message about what went wrong. And StackTrace tells you what code was being executed when the
exception occurred, and what led up to the exception. (There are others, too, but we’ll use those
first.)

The debugger helps you track down and prevent exceptions in your
code
Before you can add exception handling to your program, you need to know which statements in your
program are throwing the exception. That’s where the debugger that’s built into the IDE can be really
helpful. You’ve been using the debugger throughout the book, but now let’s take a few minutes and
really dig into it. When you run the debugger, the IDE pops up a toolbar with some really useful
buttons.

NOTE

The Debug toolbar only shows up when you’re debugging your program in the IDE. So you’ll have to run a program in order to see
this.

Click the icon on the Debug toolbar and choose “Add or Remove Buttons” to drill down into the
various debugging commands that are available.

Use the IDE’s debugger to ferret out exactly what went wrong in the
Excuse Manager
Let’s use the debugger to take a closer look at the problem that we ran into in the Excuse Manager.
You’ve probably been using the debugger a lot over the last few chapters, but we’ll go through it step
by step anyway to make sure we don’t leave out any details.

DEB UG THIS

➊ ADD A BREAKPOINT TO THE RANDOM BUTTON’S EVENT HANDLER.
You’ve got a starting point — the exception happens when the Random Excuse button is clicked after an empty folder is selected.
So open up the code-behind for the button and use Debug→Toggle Breakpoint (F9) to add a breakpoint to the method. Start
debugging the app, choose an empty folder, then click the Random button to make your program break at the breakpoint:

➋ STEP INTO THE OPENRANDOM EXCUSEASYNC() METHOD.
Use the Step Into command (using either the toolbar or the F11 key) to debug into the method. Then use Step Over (F10) to
step through the method line by line. Since you selected an empty folder, you should see the program show the MessageDialog()
and then exit the method.

Now select a folder with excuses in it, click the Random button again, and step into the method again. This time, your code
will skip past the if block and move on to the next line.

➌ USE THE WATCH WINDOW TO START REPRODUCING THE PROBLEM.
You’ve already seen how handy the Watch window is. Now we’ll use it to reproduce the exception. Stop the program, delete the
old breakpoint, and put a breakpoint on the second line of the OpenRandomExcuseAsync() method. Start the program,
choose an empty folder, then click the Random Excuse button. When the debugger breaks in the method, select files.Count(),
right-click on it, and choose to add a watch to the Watch window:

NOTE

You want to break on the second line because that’s the line that accesses the files object.

➍ ADD ANOTHER WATCH TO START TRACKING DOWN THE PROBLEM.
Debugging is a little like performing a forensic crime scene investigation on your program. You don’t necessarily know what
you’re looking for until you find it, so you need to use your debugger “CSI kit” to follow clues and track down the culprit. Since
files.Count() wasn’t the guilty party, move on to the next suspect: select random.Next(files.Count()) and add it to your
Watch window:

The Watch window has another very useful feature. It lets you change the value of variables and fields that it’s displaying, and
it even lets you execute methods and create new objects . When you do, it displays its reevaluate icon that you can click to
tell it to execute that method again, because sometimes running the same method twice will generate different results (like with
Random).
➎ CATCH THE CULPRIT THAT THREW BRIAN’S ORIGINAL EXCEPTION.
Here’s where debugging gets really interesting. Add one more line to the debugger — the statement that actually threw the
exception: files[random.Next(0, files.Count())]. As soon as you type it in, the Watch window evaluates it...and that throws
the exception!

Click the + icon to expand the exception, and you’ll see that its Message property contains “Value does not fall within the expected
range.” Now you know exactly what caused the problem, and why it happened. GetFilesAsync() returns a
IReadOnlyList<IStorageFile> collection that has a count of 0 for an empty folder. If you try to use its indexer (files[0]), it
will throw an ArgumentException.

When you get an exception, you can go back and reproduce it in the debugger and use the

Exception object to help you fix your code.

THERE ARE NO DUMB QUESTIONS

Q: Q: When I run my app in the IDE, I can view the exception details using the Watch window. But what happens if I run the program outside of
the IDE?

A: A: There’s an easy way to answer that question. Comment out the change you made the OpenRandomExcuseAsync() method to fix the problem, and then
launch your app by choosing Start Without Debugging from the Debug menu. This will launch your app as if it were clicked from the Start screen.
(You can also just go and click it from the Start screen.) Choose an empty folder, click the Random Excuse button, and...bam! Your app just disappears.
That’s what normally happens when an app has an unhandled exception. (You’ll learn more about how to handle exceptions later in the chapter.)
Most users don’t want to see a cryptic window full of method names and exception details. But don’t worry — your exception isn’t lost. Open up the
Windows Control Panel (you can search for “Control Panel” from the Start screen), search for “event,” and view the event logs. Expand Windows Logs
and click on Application. One of the events in the Application event log will contain your app’s exception, including a stack trace that shows you
the line that threw the exception, the line that called it, the one that called it, etc. (that’s called the call stack). When you’re debugging, the stack trace is
in the StackTrace property of the Exception object.

Q: Q: So that’s it? When an exception happens outside the IDE, my program just stops and there’s nothing I can do about it?

A: A: Well, your program does stop when there’s an unhandled exception. But that doesn’t mean that all of your exceptions have to be unhandled! We’ll
talk a lot more about how you can handle exceptions in your code. There’s no reason your users ever have to see an unhandled exception.

Q: Q: How do I know where to put a breakpoint?

A: A: That’s a really good question, and there’s no one right answer. When your code throws an exception, it’s always a good idea to start with the
statement that threw it. But usually, the problem actually happened earlier in the program, and the exception is just fallout from it. For example, the
statement that throws a divide-by-zero error could be dividing values that were generated 10 statements earlier but just haven’t been used yet. So there’s
no one good answer to where you should put a breakpoint, because every situation is different. But as long as you’ve got a good idea of how your code
works, you should be able to figure out a good starting point.

Q: Q: Can I run any method in the Watch window?

A: A: Yes. Any statement that’s valid in your program will work inside the Watch window, even things that make absolutely no sense to run inside a Watch
window. Here’s an example. Bring up a program, start it running, break it, and then add this to the Watch window:
System.Threading.Thread.Sleep(2000). That method causes your program to delay for two seconds. There’s no reason you’d ever do that in real life, but
it’s interesting to see what happens: the IDE will block and you’ll get a wait cursor for two seconds while the method evaluates. Then, since Sleep() has
no return value, the Watch window will display the value Expression has been evaluated and has no value to let you know that it didn’t return anything.
But it did evaluate it. Not only that, but it displays IntelliSense pop ups to help you type code into the window. That’s useful because it shows the
available properties and methods for objects currently in memory.

Q: Q: Wait, so isn’t it possible for me to run something in the Watch window that’ll change the way my program runs?

A: A: Yes! Not permanently, but it can definitely affect your program’s output. But even better, just hovering over fields inside the debugger can cause
your program to change its behavior, because hovering over a property executes its get accessor. If you have a property that has a get accessor that
executes a method, then hovering over that property will cause that method to execute. And if that method sets a value in your program, then that value
will stay set if you run the program again. And that can cause some pretty unpredictable results inside the debugger. Programmers have a name for
results that seem to be unpredictable and random: they’re called heisenbugs (which is a joke that makes sense to physicists and cats trapped in boxes).

When you run your program inside the IDE, an unhandled exception will cause it to break as if it had run into a
breakpoint.

Uh oh — the code’s still got problems...
Brian was happily using his Excuse Manager when he accidentally chose a folder full of XML files
that weren’t created by the Excuse Manager. Let’s see what happens when he tries to load one of
them....

➊ You can re-create Brian’s problem. Find one of the XML files that contains a serialized Excuse
object. Open it up in Notepad and and add some invalid, non-XML text to the very beginning, right
before the opening < character.
➋ Pop open the Excuse Manager in the IDE and open up the excuse. It throws an exception! Look
at the message, then click the Break button to start investigating.

➌ Open up the Locals window and expand $exception (you can also enter it into the Watch
window). Take a close look at its members to see if you can figure out what went wrong.

DO YOU SEE WHY THE PROGRAM THREW THE EXCEPTION? DOES IT MAKE SENSE FOR THE
PROGRAM TO CRASH IF IT ENCOUNTERS AN INVALID EXCUSE XML FILE? CAN YOU THINK OF
ANYTHING YOU CAN DO ABOUT THIS?

Actually, there is something you can do about it.
Yes, it’s true that users screw up all the time. That’s a fact of life. But that doesn’t mean you can’t do
anything about it. There’s a name for programs that deal with bad data, malformed input, and other
unexpected situations gracefully: they’re called robust programs. And C# gives you some really
powerful exception handling tools to help you make your programs more robust. Because while you
can’t control what your users do, you can make sure that your program doesn’t crash when they do it.

NOTE

ro-bust, adj.

sturdy in construction; able to withstand or overcome adverse conditions. After the Tacoma Narrows Bridge disaster, the civil
engineering team looked for a more robust design for the bridge that would replace it.

WATCH IT!

Serializers will throw an exception if there’s anything at all wrong with a serialized file.

It’s easy to get the Excuse Manager to throw a SerializationException — just feed it any file that’s not a serialized Excuse
object. When you try to deserialize an object from a file, DataContractSerializer expects the file to contain a serialized
object that matches the contract of the class that it’s trying to read. If the file contains anything else, almost anything at all,
then the ReadObject() method will throw a SerializationException.

The BinaryFormatter class will also throw a SeralizationException if you give it a file that doesn’t contain exactly the right
serialized object. It’s even more finicky than DataContractSerializer!

Handle exceptions with try and catch
In C#, you can basically say, “Try this code, and if an exception occurs, catch it with this other bit of
code.” The part of the code you’re trying is the try block, and the part where you deal with
exceptions is called the catch block. In the catch block, you can do things like print a friendly error
message instead of letting your program come to a screeching halt:

This is the simplest kind of exception handling: stop the program, write out the exception message,
and keep running. Notice how there’s no await keyword when showing the MessageDialog? That’s
because you can’t await in the body of a catch clause. Luckily, you can still call the ShowAsync()
method, but it will block until the user dismisses the dialog.

B RAIN POWER

If throwing an exception makes your code automatically jump to the catch block, what happens to the objects and data you were
working with before the exception happened?

What happens when a method you want to call is risky?
Users are unpredictable. They feed all sorts of weird data into your program, and click on things in
ways you never expected. And that’s just fine, because you can handle unexpected input with good
exception handling.

➊ Let’s say your user is using your code, and gives it some input that it didn’t expect.

➋ That method does something risky, something that might not work at runtime.

NOTE

“Runtime” just means “while your program is running.” Some people refer to exceptions as “runtime errors.”

➌ You need to know that the method you’re calling is risky.

➍ You then write code that can handle the failure if it does happen. You need to be prepared,
just in case.

NOTE

If you can come up with a way to do a less risky thing that avoids throwing the exception, that’s the best possible outcome! But
some risks just can’t be avoided, and that’s when you want to do this.

THERE ARE NO DUMB QUESTIONS

Q: Q: So when do I use try and catch?

A: A: Any time you’re writing risky code, or code that could throw an exception. The trick is figuring out which code is risky, and which code is safer.
You’ve already seen that code that uses input provided by a user can be risky. Users give you incorrect files, words instead of numbers, and names
instead of dates, and they pretty much click everywhere you could possibly imagine. A good program will take all that input and work in a calm,
predictable way. It might not give the users a result they can use, but it will let them know that it found the problem and hopefully suggest a solution.

Q: Q: How can a program suggest a solution to a problem it doesn’t even know about in advance?

A: A: That’s what the catch block is for. A catch block is only executed when code in the try block throws an exception. It’s your chance to make sure the
user knows that something went wrong, and to let the user know that it’s a situation that might be corrected.
If the Excuse Manager simply crashes when there’s bad input, that’s not particularly useful. But if it tries to read the input and displays garbage in the
form, that’s also not useful — in fact, some people might say that it’s worse. But if you have the program display an error message telling the user that
it couldn’t read the file, then the user has an idea of what went wrong, and information that he can use to fix the problem.

Q: Q: So the debugger should really only be used to troubleshoot exceptions then?

A: A: No. As you’ve already seen many times throughout the book, the debugger’s a really useful tool that you can use to examine any code you’ve
written. Sometimes it’s useful to step through your code and check the values of certain fields and variables — like when you’ve got a really complex
method, and you want to make sure it’s working properly.
But as you may have guessed from the name “debugger,” its most common use is to track down and remove bugs. Sometimes those bugs are exceptions
that get thrown. But a lot of the time, you’ll be using the debugger to try to find other kinds of problems, like code that gives a result that you don’t
expect.

Q: Q: I’m not sure I totally got what you did with the Watch window.

A: A: When you’re debugging a program, you usually want to pay attention to how a few variables and fields change. That’s where the Watch window
comes in. If you add watches for a few variables, the Watch window updates their values every time you step into, out of, or over code. That lets you
monitor exactly what happens to them after every statement, which can be really useful when you’re trying to track down a problem.
The Watch window also lets you type in any statement you want, and even call methods, and the IDE will evaluate it and display the results. If the
statement updates any of the fields and variables in your program, then it does that, too. That lets you change values while your program is running,
which can be another really useful tool for reproducing exceptions and other bugs.

NO TE

Any changes you make in the Watch window just affect the data in memory, and only last as long as the program
is running. Restart your program, and values that you changed will be undone.

The catch block is only executed when code in the try block throws an exception. It gives you a chance to make
sure your user has the information to fix the problem.

Use the debugger to follow the try/catch flow
An important part of exception handling is that when a statement in your try block throws an
exception, the rest of the code in the block gets short-circuited. The program’s execution immediately
jumps to the first line in the catch block. But don’t take our word for it....

DEB UG THIS

➊ Add the try/catch from a few pages ago to your Excuse Manager app’s ReadExcuseAsync() method. Then place a
breakpoint on the opening bracket { in the try block.

SerializationException is in the System.Runtime.Serialization namespace. Luckily, you already have using System.Runtime.Serialization at
the top of your ExcuseManager.cs file.

➋ Start debugging your app and open up a file that’s not a valid excuse file (but still has the .xml extension). When the
debugger breaks on your breakpoint, click the Step Over button (or F10) five times to get to the statement that calls
ReadObject() to deserialize the Excuse object. Here’s what your debugger screen should look like:

➌ Keep stepping through the code. As soon as the debugger executes the ReadObject() statement, the exception is thrown and
the program short-circuits right past the rest of the method and jumps straight to the catch block.

➍ Start the program again by pressing the Continue button (or F5). It’ll begin running the program again, starting with whatever’s
highlighted by the yellow “next statement” block — in this case, the catch block. It will just display the dialog, and then act as if
nothing happened. The ugly crash has now been handled.

WATCH IT!

Keep risky code out of the constructor!

You’ve noticed by now that a constructor doesn’t have a return value, not even void. That’s because a constructor doesn’t
actually return anything. Its only purpose is to initialize an object — which is a problem for exception handling inside the
constructor. When an exception is thrown inside the constructor, then the statement that tried to instantiate the class won’t end
up with an instance of the object.

Here’s a career tip: a lot of C# programming job interviews include a question about how you deal with exceptions in a
constructor.

If you have code that ALWAYS should run, use a finally block
When your program throws an exception, a couple of things can happen. If the exception isn’t
handled, your program will stop processing and crash. If the exception is handled, your code jumps to
the catch block. But what about the rest of the code in your try block? What if you were closing a
stream, or cleaning up important resources? That code needs to run, even if an exception occurs, or
you’re going to make a mess of your program’s state. That’s where the finally block comes in really
handy. It comes after the try and catch blocks. The finally block always runs, whether or not an
exception was thrown. Here’s how you can use it to make sure the ReadExcuseAsync() method
always fires the PropertyChanged event:

Always catch specific exceptions like SerializationException. You typically follow a catch
statement with a specific kind of exception telling it what to catch. It’s valid C# code to just have
catch (Exception) and you can even leave the exception type out and just use catch. When you do
that, it catches all exceptions, no matter what type of exception is thrown. But it’s a really bad
practice to have a catch-all exception handler like that. Your code should always catch as specific
an exception as possible.

NOW DEB UG THIS

➊ Update the ReadExcuseAsync() method with the code on the facing page. Then place a breakpoint on the opening bracket in
the try block and debug the program.
➋ Run the program normally, and make sure that the Open button works when you load a working excuse file. The debugger
should break at the breakpoint you set:

➌ Step through the rest of the method and make sure it runs the way you expect it to. It should finish the try block, skip over the
catch block (because no exceptions were thrown), and then execute the finally block.
➍ Now try opening a malformed excuse file. The method should start executing the try block, and then jump to the catch block
when it throws the exception. After it finishes all of the statements in the catch block, it’ll execute the finally block.

THERE ARE NO DUMB QUESTIONS

Q: Q: Back up a second. So every time my program runs into an exception, it’s going to stop whatever it’s doing unless I specifically write code
to catch it. How is that a good thing?

A: A: One of the best things about exceptions is that they make it really obvious when you run into problems. Imagine how easy it could be in a complex
application for you to lose track of all of the objects your program was working with. Exceptions call attention to your problems and help you root out
their causes so that you always know that your program is doing what it’s supposed to do.
Any time an exception occurs in your program, something you expected to happen didn’t. Maybe an object reference wasn’t pointing where you
thought it was, or it was possible for a user to supply a value you hadn’t considered, or a file you thought you’d be working with suddenly isn’t
available. If something like that happened and you didn’t know it, it’s likely that the output of your program would be wrong, and the behavior from
that point on would be pretty different from what you expected when you wrote the program.
Now imagine that you had no idea the error had occurred and your users started calling you up with incorrect data and telling you that your program
was unstable. That’s why it’s a good thing that exceptions disrupt everything your program is doing. They force you to deal with the problem while it’s
still easy to find and fix.

Q: Q: OK, so then what’s the difference between a handled exception and an unhandled exception?

A: A: Whenever your program throws an exception, the runtime environment will search through your code looking for a catch block that handles it. If
you’ve written one, the catch block will execute and do whatever you specified for that particular exception. Since you wrote a catch block to deal with
that error up front, that exception is considered handled. If the runtime can’t find a catch block to match the exception, it stops everything your
program is doing and raises an error. That’s an unhandled exception.

Q: Q: But isn’t it easier to use a catch-all exception? Isn’t it safer to write code that always catches every exception?

A: A: You should always do your best to avoid catching Exception, and instead catch specific exceptions. You know that old saying about how an ounce
of prevention is better than a pound of cure? That’s especially true in exception handling. Depending on catch-all exceptions is usually just a way to
make up for bad programming. For example, you’re often better off using File.Exists() to check for a file before you try to open it than catching a
FileNotFoundException. While some exceptions are unavoidable, you’ll find that a surprising number of them never have to be thrown in the first place.
It’s sometimes really useful to leave exceptions unhandled. Real-life programs have complex logic, and it’s often difficult to recover correctly when
something goes wrong, especially when a problem occurs very far down in the program. By only handling specific exceptions, avoiding catch-all
exception handlers, and letting those exceptions bubble up to get caught on a top level, you end up with a more robust app because it will be
immediately obvious if there’s a problem.

NO TE

A system that’s designed to immediately report a failure (rather than slowly becoming unstable) is sometimes
referred to as “fail-fast.”

Q: Q: What happens when you have a catch that doesn’t specify a particular exception?

A: A: A catch block like that will catch any kind of exception the try block can throw.

Q: Q: If a catch block with no specified exception will catch anything, why would I ever want to specify an exception type?

A: A: Certain exceptions might require different actions to keep your program moving. Maybe an exception caused by dividing by zero might have a catch
block where it goes back and sets properties to save some of the data you’ve been working with, while a null reference exception in the same block of
code might require it to create new instances of an object.

Q: Q: Does all error handling happen in a try/catch/finally sequence?

A: A: No. You can mix it up a bit. You could have multiple catch blocks if you wanted to deal with lots of different kinds of errors. You could also have
no catch block at all. It’s legal to have a try/finally block. That wouldn’t handle any exceptions, but it would make sure that the code in the finally
block ran even if you got stopped halfway through the try block. But we’ll talk a lot more about that in a minute....

An unhandled exception means your program will run unpredictably. That’s why the program stops whenever it runs
into one.

POOL PUZZLE

Your job is to take code snippets from the pool and place them into the blank lines in the program. You can use the same snippet more
than once, and you won’t need to use all the snippets. Your goal is to make the program produce the output.

Output: G'day Mate!

using System.IO;
public static void Main() {
 Kangaroo joey = new Kangaroo();

 int koala = joey.Wombat(
 joey.Wombat(joey.Wombat(1)));
 try {
 Console.WriteLine((15 / koala)
 + " eggs per pound");
 }
 catch (___________________) {
 Console.WriteLine("G'Day Mate!");
 }
}

class Kangaroo {
 ___________ fs;
 int croc;
 int dingo = 0;
 public int Wombat(int wallaby) {
 _______ __;
 try {
 if (________ > 0) {
 __ = _____.OpenWrite("wobbiegong");
 croc = 0;
 } else if (________ < 0) {
 croc = 3;
 } else {
 ___ = _____.OpenRead("wobbiegong");
 croc = 1;
 }
 }
 catch (IOException) {
 croc = -3;
 }
 catch {
 croc = 4;
 }
 finally {
 if (______ > 2) {
 croc ___ dingo;
 }
 }
 ________ ______;
 }
}

Note: Each snippet from the pool can be used more than once!

The pool puzzles are getting harder, and the names are getting more obscure to give you fewer hints. You’ll really need
to work through the problem! Remember, the puzzles are optional, so don’t worry if you need to move on and come back
to this one...but if you really want to get this stuff into your brain, these puzzles will do the trick!

POOL PUZZLE SOLUTION

Use the Exception object to get information about the problem
We’ve been saying all along that .NET generates an Exception object when an exception is thrown.
When you write your catch block, you have access to that object. Here’s how it works:

➊ An object is humming along, doing its thing, when it encounters something unexpected and
throws an exception.

➋ Luckily, its try/catch block caught the exception. Inside the catch block, it gave the exception
a name: ex.

➌ The Exception object stays around until the catch block is done. Then the ex reference
disappears, and it’s eventually garbage-collected.

Use more than one catch block to handle multiple types of
exceptions

You can also call the exception’s ToString() method to get a lot of the pertinent data into a dialog.

You know that you can catch a specific type of exception...but what if you write code where more than
one problem can occur? In these cases, you may want to write code that handles each different type of
exception. That’s where using more than one catch block comes in. Here’s an example from the code
in the beehive nectar processing plant. You can see how it catches several kinds of exceptions. In
some cases it uses properties in the Exception object. It’s pretty common to use the Message
property, which usually contains a description of the exception that was thrown. You can also call
throw; to rethrow the exception, so it can be handled further up the call stack.

One class throws an exception that a method in another class can
catch

NOTE

...or another method in the same class.

When you’re building a class, you don’t always know how it’s going to be used. Sometimes other
people will end up using your objects in a way that causes problems — and sometimes you do it
yourself ! That’s where exceptions come in.
The whole point behind throwing an exception is to see what might go wrong, so you can put in place
some sort of contingency plan. You don’t usually see a method that throws an exception and then
catches it. An exception is usually thrown in one method and then caught in a totally different one —
usually in a different object.
Instead of this...
Without good exception handling, one exception can halt the entire program. Here’s how it would
work in a program that manages bee profiles for a queen bee.

...we can do this.
The BeeProfile object can intercept the exception and add a log entry. Then it can turn around and
throw the exception back to the hive, which catches it and recovers gracefully.

Bees need an OutOfHoney exception
Your classes can throw their own exceptions. For example, if you get a null parameter in a method
that was expecting a value, it’s pretty common to throw the same exception that a .NET method
would:

But sometimes you want your program to throw an exception because of a special condition that could
happen when it runs. The bees we created in the hive, for example, consume honey at a different rate
depending on their weight. If there’s no honey left to consume, it makes sense to have the hive throw
an exception. You can create a custom exception to deal with that specific error condition just by
creating your own class that inherits from Exception and then throwing the exception whenever you
encounter a specific error.

EXCEPTION MAGNETS

Arrange the magnets so the application writes the output to the console.

EXCEPTION MAGNETS SOLUTION

Arrange the magnets so the application writes the output to the console.

B ULLET POINTS

Any statement can throw an exception if something fails at runtime.
Use a try/catch block to handle exceptions. Unhandled exceptions will cause your program to stop execution and pop up an
error window.
Any exception in the block of code after the try statement will cause the program’s execution to immediately jump to the first
statement in the block of code after catch.
The Exception object gives you information about the exception that was caught. If you specify an Exception variable in your
catch statement, that variable will contain information about any exception thrown in the try block:

try {
 // statements that might
 // throw exceptions
} catch (IOException ex) {
 // if an exception is thrown,
 // ex has information about it
}

There are many different kinds of exceptions that you can catch. Each has its own object that inherits from Exception. Really try
to avoid just catching Exception — catch specific exceptions instead.
Each try can have more than one catch:

try { ... }
catch (NullReferenceException ex) {
 // these statements will run if a
 // NullReferenceException is thrown
}
catch (OverflowException ex) { ... }
catch (FileNotFoundException) { ... }
catch (ArgumentException) { ... }

Your code can throw an exception using throw:

throw new Exception("Exception message");

Your code can also rethrow an exception using throw; but this only works inside of a catch block. Rethrowing an exception
preserves the call stack.
You can create a custom exception by inheriting from the Exception base class.

class CustomException : Exception { }

Most of the time, you only need to throw exceptions that are built into .NET, like ArgumentException. The reason you use
different kinds of exceptions is so that you can give more information to your users . Popping up a window with the text “An
unknown error has occurred” is not nearly as useful as an error message that says “The excuse folder is empty. Please select a
different folder if you want to read excuses.”

An easy way to avoid a lot of problems: using gives you try and
finally for free

NOTE

Remember, when you declare a reference in a “using” statement, its Dispose() method is automatically called at the end of the block.

You already know that using is an easy way to make sure that your files always get closed. But what
you didn’t know is that it’s really just a C# shortcut for try and finally!

Exception avoidance: implement IDisposable to do your own
cleanup

NOTE

IDisposable is a really effective way to avoid common exceptions and problems. Make sure you use using statements any time you’re
working with any class that implements it.

Streams are great, because they already have code written to close themselves when the object is
disposed. But what if you have your own custom object, and it always needs to do something when
it’s disposed of ? Wouldn’t it be great if you could write your own code that got run if your object
was used in a using statement?
C# lets you do just that with the IDisposable interface. Implement IDisposable, and write your
cleanup code in the Dispose() method, like this:

NOTE

You can only use a class in a using statement if it implements IDisposable; otherwise, your program won’t compile.

One of the guidelines for implementing IDispose is that your Dispose() method can be called
multiple times without side effects. Can you think of why that’s an important guideline?
We can use multiple using statements now. First, let’s use a built-in object, Stream, which
implements IDisposable. Then, we’ll work with our updated Nectar object, which also implements
IDisposable:

THERE ARE NO DUMB QUESTIONS

Q: Q: Is it possible to use an object with a using statement if it doesn’t implement IDisposable?

A: A: No, you can only create objects that implement IDisposable with using statements, because they’re tailor-made for each other. Adding a using
statement is just like creating a new instance of a class, except that it always calls its Dispose() method at the end of the block. That’s why the class
must implement the IDisposable interface.

Q: Q: Can you put any statement inside a using block?

A: A: Definitely. The whole idea with using is that it helps you make sure that every object you create with it is disposed. But what you do with those
objects is entirely up to you. In fact, you can create an object with a using statement and never even use it inside the block. But that would be pretty
useless, so we don’t recommend doing that.

Q: Q: Can you call Dispose() outside of a using statement?

A: A: Yes. You don’t ever actually need to use a using statement. You can call Dispose() yourself when you’re done with the object. Or you can do
whatever cleanup is necessary — like calling a stream’s Close() method manually. But if you use a using statement, it’ll make your code easier to
understand and prevent problems that happen if you don’t dispose of your objects.

Q: Q: You mentioned a “try/ finally” block. Does that mean it’s OK to have a try and finally without a catch?

A: A: Yes! You can definitely have a try block without a catch, and just a finally. It looks like this:

try {
 DoSomethingRisky();
 SomethingElseRisky();
}
finally {
 AlwaysExecuteThis();
}

If DoSomethingRisky() throws an exception, then the finally block will immediately run.

Q: Q: Does Dispose() only work with files and streams?

A: A: No, there are a lot of classes that implement IDisposable, and when you’re using one you should always use a using statement. (You’ll see some of
them in the next few chapters.) And if you write a class that has to be disposed of in a certain way, then you can implement IDisposable, too.

You want to know what type of exception is thrown, so you can handle that exception.
There’s more to exception handling than just printing out a generic error message. For instance, in the
excuse finder, if we know we’ve got a FileNotFoundException, we might print an error that
suggested where the right files should be located. If we have an exception related to databases, we
might send an email to the database administrator. All that depends on you catching specific exception
types.

NOTE

This is why there are so many classes that inherit from Exception, and why you may even want to write your own classes to inherit
from Exception.

The worst catch block EVER: catch-all plus comments
A catch block will let your program keep running if you want. An exception gets thrown, you catch
the exception, and instead of shutting down and giving an error message, you keep going. But
sometimes, that’s not such a good thing.
Take a look at this Calculator class, which seems to be acting funny all the time. What’s going on?

You should handle your exceptions, not bury them
Just because you can keep your program running doesn’t mean you’ve handled your exceptions. In the
code above, the calculator won’t crash...at least, not in the Divide() method. But what if some other
code calls that method, and tries to print the results? If the divisor was zero, then the method probably
returned an incorrect (and unexpected) value.
Instead of just adding a comment and burying the exception, you need to handle the exception. And if
you’re not able to handle the problem, don’t leave empty or commented catch blocks! That just
makes it harder for someone else to track down what’s going on. It’s better to let the program continue
to throw exceptions, because then it’s easy to figure out what’s going wrong.

NOTE

Remember, when your code doesn’t handle an exception, the exception bubbles up the call stack. Letting an exception bubble up is a
perfectly valid way of dealing with an exception, and in some cases it makes more sense to do that than to use a try/catch block to
handle the exception.

Temporary solutions are OK (temporarily)
NOTE

...but in real life, “temporary” solutions have a nasty habit of becoming permanent.

Sometimes you find a problem, and know it’s a problem, but aren’t sure what to do about it. In these
cases, you might want to log the problem and note what’s going on. That’s not as good as handling the
exception, but it’s better than doing nothing.
Here’s a temporary solution to the calculator:

Take a minute and think about this catch block. What happens if the StreamWriter can’t write to the C:\Logs\ folder? You
can nest another try/catch block inside it to make it less risky. Can you think of a better way to do this?

Handling exceptions doesn’t always mean the same thing as FIXING exceptions.

It’s never good to have your program bomb out. But it’s way worse to have no idea why it’s crashing
or what it’s doing to users’ data. That’s why you need to be sure that you’re always dealing with the
errors you can predict and logging the ones you can’t. But while logs can be useful for tracking down
problems, preventing those problems in the first place is a better, more permanent solution.

A few simple ideas for exception handling

EXCEPTIONCROSS

Across Down

5. The base class that DivideByZeroException and FormatException inherit from

8. An ____________exception happens when you try to cast a value to
a variable that can’t hold it

10. If the next statement is a method, “Step _____” tells the debugger to
execute all the statements in the method and break immediately
afterward

12. If you ____ your exceptions, it can make them hard to track down

13. This method is always called at the end of a using block

14. The field in the Exception object that contains a string with a description

15. One try block can have multiple _______ blocks

17. The ________ block contains any statements that absolutely must be
run after an exception is handled

18. An __________exception means you tried to cram a number that
was too big into a variable that couldn’t hold it

1. The window in the IDE that you can use to check
your variables’ values

2. You’ll get an exception if you try to divide by this

3. Toggle this if you want the debugger to stop execution
when it hits a specific line of code

4. “Step ____” tells the debugger to execute the rest of
the statements in the current method and then break

6. What a reference contains if it doesn’t point to
anything

7. You can only declare a variable with a using statement
if it implements this interface

9. When a statement has a problem, it ________ an
exception

11. A program that handles errors well

16. If the next statement is a method, “Step _____” tells
the debugger to execute the first statement in that
method

EXCEPTIONCROSS SOLUTION

Brian finally gets his vacation...
Now that Brian’s got a handle on his exceptions, his job’s going smoothly and he can take that well-
deserved (and boss-approved!) vacation day.

...and things are looking up back home!
Your exception handling skills did more than just prevent problems. They ensured that Brian’s boss
has no idea anything went wrong in the first place!

Good exception handling is invisible to your users. The program never crashes, and if there are problems, they are
handled gracefully, without confusing error messages.

Chapter 13. Captain Amazing: The Death of
the Object

SHARPEN YOUR PENCIL

Below is the code detailing the fight between Captain Amazing and Swindler (not to mention his clone army). Your job is to draw out
what’s going on in memory when the FinalBattle class is instantiated.

Based on your diagrams, where in the code did Captain Amazing die?

__

__

__

__

Be sure to annotate that on your diagram, too.

SHARPEN YOUR PENCIL SOLUTION

Draw what’s happening in memory with the FinalBattle program.

Based on your diagrams, where in the code did Captain Amazing die?

Once finalBattleFactory was set to null, it was ready for garbage collection. And it took the last reference to the Captain with it!

NOTE

Once the Superhero instance had no clone factory referencing it, it was marked for garbage
collection too.

Your last chance to DO something... your object’s finalizer
Sometimes you need to be sure something happens before your object gets garbage-collected, like
releasing unmanaged resources.

In general, you’ll never write a finalizer for an object that only owns managed resources. Everything you’ve encountered
so far in this book has been managed — meaning managed by the CLR (including any object that ends up on the heap).
But occasionally programmers need to access an underlying Windows resource that isn’t part of the .NET Framework. If
you find code on the Internet that uses the [DllImport] attribute, you might be using an unmanaged resource. And some
of those non-.NET resources might leave your system unstable if they’re not “cleaned up” somehow (maybe by calling a
method). And that’s what finalizers are for.

A special method in your object called the finalizer allows you to write code that will always
execute when your object is destroyed. Think of it as your object’s personal finally block: it gets
executed last, no matter what.
Here’s an example of a finalizer in the Clone class:

You write a finalizer method just like a constructor, but instead of an access modifier, you put a ~ in
front of the class name. That tells .NET that the code in the finalizer block should be run right before
it garbage-collects the object.
Also, finalizers can’t have parameters, because .NET doesn’t need to tell it anything other than
“you’re done!”

WATCH IT!

Some of this code is for learning purposes only, not for your real programs.

Throughout the book we’ve made reference to how objects “eventually” get garbage-collected, but we never really specified
exactly when that happens...just that it happens sometime after the reference to the object disappears. We’re about to show
you some code that automatically triggers garbage collection using GC.Collect() and pops up a MessageBox in a finalizer.
These things mess with the “guts” of the CLR. We’re doing this to teach you about garbage collection. Never do this outside
of toy programs.

When EXACTLY does a finalizer run?
The finalizer for your object runs after all references are gone, but before that object gets garbage-
collected. And garbage collection happens after all references to your object go away. But garbage
collection doesn’t always happen right after the references are gone.
Suppose you have an object with a reference to it. .NET sends the garbage collector to work, and it
checks out your object. But since there are references to your object, the garbage collector ignores it
and moves along. Your object keeps living on in memory.
Then, something happens. That last object holding a reference to your object decides to move on.
Now, your object is sitting in memory, with no references. It can’t be accessed. It’s basically a dead
object.
But here’s the thing. Garbage collection is something that .NET controls, not your objects. So if the
garbage collector isn’t sent out again for, say, a few seconds, or maybe even a few minutes, your
object still lives on in memory. It’s unusable, but it hasn’t been garbage-collected. And any finalizer
your object has does not (yet) get run.
Finally, .NET sends the garbage collector out again. Your finalizer runs...possibly several minutes
after the last reference to the object was removed or changed. Now that it’s been finalized, your
object is dead, and the collector tosses it away.

You can SUGGEST to .NET that it’s time to collect the garbage
.NET does let you suggest that garbage collection would be a good idea. Most times, you’ll never
use this method, because garbage collection is tuned to respond to a lot of conditions in the CLR
and calling it isn’t really a good idea. But just to see how a finalizer works, you could call for
garbage collection on your own. If that’s what you want to do, just call GC.Collect().
Be careful, though. That method doesn’t force .NET to garbage-collect things immediately. It just
says, “Do garbage collection as soon as possible.”

Dispose() works with using; finalizers work with garbage collection
NOTE

Like you saw earlier, Dispose() works without a using statement. When you build a Dispose() method, it shouldn’t have any side
effects that cause problems if it’s run many times.

When an object implements IDisposable, its Dispose() is called at the end of the block after a
using statement. If you don’t use a using statement, then just setting the reference to null won’t
cause Dispose() to be called — you’ll need to call it directly. An object’s finalizer runs at garbage
collection for that particular object. Let’s explore how these two patterns differ. Start up Visual
Studio for Windows Desktop and create a Windows Forms Application project.

DO THIS!

➊ Create a Clone class that implements IDisposable and has a finalizer.
The class should have one int automatic property called Id. It has a constructor, a Dispose() method, and a finalizer:

➋ Create a Form with three buttons.
Create one instance of Clone inside the Click handler for the first button with a using statement. Here’s the first part of the
code for the button:

NOTE

You can make IDs for many objects — it’ll add 2#, 3#, etc.

Add a watch for one of the Clone references, right-click on it, and choose to add the name 1# to your
Watch window. This lets you keep watching the object even after the reference goes out of scope. The Watch
window will let you know when the object is collected (you may need to Click to refresh it).

➌ Add the other two buttons.
Create another instance of Clone in the second button’s Click handler, and set it to null manually:

For the third button, add a call to GC.Collect() to suggest that garbage collection occur.

➍ Run the program and play with Dispose() and finalizers.
Click on the first button and check out the message box: Dispose() runs first.

NOTE

Don’t forget to add “using System.Windows.Forms;” to the top of your Clone class.

Garbage is collected...eventually. In most cases, you won’t see the garbage collection message box, because your object is set to
null, but garbage collection hasn’t run yet.
Now click on the second button...nothing happens, right? That’s because we didn’t use a using statement, so there’s no
Dispose() method. And until the garbage collector runs, you won’t see the message boxes from the finalizer.

Now click the third button, to suggest garbage collection. You should see the finalizer from both clone1 and clone2 fire up and
display message boxes.

Play around with the program. Click the Clone #1 button, then the Clone #2 button, then the GC button. Do it a few times.
Sometimes Clone #1 is collected first, and sometimes Clone #2 is. And once in a while, the garbage collector runs even though
you didn’t ask it to using GC.Collect().

Finalizers can’t depend on stability
Let’s say you’ve got two objects that have references to each other...

When you write a finalizer, you can’t depend on it running at any one time. Even if you call
GC.Collect() — which you should avoid, unless you have a really good reason to do it — you’re
only suggesting that the garbage collector is run. It’s not a guarantee that it’ll happen right away. And
when it does, you have no way of knowing what order the objects will be collected in.
So what does that mean, in practical terms? Well, think about what happens if you’ve got two objects
that have references to each other. If object #1 is collected first, then object #2’s reference to it is
pointing to an object that’s no longer there. But if object #2 is collected first, then object #1’s
reference is invalid. So what that means is that you can’t depend on references in your object’s
finalizer. Which means that it’s a really bad idea to try to do something inside a finalizer that depends
on references being valid.
...if they’re both marked for garbage collection at the same time, then object #1 could disappear
first...

Serialization is a really good example of something that you shouldn’t do inside a finalizer. If your
object’s got a bunch of references to other objects, serialization depends on all of those objects still
being in memory... and all of the objects they reference, and the ones those objects reference, and so
on. So if you try to serialize when garbage collection is happening, you could end up missing vital
parts of your program because some objects might’ve been collected before the finalizer ran.
Luckily, C# gives us a really good solution to this: IDisposable. Anything that could modify your
core data or that depends on other objects being in memory needs to happen as part of a Dispose()
method, not a finalizer.
...on the other hand, object #2 could disappear before object #1. You’ve got no way of knowing
the order...

Some people like to think of a finalizers as a kind of fail-safe for the Dispose() method. And that
makes sense — you saw with your Clone object that just because you implement IDisposable, that
doesn’t mean the object’s Dispose() method will get called. But you need to be careful — if your
Dispose() method depends on other objects that are on the heap, then calling Dispose() from your
finalizer can cause trouble. The best way around this is to make sure you always use a using
statement any time you’re creating an IDisposable object.
...and that’s why one object’s finalizer can’t rely on any other object still being on the heap.

Make an object serialize itself in its Dispose()
Once you understand the difference between Dispose() and a finalizer, it’s pretty easy to write
objects that serialize themselves out automatically when they’re disposed of.

DO THIS!

➊ MAKE THE CLONE CLASS (FROM Dispose() works with using; finalizers work with garbage collection)
SERIALIZABLE.
Just add the Serializeable attribute on top of the class so that we can save the file out.

[Serializable]
class Clone : IDisposable

➋ MODIFY CLONE’S DISPOSE() METHOD TO SERIALIZE ITSELF OUT TO A FILE.
Let’s use a BinaryFormatter to write Clone out to a file in Dispose():

➌ RUN THE APPLICATION.
You’ll see the same behavior you saw on the last few pages...but before the clone1 object is garbage-collected, it’s serialized to a
file. Look inside the file and you’ll see the binary representation of the object.

B RAIN POWER

There’s a lot to think about in this project! What do you think the rest of the SuperHero object’s code looked like? We showed you
part of it in Make an object serialize itself in its Dispose(). Could you write the rest now? More importantly, should you?

It’s clearly possible to have your object serialize itself when it’s disposed. But is that a good idea? Does it violate separation of
concerns? Could it lead to code that’s hard to maintain? What other problems could occur?

FIRESIDE CHATS

Tonight’s talk: the Dispose() method and a finalizer spar over who’s more valuable.

Dispose() Finalizer

To be honest, I’m a little surprised I was invited here. I thought the
programming world had come to a consensus. I mean, I’m way
more valuable than you are. Really, you’re pretty feeble. You can’t
even serialize yourself out, alter core data, anything. Pretty unstable,
aren’t you?

 Excuse me? That’s rich. I’m feeble...OK. Well, I didn’t want
to get into this, but since we’re already stooping this low...at
least I don’t need an interface to get started. Without
IDisposable, you’re just another useless method.

There’s an interface specifically because I’m so important. In fact,
I’m the only method in it!

 Right, right...keep telling yourself that. And what happens
when someone forgets to use a using statement when they
instantiate their object? Then you’re nowhere to be found.

OK, you’re right, programmers need to know they’re going to need
me and either call me directly or use a using statement to call me. But
they always know when I’m gonna run, and they can use me to do
whatever they need to do to clean up after their object. I’m
powerful, reliable, and easy to use. I’m a triple threat. And you?
Nobody knows exactly when you’ll run or what the state of the
application will be when you finally do decide to show up.

 OK, but if you need to do something at the very last moment
when an object is garbage-collected, there’s no way to do it
without me. I can free up network resources and Windows
handles and streams and anything else that might cause a
problem for the rest of the program if you don’t clean it up. I
can make sure that your objects deal with being trashed more
gracefully, and that’s nothing to sneeze at.

NO TE

Handles are what your programs use when they go
around .NET and the CLR and interact directly with
Windows. Since .NET doesn’t know about them, it
can’t clean them up for you.

So there’s basically nothing you can do that I can’t do. You think
you’re a big shot because you always run with GC, but at least I can
depend on other objects.

 That’s right, pal — I always run; you need someone else to
run you. I don’t need anyone or anything!

THERE ARE NO DUMB QUESTIONS

Q: Q: Can a finalizer use all of an object’s fields and methods?

A: A: Sure. While you can’t pass parameters to a finalizer method, you can use any of the fields in an object, either directly or using this — but be careful,
because if those fields reference other objects, then the other objects may have already been garbage-collected. But you can definitely call other methods
and properties in the object being finalized (as long as those methods and properties don’t depend on other objects).

Q: Q: What happens to exceptions that get thrown in a finalizer?

A: A: Good question. It’s totally legal to put a try/catch block inside a finalizer method. Give it a try yourself. Create a divide-by-zero exception inside a
try block in the Clone program we just wrote. Catch it and throw up a message box that says “I just caught an exception.” right before the “...I’ve been
destroyed.” box we’d already written. Now run the program and click on the first button and then the GC button. You’ll see both the exception box and
the destroyed box pop up. (Of course, it’s generally a really bad idea to pop up message boxes in finalizers for objects that are more than just
toys...and those message boxes may never actually pop up.)

Q: Q: How often does the garbage collector run automatically?

A: A: There’s no good answer to that one. It doesn’t run on an easily predictable cycle, and you don’t have any firm control over it. You can be sure it will
be run when your program exits. But if you want to be sure it’ll run, you have to use GC.Collect() to set it off...and even then, you’re only suggesting
that the CLR should collect now.

Q: Q: How soon after I call GC.Collect() will .NET start garbage collection?

A: A: When you run GC.Collect(), you’re telling .NET to garbage-collect as soon as possible. That’s usually as soon as .NET finishes whatever it’s doing.
That means it’ll happen pretty soon, but you can’t actually control when.

Q: Q: So if something absolutely must run, I put it in a finalizer?

A: A: It’s possible that your finalizer won’t run. It’s possible to suppress finalizers when garbage collection happens. Or the process could end entirely. If
you aren’t freeing unmanaged resources, you’re almost always better off using IDisposable and using statements.

A struct looks like an object...
One of the types in .NET we haven’t talked about much is the struct. Struct is short for structure, and
structs look a lot like objects. They have fields and properties, just like objects. And you can even
pass them into a method that takes an object type parameter:

The power of objects lies in their ability to mimic real-world behavior, through inheritance and polymorphism.

...but isn’t an object
But structs aren’t objects. They can have methods and fields, but they can’t have finalizers. They also
can’t inherit from other classes or structs, or have classes or structs inherit from them.

NOTE

All structs inherit from System.ValueType, which in turn inherits from System. Object. That’s why every struct has a ToString()
method — it gets it from Object. But that’s all the inheriting that structs are allowed to do.

Structs are best used for storing data, but the lack of inheritance and references can be a serious limitation.

NOTE

That’s why you use classes a lot more than structs. But that doesn’t mean they don’t have their uses!

But the thing that sets structs apart from objects more than almost anything else is that you copy them
by value, not by reference. Flip the page to see what this means....

Values get copied; references get assigned
You already have a sense of how some types are different than others. On one hand you’ve got value
types like int, bool, and decimal. On the other hand, you’ve got objects like List, Stream, and
Exception. And they don’t quite work exactly the same way, do they?
When you use the equals sign to set one value type variable to another, it makes a copy of the value,
and afterward the two variables aren’t connected to each other. On the other hand, when you use the
equals sign with references, what you’re doing is pointing both references at the same object.

NOTE

Here’s a quick refresher on value types vs. objects.

Variable declaration and assignment works the same with value types or object types:

NOTE

Remember when we said that methods and statements ALWAYS live in classes? Well, it turns out that’s not 100% accurate —
they can also live in structs.

Differences creep in when you start to assign values, though. Value types all are handled with
copying. Here’s an example:

The output here shows that fifteenMore and howMany are not connected:
With object assignments, though, you’re assigning references, not actual values:

So changing the List means both references see the update...since they both point to a single List
object.

Console.WriteLine("temperatures has {0}, differentlist has {1}",
 temperatures.Count(), differentList.Count());

The output here demonstrates that differentList and temperatures are actually pointing to the
same object:

Structs are value types; objects are reference types
When you create a struct, you’re creating a value type. What that means is when you use equals to set
one struct variable equal to another, you’re creating a fresh copy of the struct in the new variable. So
even though a struct looks like an object, it doesn’t act like one.

SHARPEN YOUR PENCIL

Do this

➊ Create a struct called Dog.
Here’s a simple struct to keep track of a dog. It looks just like an object, but it’s not. Add it to a new console application.

➋ Create a class called Canine.
Make an exact copy of the Dog struct, except replace struct with class and then replace Dog with Canine. (Don’t forget to
rename Dog’s constructor.) Now you’ll have a Canine class that you can play with, which is almost exactly equivalent to the Dog
struct.
➌ Add a Main() method that makes some copies of Dogs and Canines.
Here’s the code for the Main() method:

Canine spot = new Canine("Spot", "pug");
Canine bob = spot;
bob.Name = "Spike";
bob.Breed = "beagle";
spot.Speak();

Dog jake = new Dog("Jake", "poodle");
Dog betty = jake;
betty.Name = "Betty";
betty.Breed = "pit bull";
jake.Speak();

Console.ReadKey();

You’ve already used structs in your programs. Remember DateTime from previous chapters? You were working with a
struct the whole time!

➍ Before you run the program...
Write down what you think will be written to the console when you run this code:
__
__

SHARPEN YOUR PENCIL SOLUTION

What did you think would get written to the console?

My name is Spike and I’m a beagle.

My name is Jake and I’m a poodle.

Here’s what happened...
The bob and spot references both point to the same object, so both changed the same fields and
accessed the same Speak() method. But structs don’t work that way. When you created betty, you
made a fresh copy of the data in jake. The two structs are completely independent of each other.

When you set one struct equal to another, you’re creating a fresh COPY of the data inside the struct. That’s because
struct is a VALUE TYPE.

The stack vs. the heap: more on memory
Behind the Scenes

It’s not hard to understand how a struct differs from an object — you can make a fresh copy of a struct
just using equals, which you can’t do with an object. But what’s really going on behind the scenes?
The .NET CLR divides your data into two places in memory. You already know that objects live on
the heap. It also keeps another part of memory called the stack to store all of the local variables you
declare in your methods, and the parameters that you pass into those methods. You can think of the
stack as a bunch of slots that you can stick values in. When a method gets called, the CLR adds more
slots to the top of the stack. When it returns, its slots are removed.

NOTE

Remember, when your program’s running, the CLR is actively managing memory, dealing with the heap, and collecting garbage.

Even though you can assign a struct to an object variable, structs and objects are different.

B EHIND THE SCENES

You definitely want to understand how a struct you copy by value is different from an object you copy by reference.

There are times when you need to be able to write a method that can take either a value type or a reference type — perhaps a
method that can work with either a Dog struct or a Canine object. If you find yourself in that situation, you can use the object
keyword:

public void WalkDogOrCanine(object getsWalked) { ... }

If you send this method a struct, the struct gets boxed into a special object “wrapper” that allows it to live on the heap. While the
wrapper’s on the heap, you can’t do much with the struct. You have to “unwrap” the struct to work with it. Luckily, all of this happens
automatically when you set an object equal to a value type, or pass a value type into a method that expects an object.

NOTE

You can also use the “is” keyword to see if an object is a struct, or any other value type, that’s been
boxed and put on the heap.

➊ Here’s what the stack and heap look like after you create an object variable and set it equal to a Dog struct.

➋ If you want to unbox the object, all you need to do is cast it to the right type, and it gets unboxed automatically. You can’t use
the as keyword with value types , so you’ll need to cast to Dog.

NOTE

The WalkDogOrCanine() method takes an object reference, so the Dog struct was boxed before
it was passed in. Casting it back to a Dog unboxes it.

When a method is called, it looks for its arguments on the stack.
The stack plays an important part in how the CLR runs your programs. One thing we take for granted is the fact that you can
write a method that calls another method, which in turn calls another method. In fact, a method can call itself (which is called
recursion). The stack is what gives your programs the ability to do that.
Here are a couple of methods from a dog simulator program. They’re pretty simple: FeedDog() calls Eat(), which calls
CheckBowl().

NOTE

Remember the terminology here: a parameter is what you call the part of the method declaration
that specifies the values it needs; an argument is the actual value or reference that you pass into
a method when you call it.

Here’s what the stack looks like as the FeedDog() method calls Eat(), which calls CheckBowl(), which calls
Console.WriteLine():

public double FeedDog(Canine dogToFeed, Bowl dogBowl) {
 double eaten = Eat(dogToFeed.MealSize, dogBowl);
 return eaten + .05D; // A little is always spilled
}

public void Eat(double mealSize, Bowl dogBowl) {
 dogBowl.Capacity -= mealSize;
 CheckBowl(dogBowl.Capacity);
}

public void CheckBowl(double capacity) {
 if (capacity < 12.5D) {
 string message = "My bowl’s almost empty!";
 Console.WriteLine(message);
 }
}

Use out parameters to make a method return more than one value
DO THIS!

Speaking of parameters and arguments, there are a few more ways that you can get values in and out of your programs, and they all
involve adding modifiers to your method declarations. One of the most common ways of doing this is by using the out modifier to
specify an output parameter. Here’s how it works. Create a new Windows Forms application and add this empty method declaration
to the form. Note the out modifiers on both parameters:

public int ReturnThreeValues(out double half, out int twice)
{
 return 1;
}

A method can return more than one value by using out parameters.

When you try to build your code, you’ll see two errors: the out parameter half must be assigned a
value before control leaves the current method (and you’ll get an identical message for the twice
parameter). Any time you use an out parameter, you always need to set it before the method returns
— just like you always need to use a return statement if your method is declared with a return value.
Here’s the whole method:

Quick reminder: when Windows Forms programs call Console.WriteLine() it updates the IDE’s Output window
(View→Output).

Now that you’ve set the two out parameters, it compiles. So let’s use them. Add a button with this
event handler:

Uh oh! There are more build errors: Argument 1 must be passed with the out keyword. Every time
you call a method with an out parameter, you need to use the out keyword when you pass the
argument to it. Here’s what that line should look like:

a = ReturnThreeValues(out b, out c);

Now your program will build. When you run it, the ReturnThreeValues() methods sets the three
values and returns all three of them: a gets the method’s return value, b gets the value returned by the
half parameter, and c gets the value returned by twice.

Pass by reference using the ref modifier
One thing you’ve seen over and over again is that every time you pass an int, double, struct, or
any other value type into a method, you’re passing a copy of that value to that method. There’s a name
for that: pass by value, which means that the entire value of the argument is copied.
But there’s another way to pass arguments into methods, and it’s called pass by reference. You can
use the ref keyword to allow a method to work directly with the argument that’s passed to it. Just like
the out modifier, you need to use ref when you declare the method and also when you call it. It
doesn’t matter if it’s a value type or a reference type, either — any variable that you pass to a
method’s ref parameter will be directly altered by that method.

NOTE

Under the hood, an out argument is just like a ref argument, except that it doesn’t need to be assigned before going into the method,
and must be assigned before the method returns.

You can see how it works — add this method to your program:

And add a button with this event handler to call the method:

When button2_Click() calls the ModifyAnIntAndButton() method, it passes its q and b variables
by reference. The ModifyAnIntAndButton() method works them just like any other variable. But
since they were passed by reference, the method was actually updating the q and b variables all
along, and not just a copy of them. So when the method exits, the q and b variables are updated with
the modified value.
Run the program and debug through it, adding a watch for the q and b variables to see how this works.

B UILT-IN VALUE TYPES’ TRYPARSE() METHOD USES OUT PARAMETERS

There’s a great example of out parameters built right into some of the built-in value types. There are a lot of times that you’ll want to
convert a string like “35.67” into a double. And there’s a method to do exactly that: double.Parse(“35.67”) will return the double value
35.67. But double.Parse(“xyz”) will throw a FormatException. Sometimes that’s exactly what you want, but other times you want to
check if a string can be parsed into a value. That’s where the TryParse() method comes in: double.TryParse(“xyz”, out d) will return
false and set d to 0, but double.TryParse(“35.67”, out d) will return true and set d to 35.67.

Also, remember back in Chapter 9 when we used a switch statement to convert Spades into Suits.Spades? Well, there are static
methods Enum.Parse() and Enum.TryParse() that do the same thing, except for enums!

Use optional parameters to set default values
A lot of times, your methods will be called with the same arguments over and over again, but the
method still needs the parameter because occasionally it changes. It would be useful if you could set a
default value, so you only needed to specify the argument when calling the method if it was different.
That’s exactly what optional parameters do. You can specify an optional parameter in a method
declaration by using an equals sign followed by the default value for that parameter. You can have as
many optional parameters as you want, but all of the optional parameters have to come after the
required parameters.
Here’s an example of a method that uses optional parameters to check if someone has a fever:

This method has two optional parameters: tooHigh has a default value of 99.5, and tooLow has a
default value of 96.5. Calling CheckTemperature() with one argument uses default values for both
tooHigh and tooLow. If you call it with two arguments, it will use the second argument for the value
of tooHigh, but still use the default value for tooLow. You can specify all three arguments to pass
values for all three parameters.
There’s another option as well. If you want to use some (but not all) of the default values, you can use
named arguments to pass values for just those parameters that you want to pass. All you need to do
is give the name of each parameter followed by a colon and its values. If you use more than one
named argument, make sure you separate them with commas, just like any other argument.
Add the CheckTemperature() method to your form, and then add a button with the following event
handler. Debug through it to make sure you understand exactly how this works:

private void button3_Click(object sender, EventArgs e)
{
 // Those values are fine for your average person
 CheckTemperature(101.3);

 // A dog’s temperature should be between 100.5 and 102.5 Fahrenheit
 CheckTemperature(101.3, 102.5, 100.5);

 // Bob’s temperature is always a little low, so set tooLow to 95.5
 CheckTemperature(96.2, tooLow: 95.5);
}

Use optional parameters and named arguments when you want your methods to have default values.

Use nullable types when you need nonexistent values
In a lot of projects earlier in the book, you used null to indicate that there is no value. That’s very
typical: you can use null to indicate that a variable, field, or property is empty, and you can check to
see if it’s equal to null, which means that it doesn’t have a value. But for structs (and ints,
booleans, enums, and other value types), you can’t set them to null. That means these statements:

bool myBool = null;
DateTime myDate = null;

NOTE

Back in Chapter 11, you used DateTime.MinValue to mean “date not set” in the Excuse Manager app. Nullable<DateTime> would
make both your code and the serialized XML files easier to read.

will cause errors when you try to compile! So how do you indicate an empty value for these types?
Let’s say your program needs to work with a date and time value. Normally you’d use a DateTime
variable. But what if that variable doesn’t always have a value? That’s where nullable types comes in
really handy. All you need to do is add a question mark (?) to the end of any value type, and it
becomes a nullable type that you can set to null.

bool? myNulableBool = null;
DateTime? myNullableDate = null;

Every nullable type has a property called Value that gets or sets the value. A DateTime? will have a
Value of type DateTime, an int? will have one of type int, etc. They’ll also have a property called
HasValue that returns true if it’s not null.
You can always convert a value type to a nullable type:

DateTime myDate = DateTime.Now;
DateTime? myNullableDate = myDate;

But you need to cast the nullable type in order to assign it back to a value type:

myDate = (DateTime) myNullableDate;

But you also get this handy Value property — it also returns the value:
myDate = myNullableDate.Value;

If HasValue is false, the Value property will throw an InvalidOperationException, and so will
the cast (because that cast is equivalent to using the Value property).

THE QUESTION MARK T? IS AN ALIAS FOR NULLAB LE<T>

When you add a question mark to any value type (like int? or decimal?), the compiler translates that to the Nullable<T> struct
(Nullable<int> or Nullable<decimal>). You can see this for yourself: add a Nullable<DateTime> variable to a program, put a
breakpoint on it, and add a watch for it in the debugger. You’ll see System.DateTime? displayed in the Watch window in the IDE. This
is an example of an alias, and it’s not the first one you’ve encountered. Hover your cursor over any int. You’ll see that it translates to
a struct called System.Int32:

Take a minute and do that for each of the types at the beginning of Chapter 4. Notice how all of them are aliases for structs —
except for string, which is a class called System.String (it’s a reference type, not a value type).

Nullable types help you make your programs more robust
Do this!
Users do all sorts of crazy things. You think you know how people will use a program you’re writing,
but then someone clicks buttons in an unexpected order, or enters 256 spaces in a textbox, or uses the
Windows Task Manager to quit your program halfway through writing data to a file, and suddenly it’s
popping up all manner of errors. Remember in Chapter 12 when we talked about how a program that
can gracefully handle badly formatted, unexpected, or just plain bizarre input is called robust? When
you’re processing raw input from your users, nullable types can be very useful in making your
programs more robust. Now see for yourself.Create a new console application and add this
RobustGuy class to it:

When you run the program, see what happens when you enter different values for dates. DateTime.TryParse() can figure
out a lot of them. When you enter a date it can’t parse, the RobustGuy’s Birthday property will have no value.

NOTE

Console.ReadLine() lets the user enter text into the console window. When the user hits enter, it returns the input as a string.

POOL PUZZLE

Your job is to take snippets from the pool and place them into the blank lines in the code. You may use the same snippet more than
once, and you won’t need to use all the snippets. Your goal is to make the code write this output to the console when a new instance

of the Faucet class is created:

public class Faucet {
 public Faucet() {
 Table wine = new Table();
 Hinge book = new Hinge();
 wine.Set(book);
 book.Set(wine);
 wine.Lamp(10);
 book.garden.Lamp("back in");
 book.bulb *= 2;
 wine.Lamp("minutes");
 wine.Lamp(book);
 }
}

Output when you create a new Faucet object:

public _______ Table {
 public string stairs;
 public Hinge floor;
 public void Set(Hinge b) {
 floor = b;
 }
 public void Lamp(object oil) {
 if (oil ____ int)
 _______.bulb = (int)oil;
 else if (oil ____ string)
 stairs = (string)oil;
 else if (oil ____ Hinge) {
 _______ vine = oil ____ _______;
 Console.WriteLine(vine.Table()
 + " " + ______.bulb + " " + stairs);
 }
 }
}

public _______ Hinge {
 public int bulb;
 public Table garden;
 public void Set(Table a) {
 garden = a;
 }
 public string Table() {
 return _______.stairs;
 }
}

Bonus points: Circle the lines where boxing happens.

Note: Each thing from the pool can be used more than once.

 Answers in Pool Puzzle Solution.

THERE ARE NO DUMB QUESTIONS

Q: Q: OK, back up a minute. Why do I care about the stack?

A: A: Because understanding the difference between the stack and the heap helps you keep your reference types and value types straight. It’s easy to
forget that structs and objects work very differently — when you use the equals sign with both of them, they look really similar. Having some idea of
how .NET and the CLR handle things under the hood helps you understand why reference and value types are different.

Q: Q: And boxing? Why is that important to me?

A: A: Because you need to know when things end up on the stack, and you need to know when data’s being copied back and forth. Boxing takes extra
memory and more time. When you’re only doing it a few times (or a few hundred times) in your program, then you won’t notice the difference. But
let’s say you’re writing a program that does the same thing over and over again, millions of times a second. That’s not too far-fetched: you’ll build an
arcade game at the end of the book that could do many calculations per second. If you find that your program’s taking up more and more memory, or
going slower and slower, then it’s possible that you can make it more efficient by avoiding boxing in the part of the program that repeats.

Q: Q: I get how you get a fresh copy of a struct when you set one struct variable equal to another one. But why is that useful to me?

A: A: One place that’s really helpful is with encapsulation. Take a look at this familiar code from a class that knows its location:

protected Point location;
public Point Location {
 get { return location; }
}

If Point were a class, then this would be terrible encapsulation. It wouldn’t matter that location is private, because you made a public read-only
property that returns a reference to it, so any other object would be able to access it.
Lucky for us, Point is actually a struct. And that means that the public Location property returns a fresh copy of the point. The object that uses it can
do whatever it wants to that copy — none of those changes will make it to the private location field.

NO TE

Go back to the label bouncer project from Chapter 4. Under the hood, you were indirectly using points and
locations, which means your code was setting struct values (even if you didn’t declare them directly).

Q: Q: How do I know whether to use a struct or a class?

A: A: Most of the time, programmers use classes. Structs have a lot of limitations that can really make it hard to work with them for large jobs. They don’t
support inheritance or abstraction, and only limited polymorphism, and you already know how important those things are for writing code.
Where structs come in really handy is if you have a small, limited type of data that you need to work with repeatedly. Rectangles and points are good
examples — there’s not much you’ll do with them, but you’ll use them over and over again. Structs tend to be relatively small and limited in scope. If
you find that you have a small chunk of a few different kinds of data that you want to store in a field in a class or pass to a method as a parameter,
that’s probably a good candidate for a struct. But if the way you use the struct will cause it to be boxed most of the time, so you may be better off with
a class.

A struct can be very valuable when you want to add good encapsulation to your class, because a read-only property
that returns a struct always makes a fresh copy of it.

SHARPEN YOUR PENCIL

This method is supposed to kill a Clone object, but it doesn’t work. Why not?

private void SetCloneToNull(Clone clone) {
 clone = null;
}

__

__

NOTE

Pop quiz, hotshot! Answer’s in Extension methods add new behavior to EXISTING classes.

“Captain” Amazing...not so much
With all this talk of boxing, you should have a pretty good idea of what was going on with the less-
powerful, more-tired Captain Amazing. In fact, it wasn’t Captain Amazing at all, but a boxed struct:

➊ Structs can’t inherit from classes.
No wonder the Captain’s superpowers seemed
a little weak! He didn’t get any inherited
behavior.
➋ Structs are copied by value.
This is one of the most useful things about
them. It’s especially useful for encapsulation.

➊ You can’t create a fresh copy of an object.

NO TE

That’s one big advantage of structs (and other value types) — you can
easily make copies of them.

When you set one object variable equal to another, you’re copying a
reference to the same variable.
➋ You can use the as keyword with an object.
Objects allow for polymorphism by allowing an object to function as any of the
objects it inherits from.

NO TE

One important point: you can use the “is” keyword to check if a struct
implements an interface, which is one aspect of polymorphism that structs
do support.

Extension methods add new behavior to EXISTING classes
NOTE

Remember the sealed modifier from Chapter 7? It’s how you set up a class that can’t be extended.

Sometimes you need to extend a class that you can’t inherit from, like a sealed class (a lot of the
.NET classes are sealed, so you can’t inherit from them). And C# gives you a flexible tool for that:
extension methods. When you add a class with extension methods to your project, it adds new
methods that appear on classes that already exist. All you have to do is create a static class, and
add a static method that accepts an instance of the class as its first parameter using the this
keyword.
So let’s say you’ve got a sealed OrdinaryHuman class (remember, that means you can’t extend it):

The SuperSoldierSerum method adds an extension method to OrdinaryHuman:

As soon as the SuperSoldierSerum class is added to the project, OrdinaryHuman gets a
BreakWalls method. So now a form can use it:

SHARPEN YOUR PENCIL SOLUTION

This method is supposed to kill a Clone object, but it doesn’t work. Why not?

private void SetCloneToNull(Clone clone) {
 clone = null;
}

All this method does is set its own parameter to null, but that parameter’s just a reference to a Clone. It’s like sticking a label on an
object and peeling it off again.

NOTE

So the clone parameter is just on the stack, so setting it to null doesn’t do anything to the heap.

THERE ARE NO DUMB QUESTIONS

Q: Q: Tell me again why I wouldn’t add the new methods I need directly to my class code, instead of using extensions?

A: A: You could do that, and you probably should if you’re just talking about adding a method to one class. Extension methods should be used pretty
sparingly, and only in cases where you absolutely can’t change the class you’re working with for some reason (like it’s part of the .NET Framework or
another third party). Where extension methods really become powerful is when you need to extend the behavior of something you wouldn’t normally
have access to, like a type or an object that comes for free with the .NET Framework or another library.

Q: Q: Why use extension methods at all? Why not just extend the class with inheritance?

A: A: If you can extend the class, then you’ll usually end up doing that — extension methods aren’t meant to be a replacement for inheritance. But they
come in really handy when you’ve got classes that you can’t extend. With extension methods, you can change the behavior of whole groups of objects,
and even add functionality to some of the most basic classes in the .NET Framework.
Extending a class gives you new behavior, but requires that you use the new subclass if you want to use that new behavior.

Q: Q: Does my extension method affect all instances of a class, or just a certain instance of the class?

A: A: It will affect all instances of a class that you extend. In fact, once you’ve created an extension method, the new method will show up in your IDE
alongside the extended class’s normal methods.

NOTE

One more point to remember about extension methods: you don’t gain access to any of the class’s
internals by doing an extension method, so it’s still acting as an outsider!

Exactly! There are some classes that you can’t inherit from.
Pop open any project, add a class, and try typing this:

class x : string { }

Try to compile your code — the IDE will give you an error. The reason is that some .NET classes are
sealed, which means that you can’t inherit from them. (You can do this with your own classes, too!
Just add the sealed keyword to your class after the public access modifier, and no other class will
be allowed to inherit from it.) Extension methods give you a way to extend it, even if you can’t inherit
from it.
But that’s not all you can do with extension methods. In addition to extending classes, you can also
extend interfaces. All you have to do is use an interface name in place of the class, after the this
keyword in the extension method’s first parameter. When you do, the extension method is added to
every class that implements that interface. You’ll learn all about LINQ in the next chapter —
while you’re learning, one thing to keep in mind is that it was built entirely with extension methods,
extending the IEnumerable<T> interface.

NOTE

The combination of an interface plus extension methods can be very useful, because it lets you add behavior to any class that
implements the interface.

Extending a fundamental type: string
You don’t often get to change the behavior of a language’s most fundamental types, like strings. But
with extension methods, you can do just that! Create a new project, and add a file called
HumanExtensions.cs. It doesn’t matter what kind of project you create — you’ll be using the IDE to
explore how extension methods work.

DO THIS!

➊ PUT ALL OF YOUR EXTENSION METHODS IN A SEPARATE NAMESPACE.
It’s a good idea to keep all of your extensions in a different namespace than the rest of your code. That way, you won’t have
trouble finding them for use in other programs. Set up a static class for your method to live in, too.

➋ CREATE THE STATIC EXTENSION METHOD, AND DEFINE ITS FIRST PARAMETER AS THIS AND
THEN THE TYPE YOU’RE EXTENDING.
The two main things you need to know when you declare an extension method are that the method needs to be static and it takes
the class it’s extending as its first parameter.

➌ PUT THE CODE TO EVALUATE THE STRING IN THE METHOD.

➍ USE YOUR NEW ISDISTRESSCALL() EXTENSION METHOD.
Go to any other class and add using MyExtensions; to the top. Now, when you use a string, you get the extension methods
for free. You can see this for yourself by typing the name of a string variable and a period:

This toy example just shows you the syntax of extension methods. To get a real sense of how useful they are, just
wait until the next chapter. It’s all about LINQ, which is implemented entirely with extension methods.

EXTENSION MAGNETS

Arrange the magnets to produce this output:

EXTENSION MAGNETS

Your job was to arrange the magnets to produce this output:

a buck begets more bucks

POOL PUZZLE SOLUTION

Bonus question: Circle the lines where boxing happens.

NOTE

Since the Lamp() method takes an object parameter, boxing automatically happens when it’s passed
an int or a string.

Chapter 14. Querying Data and Building Apps
With Linq: Get control of your data

It’s a data-driven world...it’s good to know how to live in it.
Gone are the days when you could program for days, even weeks, without dealing with loads of data.
Today, everything is about data. And that’s where LINQ comes in. LINQ not only lets you query
data in a simple, intuitive way, but it lets you group data and merge data from different data
sources. And once you’ve wrangled your data into manageable chunks, your Windows Store apps
have controls for navigating data that let your users navigate, explore, and even zoom into the
details.

Jimmy’s a Captain Amazing super-fan...
Meet Jimmy, one of the most prolific collectors of Captain Amazing comics, graphic novels, and
paraphernalia. He knows all the Captain trivia, he’s got props from all the movies, and he’s got a
comic collection that can only be described as, well, amazing.

...but his collection’s all over the place
Jimmy may be passionate, but he’s not exactly organized. He’s trying to keep track of the most prized
“crown jewel” comics of his collection, but he needs help. Can you build Jimmy an app to manage his
comics?

LINQ can pull data from multiple sources
LINQ to the rescue! LINQ (or Language Integrated Query) is a flexible feature of C# that lets you
write queries to pull data out of a collection. But LINQ also lets you work with more than just
collections — in fact, you can use it to query any object that implements the IEnumerable<T>
interface.
So let’s use LINQ to help Jimmy get a handle on his comic book collection.

LINQ works with pretty much every kind of data source you could use in .NET. Your code needs a
using System.Linq; line at the top of your file, but that’s it. Even better, the IDE automatically puts
a reference to LINQ in the header of the class files it creates.

.NET collections are already set up for LINQ
All of the collection types in .NET implement the IEnumerable<T> interface, which you learned
about in Chapter 8. But take a minute to get a refresher: type
System.Collections.Generic.IEnumerable<int> into your IDE window, right-click on the line,
and select Go To Definition (or press F12). You’ll see that the IEnumerable interface defines a
GetEnumerator() method:

This method requires your object to define a way to move through the elements in it, one element at a
time. That’s all LINQ requires as a prerequisite. If you can move through a list of data, item by item,
then you can implement IEnumerable<T>, and LINQ can query the collection.

B EHIND THE SCENES

LINQ uses extension methods to let you query, sort, and update data. Check it out for yourself. Create an int array called
linqtest, put some numbers in the array, and then type this line of code (don’t worry, you’ll learn what it does in a minute):

IEnumerable<int> result = from i in linqtest where i < 3 select i;

Now comment out the using System.Linq; line up in the header of the file you’ve created. When you try to rebuild the solution,
you’ll see that this line doesn’t compile anymore. The methods you’re calling when you use LINQ are just extension methods that are
being used to extend the array.

NOTE

Now you can see why extension methods were so important in Chapter 13...they let .NET (and
you) add all kinds of cool behavior to existing types.

LINQ makes queries easy
Here’s a simple example of LINQ syntax. It selects all the numbers in an int array that are under 37
and puts those numbers in ascending order. It does that using four clauses that tell it what object to
query, what criteria to use to determine which of its members to select, how to sort the results, and
how the results should be returned.

VAR

var is a keyword that tells the compiler to figure out the type of a variable at compilation time. .NET detects the type from the type of
the local variable that you’re using LINQ to query. When you build your solution, the compiler will replace var with the right type for
the data you’re working with.

In the example above, when this line is compiled:

var result = from v in values

The compiler replaces “var” with this:

IEnumerable<int>

And while we’re on the subject of interfaces for collections, remember how we talked about how IEnumerable<T> is the interface
that supports iteration? A lot of these great LINQ queries are implemented via extension methods that extend IEnumerable<T>, so
you’ll see that interface a lot.

Flip back to Chapter 8 to get a refresher on the IEnumerable<T> interface. Plus, you can read
more about it in leftover #7 in the appendix.

LINQ is simple, but your queries don’t have to be
Jimmy just sold his start-up that sells apps in the Windows Store to a big investor, and wants to take
some of his profits and buy the most rare and expensive issues of Captain Amazing that he can find.
How can LINQ help him scour his data and figure out which comics are the most expensive?

➊ Jimmy downloaded a list of Captain Amazing issues from a Captain Amazing fan page. He put
them in a List<T> of Comic objects that have two fields, Name and Issue.

class Comic {
 public string Name { get; set; }
 public int Issue { get; set; }
}

Jimmy used object initializers and a collection initializer to build his catalog:

Take a minute and flip to leftover #7 in the appendix to learn about a really useful bit of
syntax that could come in handy here. This is a great opportunity to experiment!
➋ Luckily, there’s a thriving marketplace for Captain Amazing comics on Greg’s List, a website
where people sell used comics. Jimmy knows that issue #57, “Hippie Madness,” was misprinted
and that almost all of the run was destroyed by the publisher, and he found that a rare copy recently
sold on Greg’s List for $13,525. After a few hours of searching, Jimmy was able to build a

Dictionary<> that mapped issue numbers to values.

B RAIN POWER

Look closely at the LINQ query in LINQ makes queries easy, then look at Jimmy’s methods on this page. What do you think he
would put into a query to find the most expensive issues?

ANATOMY OF A QUERY

Jimmy could analyze his comic book data with one LINQ query. The where clause tells LINQ which items from the collection should
be included in the results. But that clause doesn’t have to be just a simple comparison. It can include any valid C# expression — like
using the values dictionary to tell it to return only comics worth more than $500. And the orderby clause works the same way — we
can tell LINQ to order the comics by their value.

WATCH IT!

LINQ may look like SQL, but it doesn’t work like SQL.

If you’ve worked with SQL before, you’ll recognize keywords like select, from, where, descending, and join. But LINQ is
very dfiferent — treat it like SQL, and you’ll end up with code that doesn’t do what you expect! One big difference is that SQL
operates on tables, while LINQ uses enumerable objects or sequences. Rows in a table aren’t in any particular order;
sequences have a specific order. And LINQ’s ability to call methods on the objects in a sequence and deferred execution
(which you’ll learn about) make it a very different beast entirely!

Jimmy could use some help
Let’s help Jimmy out by building him a Windows Store app to help him manage his comic collection
— and to show him just how useful LINQ can be when it comes to data.

Windows Store apps use page-based navigation
Open up the toolbox and find a XAML equivalent of the WinForms TabControl. Can’t find it? That’s
not an accident. Tabs are a staple of desktop applications, but when you’re not using them they can
clutter up the screen. Windows store apps use a navigation system that’s based on pages, which can
reduce that clutter and provide a more intuitive interface for your program.

Read more about navigation design for Windows Store apps here: http://msdn.microsoft.com/en-
us/library/windows/apps/hh761500.aspx

http://msdn.microsoft.com/en-us/library/windows/apps/hh761500.aspx

Use the IDE to explore app page navigation
Here’s another chance to use the IDE as a learning tool. Go to any Windows Store app that you’ve
built and open up App.xaml.cs. That’s your main application file, and every Windows Store app has
one. It’s a subclass of a class called Application in the Windows.UI.Xaml namespace, and it’s
always in a file named App.xaml. Your app’s Application object initializes the app, and manages
app lifetime: launching, suspending, and resuming. And it does another really useful thing: it creates a
Frame object (from Windows.UI.Xaml.Controls), which is what your app uses to support
navigation in your XAML pages.
Find the OnLaunched() method in your App class. It’s run every time your app is launched, and it sets
up the frame:

Your code-behind can use the same Frame.Navigate() method to navigate between pages, too.
Every XAML page has a property called Frame. If you were to add a page called AnotherPage to
your app, here’s how you’d navigate to it. Notice the argument query passed to Navigate(). That’s
a parameter being passed to the newly created page.

Flip to leftover #5 in the appendix to learn more about the typeof keyword.

Start building Jimmy an app
You’ll build an app that uses page navigation to execute different LINQ queries, starting with the two
queries that you’ve seen so far.

DO THIS!

➊ Create a new Windows Store app project.
Use the Blank App template, delete the MainPage.xaml file, and add a new Basic Page called MainPage.xaml. Then add
another Basic Page called QueryDetail.xaml. Don’t forget to choose Rebuild Solution from the Build menu before you go
on to step #2.
➋ Add the Comic class.
You already saw the Comic class from a few pages ago, so go ahead and add that class to your project.

class Comic {
 public string Name { get; set; }
 public int Issue { get; set; }
}

➌ Add the ComicQuery class.
You’ll need this class to represent a query, and when this app is done you’ll have one instance of ComicQuery for each LINQ
query in the chapter. Have a look at the screenshot two pages ago. Each of the queries has an icon, so you’ll need a way to
represent that in your class. XAML has an Image control and all you need to do is set its Source property to the a string that
contains path of an image in your project. The images will live in the Assets folder, all we need to do is set the ImagePath
property to "Assets/" plus the name of the image file and bind the Source property of an Image control to it.

class ComicQuery {
 public string Title { get; private set; }
 public string Subtitle { get; private set; }
 public string Description { get; private set; }
 public string ImagePath { get; private set; }

 public ComicQuery(string title, string subtitle,
 string description, string imagePath) {
 Title = title;
 Subtitle = subtitle;
 Description = description;
 ImagePath = imagePath;
 }
}

➍ Add a query manager class so your controls have something to bind to.
Jimmy’s app will follow the same pattern that you used with the last two apps. The ComicQueryManager class will do all of the
work of running the queries and exposing properties that contain the results. Each XAML page will have a static resource that
contains an instance of ComicQueryManager, calling its methods to run the queries and data binding the results to controls.

Before you flip the page to see the rest of the class, can you figure out what the LinqMakesQueriesEasy() and ExpensiveComics()
methods will look like? The app will call those methods to run LINQ queries. But first, read the next page to learn
about anonymous types — you’ll use them in those methods.

Use the new keyword to create anonymous types
You’ve been using the new keyword since Chapter 3 to create instances of objects. Every time you use
it, you include a type (so the statement new Guy() creates an instance of the type Guy). But you can
also use the new keyword without a type to create an anonymous type. That’s a perfectly valid type
that has read-only properties, but doesn’t have a name. You can add properties to your anonymous
type by using an object initializer.
Here’s the statement you’ll use in the ExpensiveComics query on the next page that creates an
instance of an anonymous type to add to the collection in the CurrentQueryResults property:

new {
Title = String.Format("{0} is worth {1:c}",
comic.Name, values[comic.Issue]),
ImagePath = "Assets/captain_amazing_250x250.jpg",

}

When you run the program, you can see the objects that it creates just like any other objects. Here’s
what an instance of that anonymous type looks like in the Watch window:

This works just like any other object initializer. You can call methods like
CreateImageFromAssets() and String.Format() in the object initializer to populate the object’s
properties. (Of course, you can also set them to values if you need to, too.)
The one thing you can’t do is refer to the name of the type, because the type doesn’t have a name!
That’s where the var keyword comes in very handy, because you can use it to hold a reference to an
anonymous type — like this:

var myAnonymousObject = new {
Name = "Bob",
Cash = 186.3M,
Age = 37,

};
Console.WriteLine(myAnonymousObject.Name);

NOTE

a-non-y-mous, adjective.

not identified by name. Secret Agent Dash Martin uses his alias to become anonymous to keep the KGB agents from
recognizing him.

Flip to leftover #9 in the appendix to learn more about anonymous types.
That code creates an instance of an anonymous type, saves a reference to that new object in the
myAnonymousObject variable, and uses it to write the Name property to the output.
Flip the page to finish the app
Here’s the rest of the ComicQueryManager class:

➎ Add image files to the Assets folder in your project.
Find the image files purple_250x250.jpg and captain_amazing_250x250. jpg for this project (you
can download them from the your class website and save them in a folder. Then go to the Solution
Explorer, right-click on the folder, choose

Add→Existing Item from the menu, and add the files.
Now have a closer look at the code in the LinqMakesQueriesEasy() method that uses an
anonymous type to add an object to the results:

new {
Title = i.ToString(),
ImagePath = "Assets/purple_250x250.jpg",

}

This object will be displayed in a ListView with an Image control in the item template. When one
of these is displayed as an item in that list, its ImagePath property will be bound to the Source
property.
➏ Add code-behind for the main page and query detail page.
When the user clicks on the list of queries in the main page, we want the app to navigate to the
query detail page. Open MainPage.xaml.cs and add this event handler to the code-behind. The
SelectionChanged event handler for a ListView can access the items that were selected using the
e.AddedItems. The ListView is bound to an ObservableCollection of ComicQuery objects, so
e.AddedItems[0] will always contain the ComicQuery that the user clicked on. You’ll pass that
as a parameter to the new page using Frame.Navigate().

private void ListView_ItemClick(object sender, ItemClickEventArgs e) {
ComicQuery query = e.ClickedItem as ComicQuery;
if (query != null)

this.Frame.Navigate(typeof(QueryDetail), query);
}

NOTE

You can add an argument to the Frame.Navigate() method to pass an object as a parameter to the page you’re navigating to.

When the main page calls Frame.Navigate() to navigate to the query detail page, a ComicQuery
object is passed as a parameter that’s used in the the OnNavigatedTo() method. This method is
called when the page is navigated to, and its code-behind is part of the Basic Page template. Find
it in QueryDetail.xaml.cs by expanding . Use e.Parameter to access
the navigation parameter:

➐ Finish the XAML for the main page.
Open MainPage.xaml. Here are the resources for the page:

<Page.Resources>
 <local:ComicQueryManager x:Name="comicQueryManager"/>
 <x:String x:Key="AppName">Jimmy’s Comics</x:String>
</Page.Resources>

The ListView control automatically adds vertical scrollbars if the list items scroll off the bottom. Try adding Height="*"
to the second RowDefinition in the Grid’s row definitions. The scrollbars disappear! That’s because the row expands
to fit all of the ListView’s items.

Use a Grid to lay out the content — it has a TextBlock and a GridView. The GridView control is
just like a ListView. The only difference is that instead of laying out items And just like the
ListView, it uses a DataTemplate to display an Image and StackPanel with two TextBlocks for
each item:

B RAIN POWER

We used some pretty long style names in the data template. Where do you think they came from?

➑ Finish the XAML and code-behind for the query detail page.
Open QueryDetail.xaml. Here are the resources for the page:

<Page.Resources>
 <local:ComicQueryManager x:Name="comicQueryManager"/>
 <x:String x:Key="AppName">Query Detail</x:String>
</Page.Resources>

Use another Grid to lay out the content:

➒ Run your program! And then use the IDE to explore it and understand how it works.
Put a breakpoint in ListView_ItemClick() in MainPage.xaml.cs and add watches to see exactly
what is in the ComicQueryManager object. Look at how the current query and the query results
work, and match up the properties in the anonymous types to the bound properties in the GridView
and ListView.

LINQ is versatile
You can do a lot more than just pull a few items out of a collection. You can modify the items before
you return them. And once you’ve generated a set of result sequences, LINQ gives you a bunch of
methods that work with them. Top to bottom, LINQ gives you the tools you need to manage your data.

All collections are enumerable — they implement IEnumerable<T> — but not everything that’s enumerable is technically a
collection unless it implements the ICollection<T> interface, which means implementing Add(), Clear(), Contains(),
CopyTo(), and Remove() ... and, of course, ICollection<T> extends IEnumerable<T>. LINQ deals with sequences of values or
objects, not collections, and all you need for a sequence is an object that implements IEnumerable<T>.

Modify every item returned from the query.
This code will add a string onto the end of each string in an array. It doesn’t change the array itself
— it creates a new sequence of modified strings.

Perform calculations on collections.
Remember, we said LINQ provides extension methods for your collections (and anything else that
implements IEnumerable<T>). And some of those are pretty handy on their own, without actually
requiring a query:

NOTE

A sequence is an ordered set of objects or values, which is what LINQ returns in an IEnumerable<T>.

Store all or part of your results in a new sequence.
Sometimes you’ll want to keep your results from a LINQ query around. You can use the ToList()
command to do just that:

You can even take just a subset of the results, using the Take() method:

Check out Microsoft’s official 101 LINQ Samples page.
There’s way more that LINQ can do. Luckily, Microsoft gives you a great little reference to help

you along.
http://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b

WATCH IT!

LINQ queries aren’t run until you access their results!

It’s called “deferred evaluation” — the LINQ query doesn’t actually do any looping until a statement is executed that uses the
results of the query. That’s why ToList() is important: it tells LINQ to evaluate the query immediately.

THERE ARE NO DUMB QUESTIONS

Q: Q: That’s a lot of new keywords — from, where, orderby, select...it’s like a whole different language. Why does it look so different from the rest
of C#?

A: A: Because it serves a different purpose. Most of the C# syntax was built to do one small operation or calculation at a time. You can start a loop, or set
a variable, or do a mathematical operation, or call a method... those are all single operations.
LINQ queries look different because a single LINQ query usually does a whole bunch of things at once. Let’s take a closer look at a straightforward
query:

var under10 =
 from number in numberArray
 where number < 10
 select number;

It looks really simple — not a lot of stuff there, right? But this is actually a pretty complex piece of code. Think about what’s got to happen for the
program to actually select all the numbers from numberArray that are less than 10. First, you need to loop through the entire array. Then, each number is
compared to 10. Then those results need to be gathered together so your code can use them.
And that’s why LINQ looks a little odd: because C# has to cram a whole lot of behavior into a very small space.

LINQ lets you write queries that do very complex things using very little code.

Add the new queries to Jimmy’s app
Jimmy’s curious about how LINQ can help manage his data. Add the three queries from the previous
pages to the app to show him what LINQ can do. All you need to do is update the
ComicQueryManager class (and add another image to the Assets folder). Start by adding three
ComicQuery objects to the object initializer for the AvailableQueries property:

NOTE

This is an example of separation of concerns. You can add queries by modifying ComicQueryManager without changing any XAML
or code-behind because you encapsulated all of the query code in that class.

Do this

Next, you’ll need to update the switch statement to run the queries when they’re selected in the
ListView:

You’ll need to add these three methods. Compare them with the LINQ queries on the previous two
pages:

B ULLET POINTS

from is how you specify the IEnumerable<T> that you’re querying. It’s always followed by the name of a variable, followed by in
and the name of the input (from value in values).
select is how you specify what goes into the results (select value).
where generally follows the from clause. That’s where you use normal C# conditions to tell LINQ which items to pull (where
value < 10).
orderby lets you order the results. It’s followed by the criteria that you’re using to sort them, and optionally descending to tell it
to reverse the sort (orderby value descending).
Take lets you pull the first items out of the results of a LINQ query (results.Take(10)). LINQ gives you other methods for each
sequence: Min(), Max(), Sum(), and Average().
You can select anything — you’re not limited to selecting the name that you created in the from clause. Here’s an example: if
your LINQ query pulls a set of prices out of an array of int values and names them value in the from clause, you can return a
sequence of price strings like this: select String.Format("{0:c}", value).

NOTE

This is just like the {0:x} you used in Chapter 9 when you built the hex dumper. There’s also
{0:d} and {0:D} for short and long dates, and {0:P} or {0:Pn} to print a percent (with n decimal
places).

MICRO EXERCISE SOLUTION

THERE ARE NO DUMB QUESTIONS

Q: Q: How does the from clause work?

A: A: It’s a lot like the first line of a foreach loop. One thing that makes thinking about LINQ queries a little tricky is that you’re not just doing one
operation.
A LINQ query does the same thing over and over again for each item in a collection. The from clause does two things: it tells LINQ which collection to
use for the query, and it assigns a name to use for each member of the collection that’s being queried.
The way the from clause creates a new name for each item in the collection is really similar to how a foreach loop does it. Here’s the first line of a
foreach loop:

foreach (int i in values)

That foreach loop temporarily creates a variable called i, which it assigns sequentially to each item in the values collection. Now look at a from clause in
a LINQ query on the same collection:

from i in values

That clause does pretty much the same thing. It creates a temporary variable called i and assigns it sequentially to each item in the values collection.
The foreach loop runs the same block of code for each item in the collection, while the LINQ query applies the same criteria in the where clause to each
item in the collection to determine whether or not to include it in the results. But one thing to keep in mind here is that LINQ queries are just extension
methods. They call methods that do all the real work. You could call those same methods without LINQ.

Q: Q: How does LINQ decide what goes into the results?

A: A: That’s what the select clause is for. Every LINQ query returns a sequence, and every item in that sequence is of the same type. It tells LINQ exactly
what that sequence should contain. When you’re querying an array or list of a single type — like an array of ints or a List<string> — it’s obvious what
goes into the select clause. But what if you’re selecting from a list of Comic objects? You could do what Jimmy did and select the whole class. But you
could also change the last line of the query to select comic.Name to tell it to return a sequence of strings. Or you could do select comic.Issue and have it
return a sequence of ints.

LINQ MAGNETS

Rearrange the magnets so they produce the output at the bottom of the page.

Output:

Get your kicks on route 66

LINQ MAGNETS SOLUTION

Rearrange the magnets so they produce the output at the bottom of the page.

Output:

Get your kicks on route 66

LINQ can combine your results into groups
You can use LINQ to build your results into groups, which can be really useful when you need to slice
and dice your collections. Let’s take a closer look at a query that breaks a collection into groups.
You can see this LINQ query in action (and learn more about how WinForms applications work)
by building some nifty animation in a beehive simulator. Download the free GDI+ chapter from
http://headfirstlabs.com/hfcsharp.

http://headfirstlabs.com/hfcsharp

Combine Jimmy’s values into groups
Jimmy buys a lot of cheap comic books, some midrange comic books, and a few expensive ones, and
he wants to know what his options are before he decides what comics to buy. He’s taken those prices
he got from recent sales on Greg’s List and put them into a Dictionary<int, decimal> using his
GetPrices() method. Let’s now use LINQ to group them into three groups: one for cheap comics that
cost under $100, one for midrange comics that cost between $100 and $1,000, and one for expensive
comics that cost over $1,000. We’ll create a PriceRange enum that we’ll use as the key for the
groups, and a method called EvaluatePrice() that’ll evaluate a price and return a PriceRange.

➊ Every group needs a key — we’ll use an enum for that.
The group’s key is the thing that all of its members have in common. The key can be anything: a
string, a number, even an object reference. We’ll be looking at the prices that Jimmy got from
Greg’s List. Each group that the query returns will be a sequence of issue numbers, and the group’s
key will be a PriceRange enum. The EvaluatePrice() method takes a price as a parameter and
returns a PriceRange:

enum PriceRange { Cheap, Midrange, Expensive }

static PriceRange EvaluatePrice(decimal price) {
 if (price < 100M) return PriceRange.Cheap;
 else if (price < 1000M) return PriceRange.Midrange;
 else return PriceRange.Expensive;
}

Try adding the code on this page to a new Console app — see if you can get it to work! You’ll add the query to
Jimmy’s Windows Store app at the end of the chapter.

➋ Now we can group the comics by their price categories.
The LINQ query returns a sequence of sequences. Each of the sequences inside the results has a
Key property, which matches the PriceRange that was returned by EvaluatePrice(). Look
closely at the group by clause — we’re pulling pairs out of the dictionary, and using the name
pair for each of them: pair.Key is the issue number, and pair.Value is the price from Greg’s
List. Adding group pair.Key tells LINQ to create groups of issue numbers, and then bundles all
of those groups up based on the price category that’s returned by EvaluatePrice():

POOL PUZZLE

Your job is to take snippets from the pool and place them into the blank lines in the program. You can use the same snippet more than
once, and you won’t need to use all the snippets. Your goal is to make the code produce this output:

Horses enjoy eating carrots, but they love eating apples.

class Line {
 public string[] Words;
 public int Value;
 public Line(string[] Words, int Value) {
 this.Words = Words; this.Value = Value;
 }
}

NOTE

Hint: LINQ sorts strings in alphabetical order.

Line[] lines = {
 new Line(new string[] { "eating", "carrots,",
 "but", "enjoy", "Horses" } , 1),
 new Line(new string[] { "zebras?", "hay",
 "Cows", "bridge.", "bolted" } , 2),
 new Line(new string[] { "fork", "dogs!",
 "Engine", "and" }, 3) ,
 new Line(new string[] { "love", "they",
 "apples.", "eating" }, 2) ,
 new Line(new string[] { "whistled.", "Bump" }, 1) };

var ______ =
 from ______ in ______
 ______ line by line.______
 into wordGroups
 orderby ________.______
 select ________;
____ _________ = words.______(2);
foreach (var group in twoGroups)
{
 int i = 0;
 foreach (______ inner in ______) {
 i++;

 if (i == ______.Key) {
 var poem =
 ______ word in ______.______
 ________ word descending
 ______ word + ____;
 foreach (var word in ______)
 Console.Write(word);
 }
 }
}

Note: Each snippet from the pool can be used more than once!

POOL PUZZLE SOLUTION

Output: Horses enjoy eating carrots, but they love eating apples.

Use join to combine two collections into one sequence
Jimmy’s got a whole collection of comics he’s purchased, and he wants to compare them with the
prices he found from sales on Greg’s List to see if the prices he’s been paying are better or worse.
He’s been tracking his purchases using a Purchase class with two automatic properties, Issue and
Price. And he’s got a List<Purchase> called purchases that’s got all the comics he’s bought. But
now he needs to match up the purchases he’s made with the prices he found on Greg’s List. How’s he
going to do it?
LINQ to the rescue! Its join keyword lets you combine data from two sources using a single query.
It does it by comparing items in one sequence with their matching items in a second sequence. (LINQ
is smart enough to do this efficiently — it doesn’t actually compare every pair of items unless it has
to.) The final result combines every pair that matches.

➊ Start off your query with the usual from clause. But instead of following it up with the criteria
it’ll use to determine what goes into the results, you add:

join name in collection

The join clause tells LINQ to loop through both collections to match up pairs with one member
from each collection. It assigns name to the member it’ll pull out of the joined collection in each
iteration. You’ll use that name in the where clause.

➋ Next you’ll add the on clause, which tells LINQ how to match the two collections together.
You’ll follow it with the name of the member of the first collection you’re matching, followed by
equals and the name of the member of the second collection to match it up with.
➌ You’ll continue the LINQ query with where and orderby clauses as usual. You could finish it
with a normal select clause, but you usually want to return results that pull some data from one
collection and other data from the other. That’s where you use select new to create a custom set
of results using an anonymous type.

Jimmy saved a bunch of dough
It looks like Jimmy drives a hard bargain. This query creates a list of Purchase classes that contain
his purchases, and compares them with the prices he found from recent sales on Greg’s List.

➊ FIRST JIMMY CREATED HIS COLLECTION TO JOIN.
Jimmy already had his first collection — he just used his BuildCatalog() method from before.
So all he had to do was write a FindPurchases() method to build his list of Purchase classes.

➋ NOW HE CAN DO THE JOIN!
You’ve seen all the parts of this query already...now here they are, put together in one piece.

B ULLET POINTS

The group clause tells LINQ to group the results together — when you use it, LINQ creates a sequence of group sequences.
Every group contains members that have one member in common, called the group’s key. Use the by keyword to specify the key
for the group. Each group sequence has a Key member that contains the group’s key.
join queries use an on...equals clause to tell LINQ how to match the pairs of items.
Use a join clause to tell LINQ to combine two collections into a single query. When you do, LINQ compares every member of
the first collection with every member of the second collection, including the matching pairs in the results.
When you’re doing a join query, you usually want a set of results that includes some members from the first collection and other
members from the second collection. The select clause lets you build custom results from both of them.
You can use select new to construct custom LINQ query results that include only the items that you want in your result
sequence.

EXERCISE

Add the last two LINQ queries to Jimmy’s app.

➊ ADD THE COMICQUERY OBJECTS TO UPDATEAVAILABLEQUERIES().
Update the AvailableQueries object initializer to instantiate two new ComicQuery objects so they get added to the main page.
Here’s what the new buttons should look like:

➋ ADD METHODS TO EXECUTE THE QUERIES AND UPDATE THE OUTPUT.
You’ll also need the Purchase class and EvaluatePrice() method from a few pages ago, and don’t forget to add the PriceRange
enum to the project. Add EvaluatePrice() as a static method to the Purchases class.
➌ ADD THE NEW QUERIES TO UPDATEQUERYRESULTS().
Once you add the two new query methods to the switch statement in UpdateQueryResults, you’re in business.

THERE ARE NO DUMB QUESTIONS

Q: Q: I don’t quite get how join works.

A: A: join works with any two sequences. Let’s say you’ve got a collection of football players called players — its items are objects that have a Name
property, a Position property, and a Number property. So we could pull out the players whose jerseys have a number bigger than 10 with this query:

var results =
 from player in players
 where player.Number > 10
 select player;

Let’s say we wanted to figure out each player’s shirt size, and we’ve got a jerseys collection whose items have a Number property and a Size property. A
join would work really well for that:

var results =
 from player in players
 where player.Number > 10
 join shirt in jerseys
 on player.Number
 equals shirt.Number
 select shirt;

Q: Q: Hold on, that query will just give me a bunch of shirts. What if I want to connect each player to his shirt size, and I don’t care about his
number at all?

A: A: That’s what anonymous types are for — you can construct an anonymous type that only has the data you want in it. And it lets you pick and
choose from the various collections that you’re joining together, too.
So you can select the player’s name and the shirt’s size, and nothing else:

var results =
 from player in players
 where player.Number > 10
 join shirt in jerseys
 on player.Number
 equals shirt.Number
 select new {
 player.Name,
 shirt.Size
 };

The IDE is smart enough to figure out exactly what results you’ll be creating with your query. If you create a loop to enumerate through the results, as
soon as you type the variable name the IDE will pop up an IntelliSense list.

Notice how the list has Name and Size in it. If you added more items to the select clause, they’d show up in the list too. That’s because the query would
create a different anonymous type with different members.

Q: Q: Can you rewind a minute and explain what var is again?

A: A: Yes, definitely. The var keyword solves a tricky problem that LINQ brings with it. Normally, when you call a method or execute a statement, it’s
absolutely clear what types you’re working with. If you’ve got a method that returns a string, for instance, then you can only store its results in a
string variable or field.
But LINQ isn’t quite so simple. When you build a LINQ statement, it might return an anonymous type that isn’t defined anywhere in your program.
Yes, you know that it’s going to be a sequence of some sort. But what kind of sequence will it be? You don’t know — because the objects that are
contained in the sequence depend entirely on what you put in your LINQ query. Take this query, for example, from Jimmy’s program:

var mostExpensive =
 from comic in comics
 where
 values[comic.Issue]
 > 500
 orderby
 values[comic.Issue]
 descending
 select comic;

What if you changed the last line to this:

 select new
 { Name = comic.Name,
 IssueNumber = "#" +
comic.Issue };

That returns a perfectly valid type: an anonymous type with two members, a string called Name and a string called IssueNumber. But we don’t have a
class definition for that type anywhere in our program! Sure, you don’t actually need to run the program to see exactly how that type is defined. But
the mostExpensive variable still needs to be declared with some type.
And that’s why C# gives us the var keyword, which tells the compiler, “OK, we know that this is a valid type, but we can’t exactly tell you what it is
right now. So why don’t you just figure that out yourself and not bother us with it? Thanks so much.”

EXERCISE SOLUTION

Here’s the code you need to add to Jimmy’s app to make the last two LINQ queries show up.

EXERCISE SOLUTION

Use semantic zoom to navigate your data
Use the button in the simulator to put it into pinch/zoom mode. Hold down the mouse button and use the scroll wheel
to simulate pinch/zoom.

It’s great to give Jimmy an overview of his collection, but let’s give him a way to really drill down
into the details. There’s a very useful control that will let you add an extra dimension to your app’s
navigation. The semantic zoom is a scrollable control that lets your user switch between two
different views of a sequence of data: a “zoomed out” view that shows an overview of the data, and a
“zoomed in” view that shows more detail for each item in the sequence.

NOTE

You can use pinch to zoom in and out of the semantic zoom control, just like you pinch to zoom your photos on your phone or tablet.
You can also use the scroll wheel or click on items.

Semantic zoom allows you to display two different views of the same sequence of data: a zoomedout view that shows
many items, and a zoomed-in view that shows more detail.

You can learn more about how semantic zoom fits into your apps here: http://msdn.microsoft.com/en-
us/library/windows/apps/hh465319.aspx

Here’s the basic XAML pattern for the semantic zoom control. It uses a ListView or GridView control
for the zoomed-out view, and another one for the zoomed-in view:

LISTVIEW AND GRIDVIEW IMPLEMENT ISEMANTICZOOMINFORMATION

The SemanticZoom control can only contain controls that implement the ISemanticZoomInformation interface, which has methods
that let the SemanticZoom control initiate and complete the view change. Luckily, you don’t need to implement this interface yourself.
In the example on this page, we used a ListView to show the zoomed-out items, and a GridView to show the zoomed-in items.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465319.aspx

Add semantic zoom to Jimmy’s app
Jimmy would love to be able to see all of the comics in his collection, and zoom in on individual
comics to see details.

DO THIS!

➊ ADD A NEW ITEM TO THE MAIN PAGE.
Jimmy needs something to click on, so the first thing you’ll do is add a new item to return all of the comics in the collection. First,
add a method to ComicQueryManager to show all of the comics:

private void AllComics() {
foreach (Comic comic in BuildCatalog()) {

var result = new {
ImagePath = "Assets/captain_amazing_zoom_250x250.jpg",
Title = comic.Name,
Subtitle = "Issue #" + comic.Issue,
Description = "The Captain versus " + comic.MainVillain,
Comic = comic,

};
CurrentQueryResults.Add(result);

}
}

Next, add a new case to the switch statement in UpdateQueryResults():

case "All comics in the collection": AllComics(); break;

And finish it off by adding a new ComicQuery to the collection initializer in UpdateAvailableQueries(). You’ll also need to add
the captain_amazing_zoom_250x250.jpg image to the Assets/ folder.

➋ ADD MORE PROPERTIES TO THE COMIC CLASS.
Semantic zoom only makes sense if you have details to zoom in on. It’ll still be displaying Comic objects from the
ComicQueryManager.CurrentQueryResults collection, so we just need to add those details to the Comic class and make sure to
bind to those new properties in the zoomed-in view.

class Comic {
public string Name { get; set; }
public int Issue { get; set; }
public int Year { get; set; }
public string CoverPrice { get; set; }
public string Synopsis { get; set; }
public string MainVillain { get; set; }
public string Cover { get; set; }

}

➌ ADD THE DETAILED COMIC DATA.
Modify the BuildCatalog() method to add more details about each comic. You’ll also need to add images of the covers to
your project’s Assets. Download them from your class website.

public static IEnumerable<Comic> BuildCatalog() {
return new List<Comic> {

new Comic { Name = "Johnny America vs. the Pinko", Issue = 6, Year = 1949, CoverPrice = "10 cents",
MainVillain = "The Pinko", Cover = "Assets/Captain Amazing Issue 6 cover.png",
Synopsis = "Captain Amazing must save America from Communists as The Pinko and his"

+ " communist henchmen threaten to take over Fort Knox and steal all of the nation’s gold."

http://www.headfirstlabs.com/hfcsharp

},

 new Comic { Name = "Rock and Roll (limited edition)", Issue = 19, Year = 1957, CoverPrice = "10
cents",
 MainVillain = "Doctor Vortran", Cover = "Assets/Captain Amazing Issue 19 cover.png",
 Synopsis = "Doctor Vortran wreaks havoc with the nation’s youth with his radio wave device that"
 + " uses the latest dance craze to send rock and roll fans into a mind-control trance." },

 new Comic { Name = "Woman’s Work", Issue = 36, Year = 1968, CoverPrice = "12 cents",
 MainVillain = "Hysterianna", Cover = "Assets/Captain Amazing Issue 36 cover.png",
 Synopsis = "The Captain faces his first female foe, Hysterianna, whose incredible telepathic"
 + " and telekinetic abilities have allowed her to raise an all-girl army that"
 + " even the Captain has trouble resisting." },

 new Comic { Name = "Hippie Madness (misprinted)", Issue = 57, Year = 1973, CoverPrice = "20
cents",
 MainVillain = "The Mayor", Cover = "Assets/Captain Amazing Issue 57 cover.png",
 Synopsis = "A zombie apocalypse threatens Objectville when The Mayor rigs the election by"
 + " introducing his zombification agent into the city’s cigarette supply." },

 new Comic { Name = "Revenge of the New Wave Freak (damaged)", Issue = 68, Year = 1984,
 CoverPrice = "75 cents", MainVillain = "The Swindler",
 Cover = "Assets/Captain Amazing Issue 68 cover.png",
 Synopsis = "A tainted batch of eye makeup turns Dr. Alvin Mudd into the Captain’s new
nemesis,"
 + " in The Swindler’s first appearance in a Captain Amazing comic." },

 new Comic { Name = "Black Monday", Issue = 74, Year = 1986, CoverPrice = "75 cents",
 MainVillain = "The Mayor", Cover = "Assets/Captain Amazing Issue 74 cover.png",
 Synopsis = "The Mayor returns to throw Objectville into a financial crisis by directing his"
 + " zombie creation powers to the floor of the Objectville Stock Exchange." },

 new Comic { Name = "Tribal Tattoo Madness", Issue = 83, Year = 1996, CoverPrice = "Two bucks",
 MainVillain = "Mokey Man", Cover = "Assets/Captain Amazing Issue 83 cover.png",
 Synopsis = "Monkey Man escapes from his island prison and wreaks havoc with his circus
sideshow"
 + " of tattooed henchmen that and their deadly grunge ray." },

 new Comic { Name = "The Death of an Object", Issue = 97, Year = 2013, CoverPrice = "Four bucks",
 MainVillain = "The Swindler", Cover = "Assets/Captain Amazing Issue 97 cover.png",
 Synopsis = "The Swindler’s clone army attacks Objectville in a ruse to trap and kill the "
 + " Captain. Can the scientists of Objectville find a way to bring him back?" },
 };
}

Flip the page to finish the app
➍ ADD A NEW BASIC PAGE TO HOLD THE SEMANTIC ZOOM CONTROL.
Jimmy’s happy with the rest of the app, so instead of modifying the existing page, we’ll add a whole new page. Add a new Basic
Page called QueryDetailZoom.xaml.
Once it’s added, go back to MainPage.xaml and modify its ItemClick event handler in the code-behind to navigate to a
QueryDetailZoom page if the user clicks on the newly added query:

➎ ADD A STATIC COMICQUERYMANAGER RESOURCE TO THE NEW PAGE.
The new QueryDetailZoom page works exactly like the existing QueryDetail page. You’ll need to add a ComicQueryManager to
the <Page.Resources> section of QueryDetailZoom.xaml. You don’t need to update the AppName resource because the page will
set that using C# code:

<Page.Resources>
 <local:ComicQueryManager x:Name="comicQueryManager"/>
 <!-- TODO: Delete this line if the key AppName is declared in App.xaml -->
 <x:String x:Key="AppName">My Application</x:String>
</Page.Resources>

➏ ADD THE CODE-BEHIND FOR THE NEW DETAIL PAGE.
And you’ll need to add exactly the same OnNavigatedTo() method to QueryDetailZoom.xaml.cs:

protected override void OnNavigatedTo(NavigationEventArgs e) {
 ComicQuery comicQuery = e.Parameter as ComicQuery;
 if (comicQuery != null) {
 comicQueryManager.UpdateQueryResults(comicQuery);
 pageTitle.Text = comicQueryManager.Title;
 }
 navigationHelper.OnNavigatedTo(e);
}

➐ MODIFY THE XAML FOR THE NEW DETAIL PAGE.
There’s just one more thing you need to do: build out the XAML for the QueryDetailZoom.xaml page so that it contains a
semantic zoom control that displays the comic book details. It’s the biggest page you’ve created so far, so we’ve spread the code
across two pages to make it easier for you to understand what’s going on.

Flip the page for the rest of the comic detail page XAML.

EDIT QUERIES WITH LINQPAD

There’s a great learning tool for exploring and using LINQ. It’s called LINQPad, and it’s available for free from Joe Albahari (one of
our superstar “Head First C#” technical reviewers who kept a lot of bugs out of this book). You can download it here:

http://www.linqpad.net/

http://www.linqpad.net/

You made Jimmy’s day
Thanks to the new app you built, Jimmy has his collection totally organized. Nice work!

The IDE’s Split App template helps you build apps for navigating
data
There’s an easier way to build two-page apps that navigate between overview and detail pages to
display grouped items. When you create a new project using the Split App template, the IDE
automatically creates a project that lets the user navigate between an overview items page and a split
page with the details. We can explore the Split App template by adapting the app that you built for
Jimmy to use it.

DO THIS!

➊ Create a new Split App project and run it.
The Split App project template contains a class that generates sample data, which means that you can actually run it as soon as
it’s created.
Create a new Split App (XAML) project and name it JimmysComicsSplitApp so the namespaces match the code on the
next few pages.

Change the app name to “Jimmy’s Comics” using the AppName resource. In projects created with the Split App project template,
the AppName resource is in the App.xaml file :

<x:String x:Key="AppName">Jimmy’s Comics</x:String>

➋ Add data classes to the DataModel folder.
Right-click on the DataModel folder in the Solution Explorer and choose Add→Class... to add a new class to the folder.

Create the ComicQueryManager class . When you create a class inside a folder, the IDE automatically generates it using a
namespace that includes the folder name:

namespace JimmysComicsSplitApp.DataModel
{
 class ComicQueryManager
 {

 }
}

Copy the contents of the ComicQueryManager class from your working Jimmy’s Comics app and paste them into the newly
generated ComicQueryManager.cs file in the DataModel folder. Make sure you keep the JimmysComicsSplitApp.DataModel
namespace. (Don’t forget the using statement!)
Next, repeat the same steps to create the Comic, ComicQuery, and Purchase classes, as well as the PriceRange enum. They
should all be created inside the DataModel folder, which means they should all be in the same
JimmysComicsSplitApp.DataModel namespace. Here’s what your Solution Explorer should look like after the files are all added:

There was already a file inside the DataModel folder called SampleDataSource.cs, which contains
code to generate all of the sample data that you saw when you ran the app.
Open it up — it actually works a lot like the data classes app you built for Jimmy. The file contains
several classes, including a SampleDataGroup class (which represents higher-level groups, similar
to your ComicQuery class) and a SampleDataItem class (which represents individual items, like
your Comic class). The actual sample data is created in the constructor of the SampleDataSource
class at the very bottom of the file.
The code-behind for the items page creates a new instance of the SampleDataSource class, and uses
it to populate a dictionary called DefaultViewModel.

NOTE

You’ll learn more about what a ViewModel is and how to build one in Chapter 16.

You’ve already seen how objects can be serialized to binary objects and XML. The Split App uses yet another format
called JSON. The SampleDataSource class has a method called GetSampleDataAsync() that reads the JSON data from a
file called SampleData.json. Double-click on the data file and look at the JSON data in the IDE. Can you figure out how
JSON works just from looking at that file? You can learn more about JSON here: http://json.org/

http://json.org/

That’s right. The Split App template is built to make it easy for you to add your data.
All you need to do to get your data into the Split App is make a few tweaks to the code-behind in the
items page and split page, so that’s what we’ll do next. We’ll also modify the split page so that it uses
the same XAML to display the comic book cover and information in the detail page.

➌ Modify the code-behind in ItemsPage.xaml.cs.
Open ItemsPage.xaml.cs and use Edit→Find and Replace to search for “TODO:” in the code.
Have a look at the comments — the template is letting you know that this is where you replace the
sample data. Comment out the next two lines that set the Items value in the DefaultViewModel
dictionary, and replace them with your own code that reads the AvailableQueries property
from a new ComicQueryManager object:

You’ll also need to comment out the code in the ItemView_ItemClick() event handler method,
which attempts to cast the item that was clicked on to the SampleDataGroup type (it’s passed into
the event arguments as e.ClickedItem). The AvailableQueries property returns a collection of
ComicQuery objects, so here’s the new ItemClick() event handler:

➍ Modify the code-behind in SplitPage.xaml.cs.
The split page has a method called navigateionHelper_LoadState() that uses the navigation
parameter to the Group and Items values in the DefaultViewModel dictionary. Modify it with
code to set the group and items for the page using your comic book data model:

private async void navigationHelper_LoadState(object sender, LoadStateEventArgs e)
{
 //var group = await SampleDataSource.GetGroupAsync((String)e.NavigationParameter);
 //this.DefaultViewModel["Group"] = group;
 //this.DefaultViewModel["Items"] = group.Items;DataModel.ComicQueryManager
 DataModel.ComicQueryManager comicQueryManager = new DataModel.ComicQueryManager();
 DataModel.ComicQuery query = e.NavigationParameter as DataModel.ComicQuery;
 comicQueryManager.UpdateQueryResults(query);
 this.DefaultViewModel["Group"] = query;
 this.DefaultViewModel["Items"] = comicQueryManager.CurrentQueryResults;

There’s one other thing you need to do. The split page overrides the SaveState method, which
allows it to remember which item was clicked on. The code that’s generated casts the selected
item to SampleDataItem, so comment out all of the code in the method to avoid casting
exceptions.

protected override void SaveState(Dictionary<String, Object> pageState) {
 // Comment out all of the code in this method
}

➎ Add the image files to the Assets folder.
You’ll need all of the image files from the app you built for Jimmy. Right-click on the Assets
folder and choose Add→Existing Item... to bring up the Add Existing Item window. Navigate to
the folder that has the code for the app you created earlier in the chapter and use Control-click to
multiselect all of the files except for Logo.scale-100.png, SmallLogo.scale-100.png,
SplashScreen.scale-100.png, and StoreLogo.scale-100.png. Click Add to add all of the files to
your project’s Assets folder.

Your app now runs! The items page displays the available queries from the
ComicQueryManager object...

...and the split page shows you the query results and lets you drill down into the details of
each item.

➏ Modify SplitPage.xaml to show the comic book details.
The XAML in SplitPage.xaml uses templates to display the items on the lefthand side of the split,

but it just uses straightforward, out-of-the-box XAML with data binding to show the details for the
selected item on the righthand side. It includes this TextBlock that’s bound to a Content property:

The sample data in SampleDataSource.cs exposes a Content property that contains a large block
of text. But we want our app to display information about comics in Jimmy’s collection. Luckily,
we already have a block of XAML that displays information nicely when it’s bound to a Comic
object. Find the content TextBlock and replace it with the comic detail XAML. Make sure you
add the Grid.Row, Grid.ColumnSpan, and Margin properties to the inner <Grid>:

Now your Split App lets you drill down into the results of any query that returns comics,
displaying the details of the selected comic on the split page.

Some of the queires don’t return a Comic, so any field bound to the field will be empty. In Chapter 16,
you’ll learn about value converters, which you can use to hide these fields or display a default value.

You can also add pages to your project using Items Page and Split Page templates using the same Add New Item feature
in the IDE that you use to add the Basic Page. And there’s another valuable template called Grid App that has three
levels of navigation. You can learn more about the Grid App and Split App templates here: http://msdn.microsoft.com/en-
us/library/windows/apps/hh768232.aspx

http://msdn.microsoft.com/en-us/library/windows/apps/hh768232.aspx

Chapter 15. Events and Delegates: What your
code does when you’re not looking

Your objects are starting to think for themselves.
You can’t always control what your objects are doing. Sometimes things...happen. And when they do,
you want your objects to be smart enough to respond to anything that pops up. And that’s what events
are all about. One object publishes an event, other objects subscribe, and everyone works together to
keep things moving. Which is great, until you want your object to take control over who can listen.
That’s when callbacks will come in handy.

Ever wish your objects could think for themselves?
Suppose you’re writing a baseball simulator. You’re going to model a game, sell the software to the
Yankees (they’ve got deep pockets, right?), and make a million bucks. You create your Ball,
Pitcher, Umpire, and Fan objects, and a whole lot more. You even write code so that the Pitcher
object can catch a ball.
Now you just need to connect everything together. You add an OnBallInPlay() method to Ball, and
now you want your Pitcher object to respond with its event handler method. Once the methods are
written, you just need to tie the separate methods together:

NOTE

That’s a commonly used way of naming methods — we’ll talk more about it later.

But how does an object KNOW to respond?
Here’s the problem. You really want your Ball object to only worry about getting hit, and your
Pitcher object to only worry about catching balls that come its way. In other words, you really don’t
want the Ball telling the Pitcher, “I’m coming to you.”

You want an object to worry about itself, not other objects. You’re separating the concerns of each object.

NOTE

This doesn’t mean that objects can’t interact. It just means that a Ball shouldn’t determine who fields it. That’s not the Ball’s job.

When an EVENT occurs...objects listen
What you need to do when the ball is hit is to use an event. An event is simply something that’s
happened in your program. Then, other objects can respond to that event — like our Pitcher object.

NOTE

event, noun.

a thing that happens, especially something of importance. The solar eclipse was an amazing event to behold.

Even better, more than one object can listen for events. So the Pitcher could listen for a ball-being-
hit event, as well as a Catcher, a ThirdBaseman, an Umpire, even a Fan. And each object can
respond to the event differently.
So what we want is a Ball object that can raise an event. Then, we want to have other objects to
subscribe to that particular type of event — that just means to listen for it, and to get notified when
that event occurs.

Want to DO SOMETHING with an event? You need an event
handler
Once your object “hears” about an event, you can set up some code to run. That code is called an
event handler. An event handler gets information about the event, and runs every time that event
occurs.

NOTE

We’ve been doing this all along. Every time you click a button, an event is raised, and your code responds to that event.

Remember, all this happens without your intervention at runtime. So you write code to raise an
event, and then you write code to handle those events, and fire up your application. Then, whenever
an event is raised, your handler kicks into action...without you doing anything. And, best of all, your
objects have separate concerns. They’re worrying about themselves, not other objects.

One object raises its event, others listen for it...
An event has a publisher and can have multiple subscribers. Let’s take a look at how events, event
handlers, and subscriptions work in C#:

➊ First, other objects subscribe to the event.
Before the Ball can raise its BallInPlay event, other objects need to subscribe to it. That’s their
way of saying that any time a BallInPlay event occurs, we want to know about it.

➋ Something triggers an event.
The ball gets hit. It’s time for the Ball object to raise a new event.

NOTE

Sometimes we’ll talk about raising an event, or firing it, or invoking it — they’re all the same thing. People just use different
names for it.

➌ The ball raises an event.
A new event gets raised (we’ll talk about exactly how that works in just a minute). That event also
has some arguments, like the velocity of the ball, as well as its trajectory. Those arguments are
attached to the event as an instance of an EventArgs object, and then the event is sent off,
available to anyone listening for it.

Then, the other objects handle the event
Once an event is raised, all the objects subscribed to that event get notification, and can do
something:

➍ Subscribers get notification.
Since the Pitcher, Umpire, and Fan object subscribed to the Ball object’s BallInPlay event,
they all get notified — all of their event handler methods get called one after another.

➎ Each object handles the event.
Now, Pitcher, Umpire, and Fan can all handle the BallInPlay event in their own way. But they
don’t all run at the same time — their event handlers get called one after another, with a reference
to a BallEventArgs object as its parameter.

NOTE

Events are handled on a first-come, first-served basis — the object that subscribes first gets notified first.

Connecting the dots
Now that you’ve got a handle on what’s going on, let’s take a closer look at how the pieces fit
together. Luckily, there are only a few moving parts.

➊ We need an object for the event arguments.
Remember, our BallInPlay event has a few arguments that it carries along. So we need a very
simple object for those arguments. .NET has a standard class for it called EventArgs, but that
class has no members. Its sole purpose is to allow your event arguments object to be passed to
the event handlers that use it. Here’s the class declaration:

class BallEventArgs : EventArgs

➋ Next we’ll need to define the event in the class that’ll raise it.
The ball class will have a line with the event keyword — this is how it informs other objects
about the event, so they can subscribe to it. This line can be anywhere in the class — it’s usually
near the property declarations. But as long as it’s in the Ball class, other objects can subscribe to
a ball’s event. You saw the event keyword when you fired PropertyChanged events. Here’s the
BallInPlay event declaration:

➌ The subscribing classes need event handler methods.
Every object that has to subscribe to the Ball’s BallInPlay event needs to have an event handler.
You already know how event handlers work — every time you added a method to handle a
button’s Click event or a NumericUpDown’s ValueChanged event, the IDE added an event
handler method to your class. The Ball’s BallInPlay event is no different, and an event handler
for it should look pretty familiar:

➍ Each individual object subscribes to the event.
Once we’ve got the event handler set up, the various Pitcher, Umpire, ThirdBaseman, and Fan
objects need to hook up their own event handlers. Each one of them will have its own specific
ball_BallInPlay method that responds differently to the event. So if there’s a Ball object
reference variable or field called ball, then the += operator will hook up the event handler:

Turn the page; there’s a little more....
➎ A Ball object raises its event to notify subscribers that it’s in play.
Now that the events are all set up, the Ball can raise its event in response to something else that
happens in the simulator. Raising an event is easy — it just calls the BallInPlay event.

WATCH IT!

If you raise an event with no handlers, it’ll throw an exception.

If no other objects have added their event handlers to an event, it’ll be null. So always check to make sure your event
handler isn’t equal to null before you raise it. If you don’t, it’ll throw a NullReferenceException. That’s also why you should
copy the event to a variable before you check to see if it’s null — in extremely rare cases, the event can become null between
the null check and the time that it’s called.

Use a standard name when you add a method to raise an event
Take a minute and go to the code for any page in a Windows Store app, and type the keyword
override any place you’d declare a method. As soon as you press space, an IntelliSense window
pops up:

There are a huge number of events that a XAML Page object can raise, and every one of them has its
own method that raises it. The page’s OnDoubleTapped() raises the DoubleTappedEvent event
(which it inherits from a superclass called UIElement), and that’s the whole reason it’s there. So the
Ball event will follow the same convention: we’ll make sure it has a method called OnBallInPlay
that takes a BallEventArgs object as a parameter. The baseball simulator will call that method any
time it needs the ball to raise its BallInPlay event — so when the simulator detects that the bat hit
the ball, it’ll create a new instance of BallEventArgs with the ball’s trajectory and distance and
pass it to OnBallInPlay().

THERE ARE NO DUMB QUESTIONS

Q: Q: Why do I need to include the word EventHandler when I declare an event? I thought the event handler was what the other objects used to
subscribe to the events.

A: A: That’s true — when you need to subscribe to an event, you write a method called an event handler. But did you notice how we used EventHandler in
the event declaration (step #2) and in the line to subscribe the event handler to it (step #4)? What EventHandler does is define the signature of the event
— it tells the objects subscribing to the event exactly how they need to define their event handler methods. Specifically, it says that if you want to
subscribe a method to this event, it needs to take two parameters (an object and an EventArgs reference) and have a void return value.

Q: Q: What happens if I try to use a method that doesn’t match the ones that are defined by EventHandler?

A: A: Then your program won’t compile. The compiler will make sure that you don’t ever accidentally subscribe an incompatible event handler method to
an event. That’s why the standard event handler, EventHandler, is so useful — as soon as you see it, you know exactly what your event handler method
needs to look like.

Q: Q: Wait, “standard” event handler? There are other kinds of event handlers?

A: A: Yes! Your events don’t have to send an object and an EventArgs. In fact, they can send anything at all — or nothing at all! Look at the IntelliSense
window at the bottom of the facing page. Notice how the OnDragEnter method takes a DragEventArgs reference instead of an EventArgs reference?
DragEventArgs inherits from EventArgs, just like BallEventArgs does. The page’s DragDrop event doesn’t use EventHandler. It uses something else,
DragEventHandler, and if you want to handle it, your event handler method needs to take an object and a DragEventArgs reference.
The parameters of the event are defined by a delegate — EventHandler and DragEventHandler are two examples of delegates. But we’ll talk more about
that in a minute.

Q: Q: So I can probably have my event handlers return something other than void, too, right?

A: A: Well, you can, but it’s often a bad idea. If you don’t return void from your handler, you can’t chain event handlers. That means you can’t connect
more than one handler to each event. Since chaining is a handy feature, you’d do best to always return void from your event handlers.

Q: Q: Chaining? What’s that?

A: A: It’s how more than one object can subscribe to the same event — they chain their event handlers onto the event, one after another. We’ll talk a lot
more about that in a minute, too.

Q: Q: Is that why I used += when when I added my event handler? Like I’m somehow adding a new handler to existing handlers?

A: A: Exactly! Any time you add an event handler, you want to use +=. That way, your handler doesn’t replace existing handlers. It just becomes one in
what may be a very long chain of other event handlers, all of which are listening to the same event.

Q: Q: Why does the ball use “this” when it raises the BallInPlay() event?

A: A: Because that’s the first parameter of the standard event handler. Have you noticed how every Click event handler method has a parameter “object
sender”? That parameter is a reference to the object that’s raising the event. So if you’re handling a button click, sender points to the button that
was clicked. And if you’re handling a BallInPlay event, sender will point to the Ball object that’s in play — and the ball sets that parameter to this
when it raises the event.

A SINGLE event is always raised by a SINGLE object.
But a SINGLE event can be responded to by MULTIPLE objects.

The IDE generates event handlers for you automatically
Many programmers follow the same convention for naming their event handlers. If there’s a Ball
object that has a BallInPlay event and the name of the reference holding the object is called ball,
then the event handler would typically be named ball_BallInPlay(). That’s not a hard-and-fast
rule, but if you write your code like that, it’ll be a lot easier for other programmers to read.
Luckily, the IDE makes it really easy to name your event handlers this way. It has a feature that
automatically adds event handler methods for you when you’re working with a class that raises an
event. It shouldn’t be too surprising that the IDE can do this for you — after all, this is exactly what it
does when you double-click on a button in the designer. (This may seem familiar because you’ve
done it in earlier chapters.)

DO THIS

➊ Start a new blank Windows Store app and add the Ball and BallEventArgs.
Here’s the Ball class:

class Ball {
 public event EventHandler BallInPlay;
 public void OnBallInPlay(BallEventArgs e) {
 EventHandler ballInPlay = BallInPlay;
 if (ballInPlay != null)
 ballInPlay(this, e);
 }
}

And here’s the BallEventArgs class:

class BallEventArgs : EventArgs {
 public int Trajectory { get; private set; }
 public int Distance { get; private set; }
 public BallEventArgs(int trajectory, int distance) {
 this.Trajectory = trajectory;
 this.Distance = distance;
 }
}

➋ Start adding the Pitcher’s constructor.
Add a new Pitcher class to your project. Then give it a constructor that takes a Ball reference called ball as a parameter.
There will be one line of code in the constructor to add its event handler to ball.BallInPlay. Start typing the statement, but
don’t type += yet.

public Pitcher(Ball ball) {
 ball.BallInPlay
}

➌ Type += and the IDE will finish the statement for you.
As soon as you type += in the statement, the IDE displays a very useful little box:

When you press the Tab key, the IDE will finish the statement for you. It’ll look like this:

public Pitcher(Ball ball) {
 ball.BallInPlay += ball_BallInPlay;
}

➍ The IDE will add your event handler, too.

You’re not done — you still need to add a method to chain onto the event. Luckily, the IDE takes care of that for you, too. After
the IDE finishes the statement, it shows you another box:

Hit the Tab key again to make the IDE add this event handler method to your Pitcher class. The IDE will always follow the
objectName_HandlerName() convention:

➎ Finish the pitcher’s event handler.
Now that you’ve got the event handler’s skeleton added to your class, fill in the rest of its code. The pitcher should catch any low
balls; otherwise, he covers first base.

EXERCISE

It’s time to put what you’ve learned so far into practice. Your job is to complete the Ball and Pitcher classes, add a Fan class, and
make sure they all work together with a very basic version of your baseball simulator.

➊ COMPLETE THE PITCHER CLASS.
Below is what we’ve got for Pitcher. Add the CatchBall() and CoverFirstBase() methods. Both should create a string saying
that the catcher has either caught the ball or run to first base, and add that string to a public ObservableCollection<string>
called PitcherSays.

➋ WRITE A FAN CLASS.
Create another class called Fan. Fan should also subscribe to the BallInPlay event in its constructor. The fan’s event handler
should see if the distance is greater than 400 feet and the trajectory is greater than 30 (a home run), and grab for a glove to try to
catch the ball if it is. If not, the fan should scream and yell. Everything that the fan screams and yells should be added to an
ObservableCollection<string> called FanSays.

NOTE

Look at the output on the facing page to see exactly what it should print.

➌ BUILD A VERY SIMPLE SIMULATOR.
If you didn’t do it already, create a new Windows Store Blank App, replace MainPage.xaml with a Basic Page, and add the
following BaseballSimulator class. Then add it as a static resource to the page.

using System.Collections.ObjectModel;

class BaseballSimulator {
 private Ball ball = new Ball();
 private Pitcher pitcher;
 private Fan fan;
 public ObservableCollection<string> FanSays { get { return fan.FanSays; } }
 public ObservableCollection<string> PitcherSays { get { return pitcher.PitcherSays; } }
 public int Trajectory { get; set; }
 public int Distance { get; set; }
 public BaseballSimulator() {
 pitcher = new Pitcher(ball);
 fan = new Fan(ball);
 }
 public void PlayBall() {
 BallEventArgs ballEventArgs = new BallEventArgs(Trajectory, Distance);
 ball.OnBallInPlay(ballEventArgs);
 }

}

➍ BUILD THE MAIN PAGE.
Can you come up with the XAML just from looking at the screenshot to the right? The two TextBox controls are bound to the
Trajectory and Distance properties of the BaseballSimulator static resource, and the pitcher and fan chatter are ListView
controls bound to the two ObservableCollections.
See if you can make your simulator generate the above fan and pitcher chatter with three successive balls put into play. Write
down the values you used to get the result below:

Ball 1: Ball 2: Ball 3:

Trajectory: ________ Trajectory: ________ Trajectory: ________

Distance: __________ Distance: __________ Distance: __________

EXERCISE SOLUTION

It’s time to put what you’ve learned so far into practice. Your job is to complete the Ball and Pitcher classes, add a Fan class, and
make sure they all work together with a very basic version of your baseball simulator.

Here are the Ball and BallEventArgs from earlier, and the new Fan class that needed to be added:

The only code-behind that the page needs is this Button_Click() event handler method:

private void Button_Click(object sender, RoutedEventArgs e) {
 baseballSimulator.PlayBall();
}

NOTE

This static resource goes in the Page.Resources section.

Here’s the XAML for the page. It also needs: <local:BaseballSimulator x:Name="baseballSimulator"/>

<Grid Grid.Row="1" Margin="120,0" DataContext="{StaticResource ResourceKey=baseballSimulator}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="200" />
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <StackPanel Margin="0,0,40,0">
 <TextBlock Text="Trajectory" Style="{StaticResource SubheaderTextBlockStyle}" Margin="0,0,0,20"/>
 <TextBox Text="{Binding Trajectory, Mode=TwoWay}" Margin="0,0,0,20"/>
 <TextBlock Text="Distance" Style="{StaticResource SubheaderTextBlockStyle}" Margin="0,0,0,20"/>
 <TextBox Text="{Binding Distance, Mode=TwoWay}" Margin="0,0,0,20"/>

 <Button Content="Play ball!" Click="Button_Click"/>
 </StackPanel>
 <StackPanel Grid.Column="1">
 <TextBlock Text="Pitcher says" Style="{StaticResource SubheaderTextBlockStyle}" Margin="0,0,0,20"/>
 <ListView ItemsSource="{Binding PitcherSays}" Height="150"/>
 <TextBlock Text="Fan says" Style="{StaticResource SubheaderTextBlockStyle}" Margin="0,0,0,20"/>
 <ListView ItemsSource="{Binding FanSays}" Height="150"/>
 </StackPanel>
</Grid>

And here’s the Pitcher class (it needs using System.Collections.ObjectModel; at the top):

Generic EventHandlers let you define your own event types
Take a look at the event declaration in your Ball class:

public event EventHandler BallInPlay;

Now open up any Windows Forms app and take a look at the Click event declaration from a button
form, and most of the other controls you used in the first part of this book:

public event EventHandler Click;

Notice anything? They have different names, but they’re declared exactly the same way. And while
that works just fine, someone looking at your class declaration doesn’t necessarily know that the
BallEventHandler will always pass it a BallEventArgs when the event is fired. Luckily, .NET
gives us a great tool to communicate that information very easily: a generic EventHandler. Change
your ball’s BallInPlay event handler so it looks like this:

You’ll also need to change the OnBallInPlay method to replace EventHandler with
EventHandler<BallEventArgs>. Now rebuild your code. You should see this error:

Now that you changed the event declaration, your reference to it in the Ball class needs to be updated
too:

EventHandler<BallEventArgs> ballInPlay = BallInPlay;
if (ballInPlay != null)
 ballInPlay(this, e);

C# does implicit conversion when you leave out the new keyword
and type
You used the IDE to automatically create this event handler method a few pages ago:

ball.BallInPlay += ball_BallInPlay;

When you use this syntax, C# does an implicit conversion and figures out the type for you. Try
replacing that line in the Pitcher or Fan class with it:

ball.BallInPlay += new EventHandler<BallEventArgs>(ball_BallInPlay);

Your program still runs just fine because the IDE automatically generated code that used implicit
conversion. That way, you didn’t have to modify the type when you changed the type of the event.

Windows Forms use many different events
We’re going to switch gears and go back to desktop applications for the next two projects, because
they give us a really good learning tool. That’s because every time you’ve created a button, double-
clicked on it in the designer, and written code for a method like button1_Click(), you’ve been
working with events. (Windows Store apps use events too.)

DO THIS

➊ Create a new Windows Forms Application project. Go to the Properties window for the form. Remember those icons at
the top of the window? Click on the Events button (it’s the one with the lightning bolt icon) to bring up the events page in the
Properties window:

➋ Double-click on the Click row in the events page. The IDE will automatically add an event handler method to your form called
Form1_Click. Add this line of code to it:

private void Form1_Click(object sender, EventArgs e) {
 MessageBox.Show("You just clicked on the form");
}

➌ Visual Studio did more than just write a little method declaration for you, though. It also hooked the event handler up to the
Form object’s Click event. Open up Form1.Designer.cs and use the Quick Find (Edit→Find and Replace→Quick Find) feature
in the IDE to search for the text Form1_Click in the current project. You’ll find this line of code:

this.Click += new System.EventHandler(this.Form1_Click);

Now run the program and make sure your code works!

You’re not done yet — flip the page!

One event, multiple handlers
Here’s a really useful thing that you can do with events: you can chain them so that one event or
delegate calls many methods, one after another. Let’s add a few buttons to your application to see how
it works.

➍ Add these two methods to your form class:
private void SaySomething(object sender, EventArgs e) {
 MessageBox.Show("Something");
}
private void SaySomethingElse(object sender, EventArgs e) {
 MessageBox.Show("Something else");
}

➎ Now add two buttons to your form. Double-click on each button to add its event handler.
Here’s the code for both event handlers:

private void button1_Click(object sender, EventArgs e) {
 this.Click += new EventHandler(SaySomething);
}
private void button2_Click(object sender, EventArgs e) {
 this.Click += new EventHandler(SaySomethingElse);
}

Before you go on, take a minute and think about what those two buttons do. Each button hooks up a
new event handler to the form’s Click event. In the first three steps, you used the IDE to add an
event handler as usual to pop up a message box every time the form fired its Click event — it
added code to Form1.Designer.cs that used the += operator to hook up its event handler.
Now you added two buttons that use the exact same syntax to chain additional event handlers onto
the same Click event. So before you go on, try to guess what will happen if you run the program,
click the first button, then click the second button, and then click on the form. Can you figure it out
before you run the program?

THERE ARE NO DUMB QUESTIONS

Q: Q: When I added a new event handler to the Pitcher object, why did the IDE make it throw an exception?

A: A: It added code to throw a NotImplementedException to remind you that you still need to implement code there. That’s a really useful exception,
because you can use it as a placeholder just like the IDE did. For example, you’ll typically use it when you need to build the skeleton of a class but you
don’t want to fill in all the code yet. That way, if your program throws that exception, you know it’s because you still need to finish the code, and not
because your program is broken.

WATCH IT!

Event handlers always need to be “hooked up.”

If you drag a button onto your form and add a method called button1_Click() that has the right parameters but isn’t
registered to listen to your button, the method won’t ever get called. Double-click on the button in the designer — the IDE will
see the default event handler name is taken, so it’ll add an event handler for the button called button1_Click_1().

Now run your program and do this:
Click the form — you’ll see a message box pop up that says, “You just clicked on the form.”

Now click button1 and then click on the form again. You’ll see two message boxes pop up: “You
just clicked on the form” and then “Something.”

Click button2 twice and then click on the form again. You’ll see four message boxes: “You just
clicked on the form,” “Something,” “Something else,” and “Something else.”

So what happened?
Every time you clicked one of the buttons, you chained another method — either Something() or
SomethingElse() — onto the form’s Click event. You can keep clicking the buttons, and they’ll
keep chaining the same methods onto the event. The event doesn’t care how many methods are
chained on, or even if the same method is in the chain more than once. It’ll just call them all every
time the event fires, one after another, in the order they were added.

Windows Store apps use events for process lifetime management
NOTE

It’s possible for a Windows Store app to terminate itself by calling Application.Current.Exit(), but a well-designed Windows Store app
doesn’t need to because it can use process lifetime management.

How do you close a Windows Store app? You can click the button in the upper right-hand corner
or right-click on the app in the deslktop taskbar and choose . But are you really closing
the app? Try this: “close” a Windows Store app, then right-click on the time in the desktop and
choose Task Manager to see the processes that are currently running. You’ll probably see the app you
just “closed.”
When you switch away from an app, Windows suspends it, and while an app is suspended it stays in
memory, with all of the objects and resources it needs kept alive. If Windows needs to free up that
memory, it will terminate the app, unloading it and freeing up any resources it’s using. But as a user,
do you really care if your app is suspended or terminated? In most cases, users actually don’t care —
as long as when the app resumes, it returns to a state that makes sense to the user. When an app
responds to Windows suspending and resuming it, that’s called process lifetime management.

Use the IDE to explore process lifetime management events
Open up any Windows Store app and double-click on App.xaml.cs in the Solution Explorer. Find the
App constructor:

You should recognize what’s going on here. App, which is a subclass of the Application class in the
Windows.UI.Xaml namespace, has an event called Suspending, and it’s being hooked up in the
constructor to an event handler called OnSuspending. Right-click on and choose Go To Definition to
open the tab with the members of the Application class, and jump to the
Suspending event:

Every time Windows suspends a Windows Store app, the app’s Suspending event is fired so that it can save its state.

This event is fired any time the user switches away from your app. This means that the
OnSuspending() method in App.xaml.cs is called every time your app is suspended. And similarly,
the OnLaunched() method in App.xaml.cs is called every time your app is launched.
Once your app is suspended, Windows can terminate the app at any time. So you should build your
app to act like it’s going to be terminated every time it’s suspended by saving its current state. The
OnLaunched() method can check its arguments to see if it’s starting again after a previous
suspension.

Add process lifetime management to Jimmy’s comics
Let’s modify Jimmy’s comic book app to save and restore the current page. We’ll modify its
Suspending event handler so it writes the name of the current query to a file in the app’s local folder
when Jimmy switches away from the app. If Windows terminates the app, we’ll make sure to switch
back to that page when it’s launched again.

DO THIS!

➊ Add a class to manage saving and loading the state.
Add a class called SuspensionManager. It has a static property to keep track of the current query, and two static methods to
read and write the name of the query to a file called_sessionState.txt in the app’s local folder.

using Windows.Storage;
class SuspensionManager {
 public static string CurrentQuery { get; set; }

 private const string filename = "_sessionState.txt";

 static async public Task SaveAsync() {
 if (String.IsNullOrEmpty(CurrentQuery))
 CurrentQuery = String.Empty;
 IStorageFile storageFile =
 await ApplicationData.Current.LocalFolder.CreateFileAsync(
 filename, CreationCollisionOption.ReplaceExisting);
 await FileIO.WriteTextAsync(storageFile, CurrentQuery);
 }

 static async public Task RestoreAsync() {
 IStorageFile storageFile =
 await ApplicationData.Current.LocalFolder.GetFileAsync(filename);
 CurrentQuery = await FileIO.ReadTextAsync(storageFile);
 }
}

➋ Make the main page update SuspensionManager when a query is loaded.
The ListView in MainPage.xaml causes the app to navigate when an item is clicked, so add a line to its ItemClick event
handler to set SuspensionManager’s static CurrentQuery property to the title of the query being loaded:

➌ Modify the detail pages’ OnNavigatedFrom() methods to clear the saved query.
When the user clicks the back arrow to navigate away from a page, one of the things that it does is fire the NavigatedFrom
event. In Chapter 14, you modified the OnNavigatedFrom() method in code-behind for the detail pages by expanding

 in the code editor. Now you should recognize the pattern — the Basic Page template overrides these
methods, just you saw a few pages ago.
We want the two Query Detail pages to clear the SuspensionManager.CurrentQuery property any time the user navigates back to
the main page. That way, CurentQuery is only set to a value if the user suspends the app while it’s displaying a detail page. Go
ahead and expand and add this line to the OnNavigatedFrom() method in QueryDetail.xaml.cs:

Next, do the same thing for QueryDetailZoom.xaml.cs .
➍ Modify the Suspending event handler to save the state.
Open App.xaml.cs and find the OnSuspending() event handler method that was hooked up to the Suspending event. It has a
comment that starts with TODO:

Replace the TODO line with a call to SaveAsync(). Make sure you add async to the beginning of the declaration so you can use
the await keyword to make an asynchronous call:

NOTE

Have a look at App.xaml.cs in the Split App you added at the end of Chapter 14. It calls the SuspensionManager’s
SaveAsync() method in exactly the same way.

➎ Update the OnLaunched method to restore the state.
All of the changes you’ve made so far keep the SuspensionManager’s static CurrentQuery property up to date. Now ou can
update the Launched event handler in App.xaml.cs to restore the state. You used the IDE to explore app page navigation in
Chapter 14 and saw how the OnLaunched() method created a new Frame and navigated to it. Now you’ll use the
SuspensionManager to restore the state and navigate to the last query that was displayed.
Start by adding the async keyword to the method declaration:

Next, find this comment:
That’s where you can add code to have the SuspensionManager restore the application state. Replace the TODO line with a
call to SuspensionManager.RestoreAsync():

if (args.PreviousExecutionState == ApplicationExecutionState.Terminated) {
 await SuspensionManager.RestoreAsync();
}

Now that the SuspensionManager has restored the state, its CurrentQuery property will contain the name of the last query that
the user dispalyed (or null if the user was on the main page when the app was supsended). Modify the code in OnLaunched()
that navigates to the root frame so that it navigates to the QueryDetail or QueryDetailZoom page if CurrentQuery is not null:

XAML controls use routed events
Flip back a few pages and have a closer look at the IntelliSense window that popped up when you
typed override into the IDE. Two of the names of the event argument types are a little different than
the others. The DoubleTapped event’s second argument has the type
DoubleTappedRoutedEventArgs, and the GotFocus event’s is a RoutedEventArgs. The reason is
that the DoubleTapped and GotFocus events are routed events. These are like normal events, except
for one difference: when a control object responds to a routed event, first it fires off the event handler
method as usual. Then it does something else: if the event hasn’t been handled, it sends the routed
event up to its container. The container fires the event, and then if it isn’t handled, it sends the
routed event up to its container. The event keeps bubbling up until it’s either handled or it hits the
root, or the container at the very top. Here’s a typical routed event handler method signature.

private void EventHandler(object sender, RoutedEventArgs e)

The RoutedEventArgs object has a property called Handled that the event handler can use to
indicate that it’s handled the event. Setting this property to true stops the event from bubbling up.
In both routed and standard events, the sender parameter always contains a reference to the object
that called the event handler. So if an event is bubbled up from a control to a container like a Grid,
then when the Grid calls its event handler, sender will be a reference to the Grid control. But what if
you want to find out which control fired the original event? No problem. The RoutedEventArgs
object has a property called OriginalSource that contains a reference to the control that initially
fired the event. If OriginalSource and sender point to the same object, then the control that called
the event handler is the same control that originated the event and started it bubbling up.

IsHitTestVisible determines if an element is “visible” to the pointer
or mouse
Typically, any element on the page can be “hit” by the pointer or mouse — as long as it meets certain
criteria. It needs to be visible (which you can change with the Visibility property), it has to have a
Background or Fill property that’s not null (but can be Transparent), it must be enabled (with the
IsEnabled property), and it has to have a height and width greater than zero. If all of these things
are true, then the IsHitTestVisible property will return True, and that will cause it to respond to
pointer or mouse events.
This property is especially useful if you want to make your events “invisible” to the mouse. If you set
IsHitTestVisible to False, then any pointer taps or mouse clicks will pass right through the
control. If there’s another control below it, that control will get the event instead.

The structure of controls that contain other controls that in turn contain yet more controls is called an object tree, and
routed events bubble up the tree from the child to parent until they hit the root element at the top.

You can see a list of input events that are routed events here: http://msdn.microsoft.com/en-
us/library/windows/apps/Hh758286.aspx

http://msdn.microsoft.com/en-us/library/windows/apps/Hh758286.aspx

Create an app to explore routed events
NOTE

Make sure you replace MainPage.xaml with a new Basic Page.

Here’s a Windows Store app that you can use to experiment with routed events. It’s got a StackPanel
that contains a Border, which contains a Grid, and inside that grid are an Ellipse and a Rectangle.
Have a look at the screenshot. See how the Rectangle is on top of the Ellipse? If you put two controls
into the same cell, they’ll stack on top of each other. But both of those controls have the same parent:
the Grid, whose parent is the Border, and the Border’s parent is the StackPanel. Routed events from
the Rectangle or Ellipse bubble up through the parents to the root of the object tree.

Flip the page to finish the app
YOU’LL NEED THIS OBSERVABLECOLLECTION TO DISPLAY OUTPUT IN THE LISTBOX.

Modify the MainPage contsructor to set the output ListBox’s ItemsSource to this new
ObservableCollection. This will let the app display output to the user by clearing and adding items to
outputItems.

public MainPage() {
 this.InitializeComponent();
 this.navigationHelper = new NavigationHelper(this);
 this.navigationHelper.LoadState += navigationHelper_LoadState;
 this.navigationHelper.SaveState += navigationHelper_SaveState;
 output.ItemsSource = outputItems;
}

Here’s the rest of the code-behind. Each control’s PointerPressed event handler clears the output if
it’s the original source, then it adds a string to the output. If its “handled” toggle switch is on, it uses
e.Handled to handle the event.

HERE’S THE OBJECT GRAPH FOR YOUR MAIN PAGE.
The MainPage class is at the root of the object tree. MainPage.xaml and MainPage.xaml.cs define a
subclass of the Page class called MainPage. When you use the Basic Page template, it includes
code-behind in MainPage.xaml to help with navigation (like you saw in Chapter 14). You’ll add your
own ObservableCollection to the MainPage to manage the output and use it as the ItemsSource for
the ListBox that displays the output.
Flip the page to use your new app to explore routed events
RUN THE APP AND CLICK OR TAP THE GRAY RECTANGLE.
You should see the output in the screenshot to the right.
You can see exactly what’s going on by putting a breakpoint on the first line of
Rectangle_PointerPressed(), the Rectangle control’s PointerPressed event handler:

Click the gray rectangle again — this time the breakpoint should fire. Use Step Over (F10) to step
through the code line by line. First you’ll see the if block execute to clear the outputItems
ObservableCollection that’s bound to the ListBox. This happens because sender and
e.OriginalSource reference the same Rectangle control, which is only true inside the event handler
method for the control that originated the event (in this case, the control that you clicked or tapped),
so sender == e.OriginalSource is true.
When you get to the end of the method, keep stepping through the program. The event will bubble
up through the object tree, first running the Rectangle’s event handler, then the Grid’s event handler,
then the Border’s, and then the Panel’s, and finally it runs an event handler method that’s part of
LayoutAwarePage — this is outside of your code and not part of the routed event, so it will always
run. Since none of those controls are the original source for the event, none of their senders will be
the same as e.OriginalSource, so none of them clear the output.
TURN ISHITTESTVISIBLE OFF, PRESS THE “UPDATE” BUTTON, AND THEN CLICK OR
TAP THE RECTANGLE.
← You should see this output.

Wait a minute! You pressed the Rectangle, but the Ellipse control’s PointerPressed event handler
fired. What’s going on?

When you pressed the button, its Click event handler updated the Rectangle control’s
IsHitTestVisible property to false, which made it “invisible” to pointer presses, clicks, and
other pointer events. So when you tapped the rectangle, your tap passed right through it to the topmost
control underneath it on the page that has IsHitTestVisible set to true and has a Background
property that’s set to a color or Transparent. In this case, it finds the Ellipse control and fires its
PointerPressed event.
TOGGLE THE “GRID SETS HANDLED” SWITCH ON AND CLICK OR TAP THE GRAY
RECTANGLE.
You should see this output. →

So why did only two lines get added to the output ListBox? Step through the code again to see
what’s going on. This time, gridSetsHandled.IsOn was true because you toggled the
gridSetsHandled to On, so the last line in the Grid’s event handler set e.IsHandled to true. As
soon as a routed event handler method does that, the event stops bubbling up. As soon as the Grid’s
event handler completes, the app sees that the event has been handled, so it doesn’t call the Border or
Panel’s event handler method, and instead skips to the event handler method in LayoutAwarePage
that’s outside of the code you added.

A routed event first fires the event handler for the control that originated the event, and then bubbles up through the
control hierarchy until it hits the top — or an event handler sets e.Handled to true.

USE THE APP TO EXPERIMENT WITH ROUTED EVENTS.
Here are a few things to try:

Click on the gray rectangle and the red ellipse and watch the output to see how the events bubble
up.
Turn on each of the toggle switches, starting at the top, to cause the event handlers to set
e.Handled to true. Watch the events stop bubbling when they’re handled.
Set breakpoints and debug through all of the event handler methods.
Try setting a breakpoint in the Ellipse’s event handler method, then turn the gray rectangle’s
IsHitTestVisible property on and off by toggling the bottom switch and pressing the button.
Step through the code for the rectangle when IsHitTestVisible is set to false.
Stop the program and add a Background property to the Grid to make it visible to pointer hits.

Connecting event senders with event listeners
One of the trickiest things about events is that the sender of the event has to know what kind of event
to send — including the arguments to pass to the event. And the listener of the event has to know
about the return type and the arguments its handler methods must use.
But — and here’s the tricky part — you can’t tie the sender and receiver together. You want the
sender to send the event and not worry about who receives it. And the receiver cares about the event,
not the object that raised the event. So both sender and receiver focus on the event, not each other.

“My people will get in touch with your people.”
You know what this code does:

Ball currentBall;

It creates a reference variable that can point to any Ball object. It’s not tied to a single Ball.
Instead, it can point to any ball object — or it can be null, and not point to anything at all.
An event needs a similar kind of reference — except instead of pointing to an object, it needs one that
points to a method. Every event needs to keep track of a list of methods that are subscribed to it.
You’ve already seen that they can be in other classes, and they can even be private. So how does it
keep track of all of the event handler methods that it needs to call? It uses something called a
delegate.

NOTE

del-e-gate, noun.

a person sent or authorized to represent others. The president sent a delegate to the summit.

A delegate STANDS IN for an actual method
One of the most useful aspects of events is that when an event fires, it has no idea whose event
handler methods it’s calling. Anyone who happens to subscribe to an event gets his event handler
called. So how does the event manage that?
It uses a C# type called a delegate. A delegate is a special kind of reference type that lets you refer
to a method inside a class...and delegates are the basis for events.
You’ve actually already been using delegates throughout this chapter! When you created the
BallInPlay event, you used EventHandler. Well, an EventHandler is just a delegate. If you right-
click on EventHandler in the IDE and select Go To Definition, this is what you’ll see (try it
yourself):

A delegate adds a new type to your project
DO THIS

When you add a delegate to your project, you’re adding a delegate type . And when you use it to create a field or variable, you’re
creating an instance of that delegate type. So create a new Console Application project. Then add a new class file to the project
called ConvertsIntToString.cs. But instead of putting a class inside it, add a single line:

Next, add a method called HiThere() to your Program class:

Finally, fill in the Main() method:

The someMethod variable is pointing to the HiThere() method. When your program calls someMethod(5), it calls HiThere() and
passes it the argument 5, which causes it to return the string value “Hi there! #500” — exactly as if it were called directly. Take a
minute and step through the program in the debugger to see exactly what’s going on.

Delegates in action
There’s nothing mysterious about delegates — in fact, they don’t take much code at all to use. Let’s
use them to help a restaurant owner sort out his top chef’s secret ingredients.

DO THIS

➊ Create a new Windows Forms Application project and add a delegate.
Delegates usually appear outside of any other classes, so add a new class file to your project and call it GetSecretIngredient.cs.
It will have exactly one line of code in it:

(Make sure you delete the class declaration entirely.) This delegate can be used to create a variable that can point to any method
that takes one int parameter and returns a string.
➋ Add a class for the first chef, Suzanne.
Suzanne.cs will hold a class that keeps track of the first chef’s secret ingredient. It has a private method called
SuzannesSecretIngredient() with a signature that matches GetSecretIngredient. But it also has a read-only property — and
check out that property’s type. It returns a GetSecretIngredient. So other objects can use that property to get a reference to
her SuzannesSecretIngredient() method — the property can return a delegate reference to it, even though it’s private.

➌ Then add a class for the second chef, Amy.
Amy’s method works a lot like Suzanne’s:

➍ Build this form.
Here’s the code for the form:

You can use implicit conversion with delegates, just like you did with events earlier in the chapter. Try replacing
this: = new GetSecretIngredient(suzanne.MySecretIngredientMethod); with this: = suzanne.MySecretIngredientMethod;

➎ Use the debugger to explore how delegates work.
You’ve got a great tool — the IDE’s debugger — that can really help you get a handle on how delegates work:

Start by running your program. First click the “Get the ingredient” button — it should pop up a message box that says, “I don’t
have a secret ingredient!”
Click the “Get Suzanne’s delegate” button — that takes the form’s ingredientMethod field (which is a GetSecretIngredient
delegate) — and sets it equal to whatever Suzanne’s MySecretIngredientMethod property returns. That property returns a new

instance of the GetSecretIngredient type that’s pointing to the SuzannesSecretIngredient() method.
Click the “Get the ingredient” button again. Now that the form’s ingredientMethod field is pointing to
SuzannesSecretIngredient(), it calls that, passing it the value in the numericUpDown control (make sure it’s named amount)
and showing it in a message box.
Click the “Get Amy’s delegate” button. It uses the Amy.AmysSecretIngredientMethod property to set the form’s
ingredientMethod field to point to the AmysSecretIngredient() method.
Click the “Get the ingredient” button one more time. Now it calls Amy’s method.
Now use the debugger to see exactly what’s going on. Place a breakpoint on the first line of each of the three methods in the
form. Then restart the program (which resets the ingredientMethod so that it’s equal to null), and start over with the above
five steps. Use the Step Into (F11) feature of the debugger to step through every line of code. Watch what happens when you
click “Get the ingredient.” It steps right into the Suzanne and Amy classes, depending on which method the ingredientMethod
field is pointing to.

POOL PUZZLE

Your job is to take snippets from the pool and place them into the blank lines in the code. You can use the same snippet more than
once, and you won’t need to use all the snippets. Your goal is to complete the code for a form that writes this output to the console
when its button1 button is clicked.

public Form1() {
 InitializeComponent();
 this.______ += new EventHandler(Minivan);
 this.______ += new EventHandler(____________);
}
void Towtruck(object sender, EventArgs e) {
 Console.Write("is coming ");
}
void Motorcycle(object sender, EventArgs e) {
 button1.______ += new EventHandler(____________);
}
void Bicycle(object sender, EventArgs e) {
 Console.WriteLine("to get you!");
}
void ____________(object sender, EventArgs e) {
 button1.______ += new EventHandler(Dumptruck);
 button1.______ += new EventHandler(____________);
}
void ____________(object sender, EventArgs e) {
 Console.Write("Fingers ");
}

Output

Fingers is coming to get you!

Note: Each thing from the pool can be used more than once.

Solution in Add process lifetime management to Jimmy’s comics

An object can subscribe to an event...
Suppose we add a new class to our simulator, a Bat class, and that class adds a HitTheBall event
into the mix. Here’s how it works: if the simulator detects that the player hit the ball, it calls the Bat
object’s OnHitTheBall() method, which raises a HitTheBall event.
So now we can add a bat_HitTheBall() method to the Ball class that subscribes to the Bat
object’s HitTheBall event. Then, when the ball gets hit, its own event handler calls its
OnBallInPlay() method to raise its own event, BallInPlay, and the chain reaction begins. Fielders
field, fans scream, umpires yell...we’ve got a ball game.

...but that’s not always a good thing!
There’s only ever going to be one ball in play at any time. But if the Bat object uses an event to
announce to the ball that it’s been hit, then any Ball object can subscribe to it. And that means we’ve
set ourselves up for a nasty little bug — what happens if a programmer accidentally adds three more
Ball objects? Then the batter will swing, hit, and four different balls will fly out into the field!

Use a callback to control who’s listening
Our system of events only works if we’ve got one Ball and one Bat. If you’ve got several Ball
objects, and they all subscribe to the public event HitTheBall, then they’ll all go flying when the
event is raised. But that doesn’t make any sense...it’s really only one Ball object that got hit. We need
to let the one ball that’s being pitched hook itself up to the bat, but we need to do it in a way that
doesn’t allow any other balls to hook themselves up.
That’s where a callback comes in handy. It’s a technique that you can use with delegates. Instead of
exposing an event that anyone can subscribe to, an object uses a method (often a constructor) that
takes a delegate as an argument and holds onto that delegate in a private field. We’ll use a callback to
make sure that the Bat notifies exactly one Ball:

➊ The Bat will keep its delegate field private.
The easiest way to keep the wrong Ball objects from chaining themselves onto the Bat’s delegate
is for the bat to make it private. That way, it has control over which Ball object’s method gets
called.
➋ The Bat’s constructor takes a delegate that points to a method in the ball.
When the ball is in play, it creates the new instance of the bat, and it passes the Bat object a
pointer to its OnBallInPlay() method. This is called a callback method because the Bat is using
it to call back to the object that instantiated it.

➌ When the bat hits the ball, it calls the callback method.
But since the bat kept its delegate private, it can be 100% sure that no other ball has been hit. That
solves the problem!

FIVE MINUTE MYSTERY

The Case of the Golden Crustacean

Henry “Flatfoot” Hodgkins is a TreasureHunter. He’s hot on the trail of one of the most prized possessions in the rare and unusual
aquatic-themed jewelry markets: a jade-encrusted translucent gold crab. But so are lots of other TreasureHunters. They all got a
reference to the same crab in their constructor, but Henry wants to claim the prize first.

In a stolen set of class diagrams, Henry discovers that the GoldenCrab class raises a RunForCover event every time anyone gets
close to it. Even better, the event includes NewLocationArgs, which detail where the crab is moving to. But none of the other treasure
hunters know about the event, so Henry figures he can cash in.

Henry adds code to his constructor to register his treasure_RunForCover() method as an event handler for the RunForCover event
on the crab reference he’s got. Then, he sends a lowly underling after the crab, knowing it will run away, hide, and raise the
RunForCover event — giving Henry’s treasure_RunForCover() method all the information he needs.

Everything goes according to plan, until Henry gets the new location and rushes to grab the crab. He’s stunned to see three other
TreasureHunters already there, fighting over the crab.

How did the other treasure hunters beat Henry to the crab?

 Answers in Five Minute Mystery Solved.

POOL PUZZLE SOLUTION

A callback is just a way to use delegates
A callback is a different way of using a delegate. It’s not a new keyword or operator. It just
describes a pattern — a way that you use delegates with your classes so that one object can tell
another object, “Notify me when this happens — if that’s OK with you!”

DO THIS

➊ Define another delegate in your baseball project.
Since the Bat will have a private delegate field that points to the Ball object’s OnBallInPlay() method, we’ll need a delegate
that matches its signature:

NOTE

Delegates don’t always need to live in their own files. Try putting this one in the same file as Bat. Make sure it’s inside the
namespace but outside the Bat class.

➋ Add the Bat class to the project.
The Bat class is simple. It’s got a HitTheBall() method that the simulator will call every time a ball is hit. That HitTheBall()
method uses the hitBallCallback delegate to call the ball’s OnBallInPlay() method (or whatever method is passed into its
constructor).

➌ We’ll need to hook the bat up to a ball.
So how does the Bat’s constructor get a reference to a particular ball’s OnBallInPlay() method? Easy — just call that Ball
object’s GetNewBat() method, which you’ll have to add to Ball:

➍ Now we can encapsulate the Ball class a little better.
It’s unusual for one of the On... methods that raise an event to be public. So let’s follow that pattern with our ball, too, by
making its OnBallInPlay() method protected:

Try running your app again — you’ll get an error because OnBallInPlay() is inaccessible.
➎ All that’s left to do is fixing the BaseballSimulator class.
BaseballSimulator can’t call the Ball object’s OnBallInPlay() method anymore — which is exactly what we wanted (and
why the IDE now shows an error). Instead, it needs to ask the Ball for a new bat in order to hit the ball. And when it does, the
Ball object will make sure that its OnBallInPlay() method is hooked up to the bat’s callback.

Now run the program — it should work exactly like it did before. But it’s now protected from any problems that would be
caused by more than one ball listening for the same event.

B ULLET POINTS

When you add a delegate to your project, you’re creating a new type that stores references to methods.
Events use delegates to notify objects that actions have occurred.
Objects subscribe to an object’s event if they need to react to something that happened in that object.
An EventHandler is a kind of delegate that’s really common when you work with events.
You can chain several event handlers onto one event. That’s why you use += to assign a handler to an event.
Always check that an event or delegate is not null before you use it to avoid a NullReferenceException.
All of the controls in the toolbox use events to make things happen in your programs.
When one object passes a reference to a method to another object so it — and only it — can return information, it’s called a
callback.
Events let any method subscribe to your object’s events anonymously, while callbacks let your objects exercise more control over
which delegates they accept.
Both callbacks and events use delegates to reference and call methods in other objects.
The debugger is a really useful tool to help you understand how events, delegates, and callbacks work. Take advantage of it!

MessageDialog uses the callback pattern
When you create a UICommand for a MessageDialog, you can give it a callback using the
UICommandInvokedHandler delegate. You can also pass it an optional identifier object, and the
label and identifier are accessible through the IUICommand delegate parameter.

Try adding these lines to an app (don’t forget to add using Windows.UI.Popups;). You can use the Generate Method Stub
IDE command to generate a stub for the callback method.

THERE ARE NO DUMB QUESTIONS

Q: Q: How are callbacks different from events?

A: A: Events and delegates are part of .NET. They’re a way for one object to announce to other objects that something specific has happened. When one
object publishes an event, any number of other objects can subscribe to it without the publishing object knowing or caring. When an object fires off an
event, if anyone happens to have subscribed to it, then it calls each of their event handlers.
Callbacks are not part of .NET at all — instead, callback is just a name for the way we use delegates (or events — there’s nothing stopping you from
using a private event to build a callback). A callback is just a relationship between two classes where one object requests that it be notified. Compare
this to an event, where one object demands that it be notified of that event.

Q: Q: So a callback isn’t an actual type in .NET?

A: A: No, it isn’t. A callback is a pattern — it’s just a novel way of using the existing types, keywords, and tools that C# comes with. Go back and take
another look at the callback code you just wrote for the bat and ball. Did you see any new keywords that we haven’t used before? Nope! But it does
use a delegate, which is a .NET type.
It turns out that there are a lot of patterns that you can use. In fact, there’s a whole area of programming called design patterns. A lot of problems that
you’ll run into have been solved before, and the ones that pop up over and over again have their own design patterns that you can benefit from.

Q: Q: So callbacks are just private events?

A: A: Not quite. It seems easy to think about it that way, but private events are a different beast altogether. Remember what the private access modifier
really means? When you mark a class member private, only instances of that same class can access it. So if you mark an event private, then other
instances of the same class can subscribe to it. That’s different from a callback, because it still involves one or more objects anonymously subscribing to
an event.

Q: Q: But it looks just like an event, except with the event keyword, right?

A: A: The reason a callback looks so much like an event is that they both use delegates. And it makes sense that they both use delegates, because that’s
C#’s tool for letting one object pass another object a reference to one of its methods.
But the big difference between normal events and callbacks is that an event is a way for a class to publish to the world that some specific thing has
happened. A callback, on the other hand, is never published. It’s private, and the method that’s doing the calling keeps tight control over who it’s calling.

Check out “Head First Design Patterns” at the Head First Labs website. It’s a great way to learn about different patterns that you can
apply to your own programs. The first one you’ll learn about is called the Observer (or Publisher-Subscriber) pattern, and it’ll look really
familiar to you. One object publishes information, and other objects subscribe to it. Events are the C# way of implementing the Observer
pattern.

You’ll often see delegates used with anonymous methods and lambda expressions. Flip to leftover #9 in the appendix to learn more about
them.

FIVE MINUTE MYSTERY SOLVED

The Case of the Golden Crustacean

How did the other treasure hunters beat Henry to the crab?

The crux of the mystery lies in how the treasure hunter seeks his quarry. But first we’ll need to see exactly what Henry found in the
stolen diagrams.

In a stolen set of class diagrams, Henry discovers that the GoldenCrab class raises a RunForCover event every time anyone
gets close to it. Even better, the event includes NewLocationArgs, which detail where the crab is moving to. But none of the
other treasure hunters know about the event, so Henry figures he can cash in.

So how did Henry take advantage of his newfound insider information?

Henry adds code to his constructor to register his treasure_RunForCover() method as an event handler for the RunForCover
event on the crab reference he’s got. Then, he sends a lowly underling after the crab, knowing it will run away, hide, and
raise the RunForCover event — giving Henry’s treasure_RunForCover() method all the information he needs.

And that explains why Henry’s plan backfired. When he added the event handler to the TreasureHunter constructor, he was
inadvertently doing the same thing for all of the treasure hunters! And that meant that every treasure hunter’s event handler got
chained onto the same RunForCover event. So when the Golden Crustacean ran for cover, everyone was notified about the event.
And all of that would have been fine if Henry were the first one to get the message. But Henry had no way of knowing when the
other treasure hunters would have been called — if they subscribed before he did, they’d get the event first.

Use delegates to use the Windows settings charm
Go to the Windows 8 Start Page and tap the Internet Explorer icon, then open up the charms and tap
Settings. Internet Explorer told Windows 8 to add options like Internet Options and About to the
Settings charm menu. But when you click the IE About option, it looks very different from the About
page for the Maps, Mail, or Windows Store apps. That’s because it’s up to each app — and, in fact,
each page — to tell Windows about its Settings charm options and register a callback that gets called
when the user chooses the option. C# Windows Store apps use delegates to do this. Let’s use the IDE
to explore how this works and add an About command to the Settings charm for Jimmy’s app.
Open up MainPage.xaml.cs and add these two using statements and this code to the code-behind:

SettingsPane is a static class that lets your app add or remove commands to the Settings charm. It’s in the
Windows.UI.ApplicationSettings namespace.

When you type += the IDE will prompt you to automatically create the event handler method stub.
Here’s what should go into that event handler. It uses a delegate called UICommandInvokedHandler,
so add a method called AboutInvokedHandler(). That’s the method that will get called by the new
About setting.

void MainPage_CommandsRequested(SettingsPane sender, SettingsPaneCommandsRequestedEventArgs args) {
 UICommandInvokedHandler invokedHandler =
 new UICommandInvokedHandler(AboutInvokedHandler);
 SettingsCommand aboutCommand = new SettingsCommand("About", "About Jimmy’s Comics",
 invokedHandler);
 args.Request.ApplicationCommands.Add(aboutCommand);
}

async void AboutInvokedHandler(IUICommand command) {
 await new MessageDialog("An app to help Jimmy manage his comic collection",
 "Jimmy’s Comics").ShowAsync();
}

Now run your app. Open up the charms, tap Settings, and then choose the About menu option. Your
app will call AboutInvokedHandler and display the MessageDialog.

You can use the Windows key () to access the charms and app bar.

Bring up the charms with + C
Pop up the Settings charm with + I
Display the App Bar with + Z

Now let’s use the IDE to explore how this works. Stop the program and use Go To Definition to get
the definition of SettingsCommand from metadata. It should look like this when you collapse the
comments:

Now use Go To Definition again to see the definition of UICommandInvokedHandler:

Walk through the various objects so you can see exactly how this works:
The SettingsPane.GetForCurrentView() method returns an object that has a
CommandsRequested event. Go back to your code and then go to the definition of
CommandsRequested to see the event definition.
The event handler has a SettingsPaneCommandsRequestedEventArgs argument. Go into its
definition to see the Request object that’s used in the third line of your event handler.
The Request object has one property: a collection called ApplicationCommands that contains
SettingsCommand objects.
Go back to your event handler again, because now you can see what it does. When the user taps
the Settings charm, the settings pane fires its CommandsRequested event to ask apps for commands
and callbacks. You hooked a listener up to this event, and had that listener return a
SettingsCommand that defined the About option, with a delegate that pointed to a method to pop
up a MessageDialog. When you tap About, the settings pane uses that delegate to call back to
AboutInvokedHandler().
Still not 100% clear? Don’t worry. Use the navigation buttons in the toolbar to navigate
back and forth through the definitions. Try putting a breakpoint in the constructor and the two
methods. Sometimes you need to flip back and forth through the definitions before it all “clicks” in
your brain.

Apps can interact with the Search and Share charms, too! Flip to leftover #1 in the appendix to
find out where to learn more about it.

Chapter 16. Architecting Apps with the mvvm
Pattern: Great apps on the inside and outside

Your apps need to be more than just visually stunning.
When you think of design, what comes to mind? An example of great building architecture? A
beautifully-laid-out page? A product that’s as aesthetically pleasing as it is well engineered? Those
same principles apply to your apps. In this chapter you’ll learn about the Model-View-ViewModel
pattern and how you can use it to build well-architected, loosely coupled apps. Along the way you’ll
learn about animation and control templates for your apps’ visual design, how to use converters to
make data binding easier, and how to pull it all together to lay a solid C# foundation to build any
app you want.

The Head First Basketball Conference needs an app
Jimmy and Brian are the captains of the two top teams in the Head First Basketball Conference,
Objectville’s amateur basketball league. They’ve got some great players, and those players deserve a
great app to keep track of who’s starting and who’s on the bench.

But can they agree on how to build it?
Uh oh — Brian and Jimmy have different ideas about how to build this app, and the argument’s
starting to get a little heated. It sounds like Brian really wants it to be easy to manage the data that’s
displayed on the page, while Jimmy cares a lot about simplifying the data binding. This may make for
a great off-court rivalry, but it’s not going to make it any easier to build the app!

Jimmy: Hold on there, cowboy. Sounds a little short-sighted.
Brian: I’m sure you just don’t understand what I’m telling you, so I’ll talk real slow and spell it out
for you. We’ll start with a simple Player class that has properties for the name, number, and whether
the player’s a starter.
Jimmy: Yes, I understand what you’re saying. But you’re not listening to me. You’re thinking about
how to model the data.
Brian: Clearly. That’s where everything starts.
Jimmy: That makes it convenient to create the data.
Brian: You’re getting it —
Jimmy: I’m not done. What about the rest of the app? We’ve got ListView and TextBlock controls that
need to display the data. If we don’t have collections for the controls to bind to, they won’t work.
Brian: Um...
Jimmy: Exactly. So we may need to make a couple of, ah, tactical decisions in our object model.
Brian: You mean, we need to compromise by creating a lousy object model that’s hard to work with,
because we need something to bind to.
Jimmy: Unless you’ve got a better idea.

B RAIN POWER

How can you create classes that are easy to bind to, but still have an object model that makes it easy to work with the data?

Do you design for binding or for working with data?
You already know how important it is to build an object model that makes your data easy to work
with. But what if you need to do two different things with those objects? That’s one of the most
common problems that you face as an app designer. Your objects need to have public properties and
ObservableCollections to bind to your XAML controls. But sometimes that makes your data
harder to work with, because it forces you to build an unintuitive object model that’s difficult to work
with.

MVVM lets you design for binding and data
Almost all apps that have a large or complex enough object model face the problem of having to
either compromise the class design or compromise the objects available for binding. Luckily, there’s
a design pattern that app developers use to solve this problem. It’s called Model-View-ViewModel
(or MVVM), and it works by splitting your app into three layers: the Model to hold the data and state
of the app, the View that contains the pages and controls that the user interacts with, and the
ViewModel that converts the data in the Model into objects that can be bound and listens for events in
the View that the model needs to know about.

NOTE

MVVM is a pattern that uses the existing tools you already have, just like the callback and Observer patterns in the last chapter.

Any object that the user directly interacts with goes in the View.
That includes pages, buttons, text, grids, StackPanels, ListViews, and any other controls that can be
laid out using XAML. The controls are bound to objects in the ViewModel, and the controls’ event
handlers call methods in the ViewModel objects.

The ViewModel has the properties that can bind to the controls in the View.
The properties in the view get their data from the objects in the Model, convert that data into a form
that the View’s controls can understand, and notify the View when the data changes.

All of the objects that hold the state of the app live in the Model.
This is where your app keeps its data. The ViewModel calls the properties and methods in the Model.
If there are objects that change over the course of the app’s lifetime, or if data needs to be saved or
loaded from files, those things go here.

The ViewModel is like the plumbing that connects the objects in the View to the objects in the Model, using tools you
already know how to work with.

Use the MVVM pattern to start building the basketball roster app
Create a new Windows Store app and make sure it’s called BasketballRoster (because we’ll be
using the namespace BasketballRoster in the code, and this will make sure your code matches
what’s on the next few pages).

DO THIS

➊ CREATE THE MODEL, VIEW, AND VIEWMODEL FOLDERS IN THE PROJECT.
Right-click on the project in the Solution Explorer and choose New Folder from the Add menu:

Don’t replace MainPage.xaml with a Basic Page yet. You’ll do that in step #4.

When you use the Solution Explorer to add a new folder to your project, the IDE creates a new namespace based
on the folder name. This causes the Add→Class... menu option to create classes with that namespace.So if you add
a class to the Model folder, the IDE will add BasketballRoster.Model to the namespace line at the top of the class file.

Add a Model folder. Then do it two more times to add the View and ViewModel folders, so your project looks like this:

➋ START BUILDING THE MODEL BY ADDING THE PLAYER CLASS.
Right-click on the Model folder and add a class called Player. When you add a class into a folder, the IDE updates the
namespace to add the folder name to the end. Here’s the Player class:

➌ FINISH THE MODEL BY ADDING THE ROSTER CLASS
Next, add the Roster class to the Model folder. Here’s the code for it.

Your Model folder should now look like this:

We’ll add the view on the next page
➍ ADD THE MAIN PAGE TO THE VIEW FOLDER.
Right-click on the View folder and add a new Basic Page called LeaguePage.xaml. You’ll be prompted to add missing pages
and will need to rebuild the solution, just like when you replace MainPage.xaml with a new Basic Page. Edit the XAML and give
the page the title “Head First Basketball Conference” by changing the AppName static resource (as usual). We’re not going to use
MainPage.xaml, so you’ll delete it in the next step.

➎ DELETE THE MAIN PAGE AND REPLACE IT WITH YOUR NEW LEAGUEPAGE.XAML PAGE.
Delete the MainPage.xaml file from the project. Now try rebuilding your project — you’ll get an error:

Double-click on the error to jump to the line that broke when you deleted MainPage.xaml:

Wait a minute, you know what that code does! You modified it when you built the app for Jimmy. It’s looking for a MainPage class
to navigate to when the app launches, but you just deleted the XAML file that defines that class. No problem! Just specify the
class that you want to launch:

Hmm, that’s strange. You added the LeaguePage to the project, but it’s not being recognized. That’s because you added it to a
folder, so the IDE added it to the View namespace . So all you need to do is specify the namespace when you refer to the
class:

Now try rebuilding your app. It compiles! You can run it to see your new main page show up.

User controls let you create your own controls
Take a look at the basketball roster program that you’re building. Each team gets an identical set of
controls: a TextBlock, another TextBlock, a ListView, another TextBlock, and another ListView, all
wrapped up by a StackPanel inside a Border. Do we really need to add two identical sets of controls
to the page? What if we want to add a third and fourth team — that’s going to mean a whole lot of
duplication. And that’s where user controls come in. A user control is a class that you can use to
create your own controls. You use XAML and code-behind to build a user control, just like you do
when you build a page. Let’s get started and add a user control to your BasketballRoster project.

➊ Add a new user control to your View folder.
Right-click on the View folder and add a new item. Choose from the dialog and call it
RosterControl.xaml.
➋ Look at the code-behind for the new user control.
Open up RosterControl.xaml.cs. Your new control extends the UserControl base class. Any
code-behind that defines the user control’s behavior goes here.

➌ Look at the XAML for the new user control.
The IDE added a user control with an empty <Grid>. Your XAML will go here.
UserControl is a base class that gives you a way to encapsulate controls that are related to each other, and lets you
build logic that defines the behavior of the control.

Before you flip the page, see if you can figure out what XAML should go into the new
RosterControl by looking at the screenshot of the program that you’re building.

It will have a <StackPanel> to stack up the controls that live inside a blue <Border>. Can you
figure out which property gives a Border control rounded corners?
It has two ListView controls that display data for players, so it also needs a
<UserControl.Resources> section that contains a DataTemplate. We called it
PlayerItemTemplate.
Bind the ListView items to properties called Starters and Bench, and the top TextBlock to a
property called TeamName.
The Border control lives inside a <Grid> with a single row that has Height="Auto" to keep it
from expanding past the bottom of the ListView controls to fill up the entire page.

“TEACH A MAN TO FISH...”

We’re nearing the end of the book, so we want to challenge you with problems that are similar to ones you’ll face in the
real world. A good programmer takes a lot of educated guesses, so we’re giving you barely enough information about how
a UserControl works. You don’t even have binding set up, so you won’t see data in the designer! How much of the XAML
can you build before you flip the page to see the code for RosterControl?

➍ Finish the RosterControl XAML.
Here’s the code for the RosterControl user control that you added to the View folder. Did you
notice how we gave you properties for binding, but no data context? That should make sense. The
two controls on the page show different data, so the page will set different data contexts for each
of them.

EXERCISE

Build the ViewModel for the BasketballRoster app by looking at the data in the Model and the bindings in the View, and figuring out
what “plumbing” the app needs to connect them together.

➊ UPDATE LEAGUEPAGE.XAML TO ADD THE ROSTER CONTROLS.
First add these xmlns properties to the page so it recognizes the new namespaces:

xmlns:view="using:BasketballRoster.View"
xmlns:viewmodel="using:BasketballRoster.ViewModel"

Then add an instance of LeagueViewModel as a static resource:

<Page.Resources>
 <viewmodel:LeagueViewModel x:Name="LeagueViewModel"/>
 <x:String x:Key="AppName">Head First Basketball Conference</x:String>
</Page.Resources>

Now you can add a StackPanel with two RosterControls to the page:

<StackPanel Orientation="Horizontal" Margin="120,0,0,0" Grid.Row="1"
DataContext="{StaticResource ResourceKey=LeagueViewModel}" >
 <view:RosterControl DataContext="{Binding JimmysTeam}" Margin="0,0,20,0"/>
 <view:RosterControl DataContext="{Binding BriansTeam}" Margin="0,0,20,0"/>
</StackPanel>

➋ CREATE THE VIEWMODEL CLASSES.

NOTE

Make sure you created the classes and pages in the right folders; otherwise, the namespaces
won’t match the code in the solution.

Create these three classes in the ViewModel folder.

➌ MAKE THE VIEWMODEL CLASSES WORK.

The PlayerViewModel class is a simple data object with two read-only properties.
The LeagueViewModel class has two private methods to create dummy data for the page. It creates Model.Roster objects for
each team that get passed to the RosterViewModel constructor.
The RosterViewModel class has a constructor that takes a Model.Roster object. It sets the TeamName property, and then it calls
its private UpdateRosters() method, which uses LINQ queries to extract the starting and bench players and update the Starters

and Bench properties. Add using Model; to the top of the classes so you can use objects in the Model namespace.

NOTE

— Flip a few pages back for a hint about the LINQ query...

If the IDE gives you an error message in the XAML designer that LeagueViewModel does not exist in the ViewModel namespace,
but you’re 100% certain you added it correctly, try right-clicking on the BasketballRoster project and choosing Unload
Project, and then right-click again and choose Reload Project to reload it.

EXERCISE SOLUTION

The ViewModel for the BasketballRoster app has three classes: LeagueViewModel, PlayerViewModel, and RosterViewModel. They
all live in the ViewModel folder.

In a typical MVVM app, only classes in the ViewModel implement INotifyPropertyChanged. That’s because the ViewModel
contains the only objects that XAML controls are bound to. In this project, however, we didn’t need to implement
INotifyPropertyChanged because the bound properties are updated in the constructor. If you wanted to modify the
project to let the Brian and Jimmy change their team names, you’d need to fire a PropertyChanged event in the
TeamName set accessor.

User controls are fully functional controls that you build.
And like every other control, a user control is an object — in this case, an object that extends the
UserControl base class, which gives you familiar properties like Height and Visibility, and
routed events like Tapped and PointerEntered. You can also add your own properties, and you can
use the other XAML controls to make very intricate, even visually stunning, user interfaces. But most
importantly, a user control lets you encapsulate those other controls into a single XAML control that
you can reuse.

That’s right! The Model, View, and ViewModel divide up the concerns of the program.
One of the most challenging parts of designing a large, robust app is choosing which objects do what.
There are an almost infinite number of ways to design your app. That’s great, because it means that
C# gives you flexible tools to work with. But it’s also a challenge, because today’s decisions can
make tomorrow’s changes very difficult to manage. MVVM helps you separate the concerns about the
data in your app from the concerns about its UI. This makes it easier to design your app by helping

you figure out exactly where data goes and where UI elements go, and by giving you patterns to help
connect them together.

NOTE

When a change to one class requires changes to two more, which then require more changes to additional classes, there’s a name for
that. Programmers call it “shotgun surgery,” and it’s very frustrating — especially when you’re in a hurry. Separation of concerns is a
great way to prevent problems like that, and MVVM is a very useful tool to help you separate some important things that almost
every app is concerned with.

THERE ARE NO DUMB QUESTIONS

Q: Q: So what’s stopping me from putting controls in the ViewModel or ObservableCollections in the Model?

A: A: Nothing at all — except that once you do, you’re no longer using the MVVM pattern. Classes like controls and pages are concerned with displaying
the data. If you put them in the View, that makes it easier for you to manage your codebase as your app grows larger. When you trust the MVVM
pattern today, your life is better tomorrow because your code is easier to manage.

Q: Q: I still don’t get what state means.

A: A: When people talk about state they mean the objects in memory that determine how your app functions: the text in a text editor, the location of the
enemies and player and the score in a video game, the values of the cells in a spreadsheet. This is actually a tough concept to wrap your brain around,
because it’s sometimes difficult to say “this object is part of the state” and “that object isn’t.” One of the goals of the next project in this chapter is to
help you get a practical, realistic handle on what state really means.

Q: Q: Why do I need using Model; at the top of my ViewModel classes?

A: A: When you created classes in the Model folder, the IDE automatically created them in the BasketballRoster.Model namespace. The dot in the middle of
that namespace means that Model is underneath BasketballRoster. Any other class in a namespace under BasketballRoster can access classes in Model
by either adding Model. to the beginning or adding a using line. Outside the BasketballRoster namespace, classes will need to add using
BasketballRoster.Model; instead.

Q: Q: I keep seeing a triangle with an exclamation point on my page. What’s that about?

A: A: The IDE’s XAML designer is a pretty sophisticated piece of machinery. It works so well that we sometimes forget just how much work it has to do
to display a page and update it as we modify the XAML. Now that the BasketballRoster program is finished, the designer shows you the dummy data
for both teams. But wait a minute — isn’t that dummy data created in private methods in the ViewModel? That means the designer must be running
those methods every time it updates the page. So in order for it to be able to run properly, those methods have to be compiled. If you modify the
controls that are on the page, then the latest C# code hasn’t been compiled yet, so the designer is telling you that the page that it’s displaying may be
out of date. Rebuild the code and the exclamation points usually disappear.

Q: Q: The BasketballRoster app I just built only has dummy data that’s created when it starts up. What if I want to add a feature to modify the
data in the Model — how would that work?

A: A: Let’s say you wanted to modify your BasketballRoster program to let Jimmy and Brian trade players. You already know that the ListView controls
in the View are bound to ObservableCollection objects, so the ViewModel communicates with the View using PropertyChanged and CollectionChanged
events. And you can have the Model communicate with the ViewModel in exactly the same way. You could add an event, RosterUpdated, to the Roster
object. The RosterViewModel would listen to that event, and its event handler would refresh the Starters and Bench collections, which would then fire off
CollectionChanged events, which would update the ListView controls.
Events are a good way for the Model to communicate to the rest of the app because the Model doesn’t need to know if any other classes are listening to
the event. It can go about its business managing the state, and let some other class worry about getting input and updating the user interface because it’s
decoupled from the classes in the ViewModel and the View.

When you trust the MVVM pattern today, your project will be better tomorrow, because your app’s code will be
easier to manage.

The Model-View-ViewModel design pattern is actually adapted from another pattern called Model-View-Controller.
You can learn all about the MVC pattern in the GDI+ PDF, which you can download from the Head First Labs website.

FIRESIDE CHATS

Tonight’s talk: A Model and a ViewModel have a heated debate over the critical issue of the day, “Who’s needed more?”

Model ViewModel

I’m not quite sure why we’re even having this discussion. Where
would you be without me? I’ve got the data; I’ve got the important
logic that determines how the app works. Without me, you’d have
nothing to do.

 There you go again, thinking that you’re the center of the
universe.

Well, as far as you’re concerned, I may as well be.

 Ha! What would happen if I decided to stay home?

You wouldn’t dare.

 Try me! Without me, you’d be useless. The View would
have no idea how to talk to you. The controls would be
empty, and the user would be left in the dark.

Now you know why I only speak to you through events. You’re just so
annoying!

 You know what? Let’s talk about that for a minute. Why is
it that you can’t even let me see your internals? You only
expose methods and properties to me, and you’ll only ever
send me messages through event arguments.

Of course I do! If I didn’t encapsulate my data, who knows what
damage you might cause?

 It sounds like someone has trust issues.

Absolutely! I don’t trust anything except my own private methods to
manage my data; otherwise, the whole state of our app could go
haywire. But I’m not the only one who plays this game! Why don’t
you ever let me talk to the View? He seems like a good guy.

 You barely even speak the same language as the View!
I’ve never seen you fire a PropertyChanged event — in fact, I
don’t think any of your objects even implement
INotifyPropertyChanged.

How dare you! Raise PropertyChanged events? No self-respecting Model
has ever raised a PropertyChanged event! I’m insulted you’d even suggest
I’m concerned with anything but data. What kind of layer do you think
I am?

The ref needs a stopwatch
Jimmy and Brian had to call off their last game because the referee forgot his stopwatch. Can we use
the MVVM pattern to build a stopwatch app for them?

MVVM means thinking about the state of the app
MVVM apps use the Model and View to separate the state from the user interface. So when you start
building an MVVM app, the first thing you usually do is think about exactly what it means to manage
the state of the app. Once you’ve got the state under control in your brain, you can start building the
Model, which will use fields and properties to keep track of the state — or everything the app needs
to keep track of to do its job. Most apps need to modify the state as well, so the Model exposes
public methods that change the state. The rest of the app needs to be able to see the current state, so
the Model provides public properties.
So what does it mean to manage the state of a stopwatch?
The stopwatch knows whether or not it’s running.
You can see at a glance whether or not the hands are moving, so the stopwatch Model needs to have a
way to tell whether or not it’s running.

The elapsed time is always available.
Whether it’s the hands on an analog stopwatch or numbers on a digital one, you can always see the
elapsed time.
The lap time can be set and viewed.
Most stopwatches have a lap time function that lets you save the current time without stopping the
clock. Analog stopwatches use an extra set of hands to show the lap time, while digital stopwatches
usually have a separate lap time readout.
The stopwatch can stop, start, and reset.
The app will need to provide a way to start the stopwatch, stop it, and reset the time, which means the
Model will need to give the rest of the app a way to do this.

The Model keeps track of the state of the app: what the app knows right now. It provides actions that modify the app’s
state and properties to let the rest of the app see the current state.

Start building the stopwatch app’s Model

Now that we know what it means to define the state of a stopwatch, we have enough information to
start to build out the Model layer of the stopwatch app. Create a new Windows Store app. Name the
app Stopwatch so your namespaces match the code on the next few pages. Then create the Model,
View, and ViewModel folders. Add the StopwatchModel class to the Model folder:

DO THIS

TIMESPAN AND DATETIME STRUCTS

There are two very useful structs for managing time in an app. You’ve already worked with DateTime, which stores a date.
TimeSpan represents an interval of time. The interval is stored in ticks (a tick is one ten-millionth of a second, or 10,000 ticks per
millisecond), so the TimeSpan has methods to convert it to seconds, milliseconds, days, etc.

Events alert the rest of the app to state changes
The stopwatch needs to track the lap time, so it needs to store that time as part of the state. It also
needs a method to get the lap time. But what happens if we want the rest of the app to do a few things
when the lap time is triggered? The ViewModel may want to turn on an indicator or show a quick
animation. The Model will often use an event to tell the rest of the app about important state
changes. So let’s add an event to the Model that gets fired whenever the lap time is updated. Start by
adding the LapEventArgs to the Model folder:

Modify your StopwatchModel class to add a Lap() method that sets the LapTime property and fires
a LapTimeUpdated event.

The Model can fire an event to tell the rest of the app about important state changes without any references to classes
outside the Model. It’s easier to build because it’s decoupled from the rest of the MVVM layers.

A nice side effect of decoupled layers is that your project can build as soon as the Model is complete.

If the IDE tells you that StopwatchViewModel does not exist in the ViewModel namespace but you’re 100% sure that you put
it there, try unloading and reloading the project.

Build the view for a simple stopwatch

Here’s the XAML for a simple stopwatch control. Add a user control to the View folder called
BasicStopwatch.xaml and add this code. The control has TextBlock controls to display the elapsed
and lap times, and buttons to start, stop, reset, and take the lap time.

You’ll need to add Click event handlers to the control and a StopwatchViewModel class to the ViewModel namespace for this
to compile.

NOTE

Here’s a hint: use a DispatcherTimer to constantly check the Model and update the properties.

The code for the ViewModel is on the next page. How much of the ViewModel code can you
build just from the View and Model code before you flip the page? Add a BasicStopwatch
control to the main page (for now) and see how far you can get.

But be really careful and don’t assume the IDE is necessarily wrong. Sometimes an error in the XAML for one page (like
a broken xmlns property) can cause all of the designers to break.

Add the stopwatch ViewModel
Here’s the ViewModel for the stopwatch. Make sure it goes in the ViewModel namespace.

Finish the stopwatch app
There are just a few more loose ends to tie together. Your BasicStopwatch user control doesn’t have
event handlers, so you need to add them. And then you just need to add the control to your main page.

➊ First, go back to BasicStopwatch.xaml.cs and add these event handlers to the code-behind:

➋ Next, delete the MainPage.xaml file and replace it with a Basic Page, just like you’ve done
in your other projects (don’t forget to rebuild the solution).
➌ Open the new MainPage.xaml and add the XML namespace to the top-level tag:

xmlns:view="using:Stopwatch.View"

➍ Modify the AppName resource in MainPage.xaml to set the page name.
➎ Add a BasicStopwatch control to the XAML code in MainPage.xaml:

NOTE

All of the behavior is in the user control, so there’s no code-behind for the main page.

<view:BasicStopwatch Grid.Row="1" Margin="120,0"/>

Your app should now run. Click the Start, Stop, Reset, and Lap buttons to see your stopwatch work.
And now you can use the frame rate counter to check your app’s performance. The numbers in the
upper left-hand corner show you the app’s frames per second, and the CPU usage for your app’s UI
(the numbers in the upper right are for the entire system). Try modifying the StopwatchViewModel
constructor to to change the Timer interval to TimeSpan.FromMilliseconds(100). What happens
to the frame rate? What happens if you set it to tick every 10 milliseconds?

Using a pattern like MVVM means making decisions.
MVVM is a pattern, which means there are conventions, but not hard-and-fast rules that can be
checked with a compiler. And it’s a flexible pattern, which means that there are a lot of different
ways that you can implement it. Throughout the examples in this chapter, we’ll show you some of the
more common things that you’ll see in an app with an MVVM architecture. And where we do vary
things, we’ll explain why we made those decisions. The goal is to show you how much flexibility is

— and isn’t — in the MVVM pattern, so that you can make good decisions when you build your own
apps.
HERE ARE A FEW RULES THAT WE’RE FOLLOWING WHEN BUILDING OUR MVVM
APPS:

The Model, ViewModel, and View classes live in separate namespaces.
Controls and pages in the View can keep references to the ViewModel, so they can call its
methods and bind to its properties with one- or two-way binding.
Objects in the ViewModel don’t store any references to objects in the View.
If the ViewModel has information to pass to the View, it uses PropertyChanged and
CollectionChanged events so the bindings can update automatically.
ViewModel objects have references to Model objects, and can call their methods, as well as get
and set their properties.
If the Model has information to pass to the ViewModel, it can raise an event.
Objects in the Model don’t have references to objects in the ViewModel.
The Model must be well encapsulated so that it only depends on other objects in the Model. If
you delete all of the other code in the program, everything in the Model folder should still
compile.
DispatcherTimers and asynchronous code typically go in the ViewModel and not the Model.
Code related to timing usually drives how the state of the app changes but is not actually part of
the state of the app most of the time.

Converters automatically convert values for binding
Anyone with a digital clock knows that it typically shows the minutes with a leading zero. Our
stopwatch should also show the minutes with two digits. And it should also show the seconds with
two digits, and round to the nearest hundredth of a second. We could modify the ViewModel to
expose string values that are formatted properly, but that would mean that we’d need to keep adding
more and more properties each time we wanted to reformat the same data. That’s where value
converters come in very handy. A value converter is an object that the XAML binding uses to modify
data before it’s passed to the control. You can build a value converter by implementing the
IValueConverter interface (which is in the Windows.UI.Xaml.Data namespace). Add a value
converter to your stopwatch now.

➊ Add the TimeNumberFormatConverter class to the ViewModel folder.
Add using Windows.UI.Xaml.Data; to the top of the class, then have it implement the
IValueConverter interface. Use the IDE to automatically implement the interface. This will add
two method stubs for the Convert() and ConvertBack() methods.
➋ Implement the Convert() method in the value converter.
The Convert() method takes several parameters — we’ll use two of them. The value parameter
is the raw value that’s passed into the binding, and parameter lets you specify a parameter in
XAML.

Is it a good idea to leave this NotImplementedException in your code? For this project, this is code that is never
supposed to be run. If it does get run, is it better to fail silently, so the user never sees it? Or is it better to throw an
exception so that you can track down the problem? Which of those gives you a more robust app? There’s not
necessarily one right answer.

➌ Add the converter to your stopwatch control as a static resource.
It should go right below the ViewModel object:

➍ Update the XAML code to use the value converter.
Modify the {Binding} markup by adding the Converter= to it in each of the <Run> tags.

Now the stopwatch runs the values through the converter before passing them into the TextBlock
controls, and the numbers are formatted correctly on the page.

Converters can work with many different types
TextBlock and TextBox controls work with text, so binding strings or numbers to the Text property
makes sense. But there are many other properties, and you can bind to those as well. If your
ViewModel has a Boolean property, it can be bound to any true/false property. You can even bind
properties that use enums — the IsVisible property uses the Visibility enum, which means you
can also write value converters for it. Let’s add Boolean and Visibility binding and conversion to
the stopwatch.

Here are two converters that will come in handy.

Sometimes you want to bind Boolean properties like IsEnabled so that a control is enabled if the bound property is false.
We’ll add a new converter called BooleanNotConverter, which uses the ! operator to invert a Boolean target property.

IsEnabled="{Binding Running, Converter={StaticResource notConverter}}"

You’ll often want to have controls show or hide themselves based on a boolean property in the data context. You can only
bind the Visibility property of a control to a target property that’s of the type Visibility (meaning it returns values like
Visibility.Collapsed). We’ll add a converter called BooleanVisibilityConverter that will let us bind a control’s
Visibility property to a Boolean target property to make it visible or invisible.

Visibility="{Binding Running, Converter={StaticResource visibilityConverter}}"

➊ MODIFY THE VIEWMODEL’S TICK EVENT HANDLER.
Modify the DispatcherTimer’s Tick event handler to raise a PropertyChanged event if the
value of the Running property has changed:

➋ ADD A CONVERTER THAT INVERTS BOOLEAN VALUES.
Here’s a value converter that converts true to false and vice versa. You can use it with Boolean
properties on your controls like IsEnabled.

using Windows.UI.Xaml.Data;

class BooleanNotConverter : IValueConverter {
 public object Convert(object value, Type targetType, object parameter, string language) {
 if ((value is bool) && ((bool)value) == false)
 return true;
 else
 return false;
 }
 public object ConvertBack(object value, Type targetType, object parameter, string language) {
 throw new NotImplementedException();
 }
}

➌ ADD A CONVERTER THAT CONVERTS BOOLEANS TO VISIBILITY ENUMS.
You’ve already seen how you can make a control visible or invisible by setting its Visibility
property to Visible or Collapsed. These values come from an enum in the Windows.UI.Xaml
namespace called Visibility. Here’s a converter that converts Boolean values to Visibility
values:

using Windows.UI.Xaml;
using Windows.UI.Xaml.Data;

class BooleanVisibilityConverter : IValueConverter {
 public object Convert(object value, Type targetType, object parameter, string language) {
 if ((value is bool) && ((bool)value) == true)
 return Visibility.Visible;
 else
 return Visibility.Collapsed;
 }
 public object ConvertBack(object value, Type targetType, object parameter, string language) {
 throw new NotImplementedException();
 }
}

➍ MODIFY YOUR BASIC STOPWATCH CONTROL TO USE THE CONVERTERS.
Modify BasicStopwatch.xaml to add instances of these converters as static resources:

<viewmodel:BooleanVisibilityConverter x:Key="visibilityConverter"/>
<viewmodel:BooleanNotConverter x:Key="notConverter"/>

Now you can bind the controls’ IsEnabled and Visibility properties to the ViewModel’s
Running property:

Styles set properties on multiple controls
When you build out the View layer of your app, you’re typically writing mostly XAML code. Those
XAML controls are just objects, so it’s definitely possible to build the entire View using nothing but
C# code, but XAML is really optimized to make that job a lot easier.

You create a style using the <Style> tag. Inside the style, you can use <Setter> tags to set properties
on any controls that the style is applied to. Let’s take a closer look at how this works, using a simple
example of a style that alters all TextBlock controls.

DO THIS!

➊ Start by modifying the <UserControl.Resources> in BasicStopwatch.xaml to add the <Style> tag. You’ll use a <Setter> to
set the FontStyle to Italic, and set the style’s BasedOn property to base the style on SubtitleTextBlockStyle.

<UserControl.Resources>
 <viewmodel:StopwatchViewModel x:Name="viewModel"/>
 <viewmodel:TimeNumberFormatConverter x:Name="timeNumberFormatConverter"/>
 <viewmodel:BooleanVisibilityConverter x:Key="visibilityConverter"/>
 <viewmodel:BooleanNotConverter x:Key="notConverter"/>
 <Style TargetType="TextBlock" BasedOn="{StaticResource SubtitleTextBlockStyle}">
 <Setter Property="FontStyle" Value="Italic"/>
 </Style>
</UserControl.Resources>

Watch the IntelliSense windows that pop up as you enter the XAML. The TargetType for the style is TextBlock, which means
this style applies to TextBlock controls — so when you start to enter the Property in the Setter, the IDE shows you TextBlock
properties:

As soon as you finish adding the <Style> to the user control resources, you’ll see a change in the designer. The style
automatically gets applied to every TextBlock in the user control.

➋ But what if we don’t want to alter every TextBlock control? What if we only want to alter specific ones? No problem. We
just need to an x:Key property to the Style:

<Style TargetType="TextBlock" BasedOn="{StaticResource SubtitleTextBlockStyle}"
 x:Key="StopwatchRunningTextBlockStyle">
<Setter Property="FontStyle" Value="Italic"/>
</Style>

As soon as you make the change, the TextBlock controls go back to the way they were. Right-click on the “Stopwatch is
running” TextBlock and choose Edit Style→Apply Resource from the menu

Use the IDE to apply your new style resource to the “Stopwatch is running” label, just like you’ve done with the built-in styles.
Here’s what its XAML should look like after you apply the style:

<TextBlock Text="Stopwatch is running"
 Visibility="{Binding Running, Converter={StaticResource visibilityConverter}}"
 Style="{StaticResource StopwatchRunningTextBlockStyle}"/>

Now the style is applied only to the “Stopwatch is running” TextBlock on the bottom — the rest of the TextBlock controls have
reverted back to how they looked before.

B RAIN POWER

Your new style is based on an existing style called SubtitleTextBlockStyle. Where do you think that style is defined?

Flip the page to keep going!

Use a resource dictionary to share resources between pages
When you add styles and other static resources to the <Resources> section of a page or user control,
you’re adding an object to a resoucre dictionary. A ResourceDictionary works like a
Dictionary<object, object>. The dictionary key is defined with x:Key (or x:Name if you want a
variable name), and the value is the static resource object (like a Style, StopwatchViewModel, or
BooleanNotConverter). You can see this for yourself: put a breakpoint in your code, run it, and add a
watch for this.Resources["viewModel"]. Let’s keep going with the basic stopwatch. Next, you’ll
move your new style to a resource dictionary in the View folder.

➌ Right-click on the View folder, choose Add→New Item..., and choose . Give it the
name StopwatchStyles.xaml. Cut the style from the user control and paste it into the resource
dictionary:

➍ Your app has its own resource dictionary, and any resources that your controls use come from
other resource dictionaries that have been merged into it. Merge your newly added dictioanry into
your app’s resource dictionary — open App.xaml and add a new <Application.Resources>
section:

➎ Let’s do some more experimenting. Open StopwatchStyles.xaml, find the BasedOn property for
your style, then right-click on SubtitleTextBlockStyle and choose Go To Definition. This will
open up a file called generic.xaml and jump to the style definition for SubtitleTextBlockStyle.
Scroll to the top of generic.xaml to find the opening tag — it’s a <ResourceDictionary>, and all of
its styles are merged into your app automatically.

➏ Search inside generic.xaml for <Style TargetType="Button"> to find the base style that’s
applied to all buttons. It’s a large style, but it’s easier to understand if you collapse the
<ControlTemplate> tag:

Select the entire style, copy it, and paste it into StopwatchStyles.xaml (right before the closing
</ResourceDictionary> tag). Here’s what you copied and pasted:

➐ Now that you’ve copied the button style into your resource dictionary, you can edit it. Add this
setter:

<Setter Property="Margin" Value="10"/>

Now go back to the app designer. All of your stopwatch buttons are now farther apart, because
you’ve added a 10 pixel margin to each one. Your style now controls the buttons.
➑ Run your program and press Tab to switch the focus between the buttons.

Expand the Control Template and locate the two <Rectangle> controls near the bottom — they’re
named FocusVisualWhite and FocusVisualBlack. Both controls have an Opacity property set
to 0, which makes them invisible. When the button is focused, it sets that Opacity to 1, and the
rectangle shows.

Yes! You used the IDE to create a template for the enemies.
Take a minute and look back at that code to see exactly how this worked. The IDE added the control
template as a static resource named EnemyTemplate, and you were able to make the enemy control
look like an alien by setting its Template property to point to the template. The IDE created the
template with an x:Key (and not an x:Name), so your code used the Resources dictionary to look it
up by name.

Visual states make controls respond to changes
When you hover over a button, it changes from being transparent to being opaque. When you tab to
switch focus to the button, a dashed line appears around it. These things happen because you changed
the state of the button. When you hover over it, that puts it into a state called PointerOver, and
when you change focus it puts it into a focus state. There are lots of different states that a control can
be in, and most controls don’t need to respond to every state.

Controls and control templates use visual state groups to change the way the control looks and acts
when it’s in a specific state. Buttons have a visual state group called CommonStates that include a
state called Normal, one called PointerOver (when the pointer is hovering over the button), one
called Pressed (when the user is actually pressing the button), and one called Disabled (when the
button is disabled). The button style you copied has a <VisualStateGroup> section that determines
how the button’s properties change when it’s in one of those common states. Here’s how it works:

NOTE

Take a minute and look closely at the button style that you copied into your resource dictionary. All it has are <Setter> tags, including
one that sets the Template property to a ControlTemplate. Try using the button in the IDE to collapse the <VisualStateManager.
VisualStateGroups> tag. Once you do that, you can see that the control template just has a Grid that contains a Border with a
ContentPresenter (which displays the contents of the button) and two Rectangles. Add the visual state management, and you get a
button!

Try changing the Border to give it rounded corners. What happens to your app’s buttons?

Use DoubleAnimation to animate double values
When you set a numeric property like Width or Height on a control in XAML, that sets the value of a
double property on the control object. DoubleAnimation gives you a way to gradually change that
double value from one value to another over a time period, and is often used to modify the control
when it enters a visual state. The control template the button style that you copied uses
DoubleAnimation to animate the focused state by changing the opacity of the two rectangles around
the edge of the control from 0 (clear) to 1 (opaque). The duration is zero, which means the animation
happens instantly:

A Storyboard is a container that’s used to organize and apply animateions. When the button gets focus, the visual state
manager looks for a VisualState called “Focused” and executes its Storyboard to trigger the animations. When the button
leaves the Focused state, the Storyboard resets, and all animations go back to their initial state, which in this case means
the Opacity is set back to 0 (invisible).

Let’s experiment with this animation to get a feel for how it works:
➊ Modify the DoubleAnimation tags in the Focused visual state to change it from a zero-
duration animation to one that takes five seconds. Durations are always in the form
hours:minutes:seconds, so change it to Duration="0:0:5" (in both animations, so it works
with light and dark themes).
➋ Start your program, then use the Tab key to change focus between the buttons. The dashed
outline should now fade in very slowly over five seconds. Try the duration to half a second:
Duration="0:0:0.5"

➌ Stop the program so we can modify the animation again. This time, modify the Duration and
add two more properties. Setting AutoReverse to true reverses the animation after it’s complete,
and setting RepeatBehavior to Forever causes it to loop for as long as the target control is
displayed:

Duration="0:0:0.5" AutoReverse="true" RepeatBehavior="Forever"

➍ Run your program again. Now the focus rectangle pulses by fading in for half a second, then
fading out for half a second, and repeats as long as the button is in focus.

Use object animations to animate object values

While some properties on your controls use double values, others use objects. For example, when
you set the Foreground property to Black, you’re actually setting it to a SolidColorBrush object.
You can see an example of this in the animation for your button style’s Pressed visual state, which
uses an ObjectAnimationUsingKeyFrames animation to change the color of the the Border control
that makes up the rectangular button body when the button is pressed:

<VisualState x:Name="Pressed">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="Border"
 Storyboard.TargetProperty="Background">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{ThemeResource ButtonPressedBackgroundThemeBrush}" />
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="ContentPresenter"
 Storyboard.TargetProperty="Foreground">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{ThemeResource ButtonPressedForegroundThemeBrush}" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
</VisualState>

Key frame animations work by creating key frames. A key frame is a discrete event that happens at a
specific times during the animation. You can see how this works by adding a third animation to the
Pressed storyboard. Add this right above the closing </Storyboard> tag:

Run your program again. Now when you press a button, the border around the button will flash
different colors. Notice how the animation stops partway through if you stop pressing the button?
That’s because the state changed back to Normal, so the animation reset to its starting point.

Here’s an example of how a control template for a checkbox uses visual states:
http://msdn.microsoft.com/library/windows/apps/hh465374.aspx

http://msdn.microsoft.com/library/windows/apps/hh465374.aspx

Build an analog stopwatch using the same ViewModel
The MVVM pattern decouples the View from the ViewModel, and the ViewModel from the Model.
This is really useful if you need to make changes to one of the layers. Because of that decoupling, you
can be very confident that the changes you make will not cause the “shotgun surgery” effect and ripple
into the other layers. So did we do a good job decoupling the stopwatch program’s View from its
ViewModel? There’s one way to be sure: let’s build an entirely new View without changing the
existing classes in the ViewModel. The only change you’ll need in the C# code is a new converter in
the ViewModel that converts minutes and seconds into angles.

NOTE

Remember how you used the data classes you built for Jimmy’s Comics in Chapter 14 and reused them to create a Split App without
making any changes? This is the same idea.

DO THIS!

➊ ADD A CONVERTER TO CONVERT TIME TO ANGLES.
Add the AngleConverter class to the ViewModel folder. You’ll use it for the hands on the face.

➋ ADD THE NEW USERCONTROL.
Add a new user control called AnalogStopwatch.xaml to the View folder and add the ViewModel namespace to the
<UserControl> tag:

d:DesignHeight="300"
d:DesignWidth="400"
xmlns:viewmodel="using:Stopwatch.ViewModel">

And add the ViewModel and two converters to the user control’s static resources.

<UserControl.Resources>
 <viewmodel:StopwatchViewModel x:Name="viewModel"/>
 <viewmodel:BooleanNotConverter x:Key="notConverter"/>
 <viewmodel:AngleConverter x:Key="angleConverter"/>
</UserControl.Resources>

➌ ADD THE FACE AND HANDS TO THE GRID.
Modify the <Grid> tag to add the stopwatch face, using four rectangles for hands.

➍ ADD THE BUTTONS TO THE STOPWATCH.
If you haven’t already, modify the button style in your resource dictionary to give the buttons rounded corners:

We can use the same “Stopwatch is running” TextBlock, so we’ll need to add the Visibility converter as a static resource:

<UserControl.Resources>
 <viewmodel:StopwatchViewModel x:Name="viewModel"/>
 <viewmodel:BooleanNotConverter x:Key="notConverter"/>
 <viewmodel:AngleConverter x:Key="angleConverter"/>

 <viewmodel:BooleanVisibilityConverter x:Key="visibilityConverter"/>
</UserControl.Resources>

Now you can add the buttons. Since it’s an analog stopwatch, let’s use symbols instead of text by setting the font to Segoe UI
Symbol and using the Unicode character codes:

➎ MODIFY THE CODE-BEHIND AND UPDATE THE MAIN PAGE.
You added buttons, but you still need to add their event handler methods. The code-behind for the buttons is the same as in the
basic stopwatch:

private void StartButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Start();
}
private void StopButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Stop();
}
private void ResetButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Reset();
}
private void LapButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Lap();
}

Now you just need to modify your MainPage.xaml to add an AnalogStopwatch control:

<StackPanel Orientation="Vertical" Grid.Row="1" Margin="120,0">
 <view:BasicStopwatch Margin="0,0,0,40" />
 <view:AnalogStopwatch/>
</StackPanel>

Run your app. Now you have two stopwatch controls on the page.

Are you wondering why you didn’t add the ViewModel resource to your resource dictionary? Try changing the
ViewModel to make the _stopwatchModel field static. What does this change about how the stopwatch app
behaves? Can you figure out why that happens? This is exactly what would happen if you had a single static
resource in the app’s resource dictionary. But don’t take our word for it — try it yourself and see what happens!

UI controls can be instantiated with C# code, too
You already know that your XAML code instantiates classes in the Windows.UI namespace, and you
even used the Watch window in the IDE back in Chapter 10 to explore them. But what if you want to
create controls from inside your code? Well, controls are just objects, so you can create them and
work with them just like you would with any other object. Go ahead and modify the code-behind to
add markings to the face of your analog stopwatch.

Controls like Grid, StackPanel, and Canvas have a Children collection with references to all of the other controls
contained inside them. You can add controls to the grid with its Add() method, and remove all controls by calling its
Clear() method. You add transforms to a TransformGroup the same way.

You used a Binding object to set up data binding in C# code back in Chapter 11. Can you figure
out how to remove the XAML to create the Rectangle controls for the hour and minute hands
and replace it with C# code to do the same thing?

C# can build “real” animations, too
In the C# and XAML world, animation can refer to any property that changes over a specific time
period. But in the real world, it means drawings that move and change. So let’s build a simple
program to do some “real” animation.

DO THIS!

Create a project and add the pictures
Let’s get started with the project. Create a new Windows Store project called AnimatedBee.
Download the four images (they’re .png files) from the Head First Labs website. Then add each one
to the Assets folder. You’ll also need to create View, Model, and ViewModel folders. Right-click on
the Assets folder and choose Add→Existing Item... just like you did in Chapter 14.

Download the images for this chapter from the your class website.

Keep an open mind about animation.
Watch carefully when you bring up the Windows Start page, open an About window, hover over a
button, or do any number of things in Windows apps. Animations are everywhere, and once you start
looking for them, you’ll keep seeing them.

http://www.headfirstlabs.com/hfcsharp/

Create a user control to animate a picture
Let’s encapsulate all of the frame-by-frame animation code. Add a user control called
AnimatedImage to your View folder. It has very little XAML — all of the intelligence is in the
code-behind. Here’s everything inside the <UserControl> tag in the XAML:

<Grid>
 <Image x:Name="image" Stretch="Fill"/>
</Grid>

The work is done in the code-behind. Notice its overloaded constructor that calls the
StartAnimation() method, which creates storyboard and key frame animation objects to
animate the Source property of the Image control.

Make your bees fly around a page
Let’s take your AnimatedImage control out for a test flight.

DO THIS!

➊ REPLACE MAINPAGE.XAML WITH A BASIC PAGE IN THE VIEW FOLDER.
Add a Basic Page to your View folder called FlyingBees.xaml. Delete MainPage.xaml from the project. Then modify
App.xaml.cs to navigate to your new page on startup:

rootFrame.Navigate(typeof(View.FlyingBees), e.Arguments);

➋ THE BEES WILL FLY AROUND A CANVAS CONTROL.
You’ll need a container for the AnimatedImage controls. So the next thing to do is add a Canvas control to FlyingBees.xaml.
A Canvas control is a container, so it can contain other controls like a Grid or StackPanel. The difference is that a Canvas lets
you set the coordinates of the controls using the Canvas.Left and Canvas.Top properties. You used a Canvas back in Chapter 1
to create the play area for Save the Humans. Here’s the XAML to add to FlyingBees.xaml:

➌ ADD THE CODE-BEHIND FOR THE PAGE.
You’ll need this using statement for the namespace that contains Storyboard and DoubleAnimation:

using Windows.UI.Xaml.Media.Animation;

Now you can modify the constructor in FlyingBees.xaml.cs to start up the bee animation. Let’s also create a
DoubleAnimation to animate the Canvas.Left property. Compare the code for creating a storyboard and animation to the XAML
code with <DoubleAnimation> earlier in the chapter.

Run your program. Now you can see three bees flapping their wings. You gave them different intervals, so they flap at different
rates because their timers are waiting for different timespans before changing frames. The top bee has its Canvas. Left property
animated from 50 to 450 and back, which causes it to move around the page. Take a close look at the properties that are set on
the DoubleAnimation object and compare them to the XAML properties you used earlier in the chapter.

Something’s not right about this project. Can you spot it?

Something’s not right: there’s nothing in your Model or ViewModel folder, and you’re creating
dummy data in the View. That’s not MVVM!
If we wanted to add more bees, we’d have to create more controls in the View and then initialize
them individually. What if we want different sizes or kinds of bees? Or other things to be animated? If
we had a Model that was optimized for data, it would be a lot easier. How can we make this project
follow the MVVM pattern?

That won’t work. Data binding doesn’t work with container controls’ Children property — and
for good reason.

Data binding is built to work with attached properties, which are the properties that show up in the
XAML code. The Canvas object does have a public Children property, but if you try to set it using
XAML (Children="{Binding ...}") your code won’t compile.
However, you already know how to bind a collection of objects to a XAML control, because you did
that with ListView and GridView controls using the ItemsSource property. We can take advantage of
that data binding to add child controls to a Canvas.

Use ItemsPanelTemplate to bind controls to a Canvas
When you used the ItemsSource property to bind items to a ListView, GridView, or ListBox it didn’t
matter which one you were binding to, because the ItemsSource property always worked the same
way. If you were going to build three classes that had exactly the same behavior, you would put that
behavior in a base class and have the three classes extend it, right? Well, the Microsoft team did
exactly the same thing when they built the selector controls. The ListView, GridView, and ListBox all
extend a class called Selector, which is a subclass of the ItemsControl class that displays a
collection of items.

➊ We’re going to use its ItemsPanel property to set up a template for the panel that controls
the layout of the items. Start by adding the ViewModel namespace to FlyingBees.xaml:

➋ Next, add an empty class called BeeViewModel to your ViewModel folder, and then add an
instance of that class as a static resource to FlyingBees.xaml:

<viewmodel:BeeViewModel x:Key="viewModel"/>

Edit FlyingBees.xaml.cs and delete all the additional code that you added to the
FlyingBees() constructor in the FlyingBees control. Make sure that you don’t delete the
InitializeComponents() method or the three lines after it that initialize the NavigationHelper
object! (If you’re not sure which lines to delete, you can just delete the whole FlyingBees.xaml
page and add a new one.)
➌ Here’s the XAML for the ItemsControl. Open FlyingBees.xaml, delete the <Canvas> tag you
added, and replace it with this ItemsControl:

➍ Create a new class in the View folder called BeeHelper. Make sure it’s a static class, because
it’ll only have static methods to help your ViewModel manage its bees.

THE FACTORY METHOD PATTERN

MVVM is just one of many design patterns. One of the most common — and most useful — patterns is the factory method
pattern, where you have a “factory” method that creates objects. The factory method is usually static, and the name often ends
with “Factory” so it’s obvious what’s going on.

➎ Here’s the code for the empty BeeViewModel class that you added to the ViewModel folder. By
moving the UI-specific code to the View, we can keep the code in the ViewModel simple and
specific to managing bee-related logic.

➏ Run your app. It should look exactly the same as before, but now the behavior is split across
the layers, with UI-specific code in the View and code that deals with bees and moving in the
ViewModel.

THE READONLY KEYWORD

An important reason that we use encapsulation is to prevent one class from accidentally overwriting another class’s data. But what’s
preventing a class from overwriting its own data? The readonly keyword can help with that. Any field that you mark readonly can
only be modified in its declaration or in the constructor.

LONG EXERCISE

This is the last exercise in the book. Your job is to build a program that animates bees and stars. There’s a lot of code to write, but
you’re up to the task...and once you have this working, you’ll have all the tools you need to build a complete video game. (Can you
guess what’s in Lab #3?)

➊ HERE’S THE APP YOU’LL CREATE.
Bees with flapping wings fly around a dark blue canvas, while behind them, stars fade in and out. You’ll build a View that contains
the bees, stars, and page to display them, a Model that keeps track of where they are and fires off events when bees move or
stars change, and a ViewModel to connect the two together.

➋ CREATE A NEW WINDOWS STORE APP PROJECT.
Create a new project called StarryNight. Next, add the Model, View, and ViewModel folders . Once that’s done, you’ll need to
add an empty class called BeeStarViewModel to the ViewModel folder.
➌ CREATE A NEW BASIC PAGE IN THE VIEW FOLDER.
Add a Basic Page in the View folder called BeesOnAStarryNight.xaml. Add the namespace to the top-level tag in the
BeesOnAStarryNight.xaml (it should match your project’s name, StarryNight):

xmlns:viewmodel="using:StarryNight.ViewModel"

Add the ViewModel as a static resource and change the page name:

<Page.Resources>
 <viewmodel:BeeStarViewModel x:Name="viewModel"/>
 <x:String x:Key="AppName">Bees on a Starry Night</x:String>
</Page.Resources>

The XAML for the page is exactly the same as FlyingBees.xaml in the last project, except the Canvas control’s background is
Blue and it has a SizeChanged event handler:

Visual Studio comes with a fantastic tool to help you experiment with shapes! Fire up Blend for Visual Studio 2013
and use the pen, pencil, and toolbox to create XAML shapes that you can copy and paste into your C# projects.

➍ ADD CODE-BEHIND FOR THE PAGE AND THE APP.
Add the SizeChanged event handler to BeesOnAStarryNight.xaml.cs in the View folder:

NOTE

The code in step 4 won’t compile until you add the PlayAreaSize property to the ViewModel in
step 9. You can use the IDE to generate a property stub for it for now.

private void SizeChangedHandler(object sender, SizeChangedEventArgs e) {
 viewModel.PlayAreaSize = new Size(e.NewSize.Width, e.NewSize.Height);
}

Then modify App.xaml.cs to change the call to rootFrame.Navigate() so the app starts on your new page::

rootFrame.Navigate(typeof(View.BeesOnAStarryNight), e.Arguments);

➎ ADD THE ANIMATEDIMAGE CONTROL TO THE VIEW FOLDER.
Go back to the View folder and add the AnimatedImage control. This is exactly the same control from earlier in the chapter.
Make sure you add the image files for the animation frames to the Assets folder.
➏ ADD A USER CONTROL CALLED STARCONTROL TO THE VIEW FOLDER.
This control draws a star. It also has two storyboards, one to fade in and one to fade out. Add methods called FadeIn() and
FadeOut() to the code-behind to trigger the storyboards.

A Polygon control uses a set of points to draw a polygon. This UserControl uses it to draw a star.

There are even more shapes beyond ellipses, rectangles, and polygons: http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/hh465055.aspx

➐ ADD THE BEESTARHELPER CLASS TO THE VIEW.
Here’s a useful helper class. It’s got some familiar tools, and a couple of new ones. Put it in the View folder.

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465055.aspx

➑ ADD THE BEE, STAR, AND EVENTARGS CLASSES TO THE MODEL.
Your model needs to keep track of the bees’ positions and sizes, and the stars’ positions, and it will fire off events so the
ViewModel knows whenever there’s a change to a bee or a star.

THE POINT, SIZE, AND RECT STUCTS

The Windows.Foundation namespace has several very useful structs. Point uses X and Y double
properties to store a set of coordinates. Size has two double properties too, Width and Height, and
also a special Empty value. Rect stores two coordinates for the top-left and bottom-right corner
of a rectangle. It has a lot of useful methods to find its width, height, intersection with other
Rects, and more.

The Points property on the Polygon control is a collection of Point structs.
The Rect struct has several overloaded constructors, and methods that let you extract its
width, height, size, and location (either as a Point or individual X and Y double coordinates).

➒ ADD THE BEESTARMODEL CLASS TO THE MODEL.
We’ve filled in the private fields and a couple of useful methods. Your job is to finish building the BeeStarModel class.

You can debug your app with the simulator to make sure it works with different screen sizes and orientations.

➓ ADD THE BEESTARVIEWMODEL CLASS TO THE VIEWMODEL.
Fill in the commented methods. You’ll need to look closely at how the Model works, and what the View expects. The helper
methods will also come in very handy.

LONG EXERCISE SOLUTION

Here are the filled-in methods in the BeeStarModel class.

LONG EXERCISE SOLUTION

The last few members of the BeeStarModel class.

Here are the filled-in methods of the BeeStarViewModel class.

Congratulations! (But you’re not done yet...)
Did you finish that last exercise? Did you understand everything that was going on? If so, then
congratulations — you’ve learned a whole lot of C#, and probably in less time than you’d expected!
The world of programming awaits you.
Still, there are a few things that you should do before you move on to the last lab, if you really want to
make sure all the information you put in your brain stays there.

Take one last look through Save the Humans.
If you did everything we asked you to do, you’ve built Save the Humans twice, once at the beginning
of the book and again before you started Chapter 10. Even the second time around, there were parts of
it that seemed like magic. But when it comes to programming, there is no magic. So take one last
pass through the code that you built. You’ll be surprised at how much you understand! There’s almost
nothing that seals a lesson into your brain like positive reinforcement.

Talk about it with your friends.
Humans are social animals, and when you talk through things you’ve learned with your social circle
you do a better job of retaining them. And these days, “talking” means social networking, too! Plus,
you’ve really accomplished something here. Go ahead and claim your bragging rights!

Take a break. Even better, take a nap.
Your brain has absorbed a lot of information, and sometimes the best thing you can do to “lock in” all
that new knowledge is to sleep on it. There’s a lot of neuroscience research that shows that
information absorption is significantly improved after a good night’s sleep. So give your brain a
well-deserved rest!

When it comes to programming, there is no magic. Every program works because it was built to work, and all code can
be understood.

NOTE

...but it’s a lot easier to understand code if the programmer used good design patterns and object-oriented programming principles.

Part III. C# Lab Invaders
Name: ____________________ Date: ____________________

This lab gives you a spec that describes a program for you to build, using the knowledge you’ve
gained throughout this book.
This project is bigger than the ones you’ve seen so far. So read the whole thing before you get started,
and give yourself a little time. If you did all of the exercises throughout the book, you have all of the
tools that you need to do this lab.
We’ve filled in a few design details for you, and we’ve made sure you’ve got all the pieces you
need...and nothing else.
It’s up to you to finish the job. You can get our version of the finished Invaders game from the
Windows Store as an open source project.

The grandfather of video games
In this lab you’ll pay homage to one of the most popular, revered, and replicated icons in video game
history, a game that needs no further introduction: it’s time to build Invaders!

Your mission: defend the planet against wave after wave of
invaders
The invaders attack in waves, and each wave is a tight formation of 66 individual invaders. As the
player destroys invaders, his score goes up. The bottom two rows of invaders are shaped like stars
and worth 10 points. The satellites are worth 20, the saucers are worth 30, the bugs are worth 40, and
those pesky alien invader spaceships that have been invading Earth since Chapter 1 are worth 50. The
player starts with three lives. If he loses all three lives or the invaders reach the bottom of the screen,
the game’s over.

Remember, you can download the Invaders graphics from headfirstlabs.com/hfcsharp

The architecture of Invaders
Invaders is an MVVM app. The Model needs to keep track of a wave of invaders (including their
location, type, and score value), the player’s ship, shots that the player and invaders fire at each other,
and stars in the background. The View uses a Basic Page and controls for animated images and stars,
as well as a static helper class to help the ViewModel.
Here’s an overview of what you’ll need to create:

NOTE

You haven’t seen flyouts before.

An important part of programming is figuring out how to use tools that you haven’t seen before. You’ll use a button Flyout, or a
window that temporarily pops up when you press a button, and is dismissed when you click anywhere else. And you’ll use a
SettingsFlyout, or a window opens up from the side of the page the user chooses About from the Settings charm. This is a good
chance to test your developer skills!

Build out the object model for the Model
Before you can build out the InvadersModel class, you’ll need the classes that it uses to keep track
of the gameplay. It’s going to have an object for the player, and collections of invaders, shots, and
stars. That means it’ll need classes for invaders and shots (it’ll use a Point struct for each star,
because all it needs to know is the star’s location).
The Player and Invader classes extend an abstract class called Ship that has properties (set in the
constructor) to keep track of its location and size. It’s also got a convenient property that uses the
location and size to create a Rect, which can be used for collision detection. You’ll need to
implement these two subclasses.
Here’s the abstract Ship class for the Model folder:

The Player moves left and right.
The Model will call a Player object’s Move() method to tell it to move left or right, using a
Direction enum to tell it which way it’s moving. The Player can’t move off the end of the screen. It
can use the InvadersModel’s static PlayAreaSize property to stop moving when it hits the side of

the play area. You’ll also need a static read-only Size for the Player’s size (25 × 15 pixels) and
const double for its speed (10 pixels per Move() call).

Invaders move left, right, and down.
The Invader and Player classes both have a Move() method that uses a switch statement to
determine which way to move. The Invader class also has an additional constructor that takes
parameters to set its InvaderType and Score properties. These properties determine which graphic
is displayed on the page, and how many points get added to the score when the ship is destroyed.

You’ll need this Shot class.
The Model uses it to keep track of the shots that the player fires, and the shots the invaders fire back.
Have a close look at the Move() method: it uses a private DateTime field to keep track of the last
time it moved. Each time Move() is called, the shot’s Location is moved either up or down at a
velocity of 95 pixels per second.
You’ll also need these three EventArgs classes, which the Model uses to let the ViewModel know
when stars appear and disappear; when shots move, appear, and disappear; and when ships move and
die. When a player or invader fires a shot, the Model will create a Shot object, and then fire a
ShotMoved event. The ViewModel will handle this event and update its Sprites collection, which
will notify the View that it changed.

Building the InvadersModel class
The InvadersModel class controls the Invaders game. Here’s a start on what this class should look
like — there’s still lots of work for you to do.

The InvadersModel methods
The InvadersModel class has five public methods that are used by the ViewModel. The EndGame()
method is on the facing page — here are the rest:

➊ THE STARTGAME() METHOD STARTS THE GAME PLAYING.
This method sets the GameOver property to false. Then it clears any invaders from the
_invaders collection and shots from the _playerShots and _invaderShots collections (but
before it does, it fires a ShipChanged or ShotMoved event for each of them). Then it clears the
stars (firing the StarChanged event for each star) and creates new stars. Finally, it creates a new
Player object (firing a ShipChanged event), sets Lives to 2, Wave to 0, and adds the first wave.
➋ THE FIRESHOT() METHOD MAKES THE PLAYER FIRE A SHOT.
This method checks the number of player shots on screen to make sure there aren’t too many, then
it adds a new Shot to the _playerShots collection and fires the ShotMoved event.
➌ THE MOVEPLAYER() METHOD MOVES THE PLAYER.
If the player has already died, this does nothing; otherwise, it calls the Player object’s Move()
method and then fires the ShipChanged event to let the ViewModel know the ship moved.
➍ THE TWINKLE() METHOD TWINKLES THE STARS.
This method flips a coin and either adds or removes a star, firing the StarChanged event. There
are always fewer than 50% more and greater than 15% fewer than the initial number of stars.
➎ THE UPDATE() METHOD MAKES THE GAME GO.
The ViewModel uses a timer to call the Update() method many times a second as long as the
game isn’t over — this is what keeps advancing the gameplay. First it checks to see if the game is
paused. If it isn’t, here’s what it does (it always twinkles the stars, whether or not the game is
paused):
If there are no more invaders, it creates the next wave.
If the player hasn’t died, it moves each invader (more about this on the next page).
Then every shot needs to be updated (unless the player is dead). The game needs to loop through
both shot collections, calling each shot’s Move() method. If any shot went off the edge of the play
area, it’s removed from the collection and a ShotMoved event is fired.
The invaders return fire (more about this on the next page too).
Finally, it checks for collisions: first for any shot that overlaps an invader (and removing both
from their collections), and then to see if the player’s been shot. This is where that Rect property
on the Ship base class will come in very handy — you can use the method that checks for
overlapping Rects from Chapter 16 to detect the collisions (more on the next page).

Here’s a tip: If you try to remove an object from a collection while you’re enumerating though it using foreach, it’ll throw
an exception. But you can use the LINQ ToList() extension method to make a copy of the collection first and loop
through that instead.

Filling out the InvadersModel class
The problem with class diagrams is that they usually leave out any nonpublic properties and methods.
So even after you’ve got the methods from the previous page done, you’ve still got a lot of work to
do. Here are some things to think about:

The game play happens on a 400x300 battlefield
The first line in the InvadersModel class creates a public Size field called PlayAreaSize. It’s
static and read-only, which means it can’t change throughout the life of the InvadersModel. This
defines the boundaries of the play area for all of the Model objects: the shots can use it to determine
when they’ve reached the top or the bottom of the play area, and the invader and player ships can use
it to determine when they’ve hit the sides. The objects in the View will typically move around a
Canvas that’s larger than 400×300, so part of the ViewModel’s job will be to scale all of the
coordinates up so that they’re moved to the right place.

NOTE

It’s the ViewModel’s job to translate the Model’s coordinates on a 400x300 play area to whatever size the Canvas happens to be on
the page.

Build a NextWave() method
A simple method to create the next wave of invaders will come in handy. It should increment the Wave
property, clear the private _invaders collection, and then create all of the Invader objects, giving
each of them a Location field with the correct coordinates. Try spacing them out so that they’re
spaced 1.4 invader lengths apart horizontally, and 1.4 invader heights vertically.

NOTE

Here’s an example of a private method that will really help out your ViewModel.

A few other ideas for private methods
Here are a few of the private method ideas you might play with, to see if these would also help the
design of your Game class:

A method to see if the player’s been hit (CheckForPlayerCollisions())
A method to see if any invaders have been hit (CheckForInvaderCollisions())
A method to move all the invaders (MoveInvaders())
A method allowing invaders to return fire (ReturnFire())

NOTE

The invaders move individually from side to side. When they get to the edge of the battlefield, they move down. A method to move all
invaders calls each invader’s Move() method. It can use the _lastUpdated field to speed up the invaders by reducing the time
between marches as the number of invaders left in the formation shrinks.

B RAIN POWER

It’s possible to show protected and private properties and methods in a class diagram, but you’ll rarely see that put into practice. Why
do you think that is?

LINQ makes collision detection much easier
NOTE

The next page may seem a bit complex when you first read it, but each LINQ query is just a couple of lines of code. Here’s a hint:
don’t overcomplicate it!

You’ve got collections of invaders and shots, and you need to search through those collections to find
certain invaders and shots. Any time you hear collections and search in the same sentence, you should
think LINQ. Here’s what you need to do:

➊ FIGURE OUT IF THE INVADERS’ FORMATION HAS REACHED THE EDGE.
The invaders need to change direction if any one invader is within twice its horizontal move
interval from the edge of the battlefield. When the invaders are marching to the right, once they
reach the righthand side of the play area, the game needs to tell them to drop down and start
marching to the left. And when the invaders are marching to the left, the game needs to check if
they’ve reached the left edge. To make this happen, add a private MoveInvaders() method that
gets called by Update(). The first thing it should do is calculate the amount of time since the last
movement using the _lastUpdated field, and do nothing if not enough time has passed, check and
update the private framesSkipped field. If the invaders are moving to the right, MoveInvaders()
should use LINQ to search the _invaders collection for any invader whose location’s X value is
within range of the righthand boundary. If it finds any, then it should tell the invaders to march
downward and then set invaderDirection equal to Direction.Left; if not, it can tell each
invader to march to the right. On the other hand, if the invaders are moving to the left, then it
should do the opposite, using another LINQ query to see if the invaders are near the lefthand
boundary, marching them down and changing direction if they are. It can use the _justMovedDown
field to keep track of when the formation just switched direction and marched down.
➋ DETERMINE WHICH INVADERS CAN RETURN FIRE.
Add a private method called ReturnFire() that gets called by Update(). First, it should return
if the invaders’ shot list already has wave + 1 shots. It should also return if _random.Next(10)
< 10 - Wave. (That makes the invaders fire at random, and not all the time.) If it gets past both
tests, it can use LINQ to group the invaders by their Location.X and sort them descending. Once
it’s got those groups, it can choose a group at random, and use its Last() method to find the
invader at the bottom of the column. All right, now you’ve got the shooter — you can add a shot to
_invaderShots list just below the middle of the invader (use the invader’s Area to find the shot’s
location).

➌ CHECK FOR INVADER AND PLAYER COLLISIONS.
You’ll want to create a method to check for collisions. There are three collisions to check for, and
the method to find overlapping Rects from Chapter 16 will come in handy.
Use LINQ to find any dead invaders by looping through the shots in the player’s shot list and
selecting any invader where Area contains the shot’s location. Remove the invader and the shot.
Add a query to figure out if any invaders reached the bottom of the battlefield — if so, end the
game.
You don’t need LINQ to look for shots that collided with the player, just a loop and the player’s
Area property. (Remember, you can’t modify a collection inside a foreach loop. If you do,
you’ll get an InvalidOperationException with a message that the collection was modified. You
may need to create a temporary List of objects to remove, or use the ToList() extension method
to copy it first.)

Build the Invaders page for the View
The main page for Invaders is a Basic Page that lives in the View folder. It has a ViewModel object as
a static resource, which is used for the DataContext for all of the controls on the page.
All action is handled with binding.
The invaders, player ship, shots, stars, and even the simulated scan lines are all controls that are
added to an ObservableCollection of controls in the ViewModel. You’ll also need a TextBlock
with the text “Game Over” with its Visibility bound to the GameOver property, and another with
the text “Paused” bound to the Paused property.
The score and extra lives are separate controls.
There’s a StackPanel in the upper-righthand corner with a TextBlock bound to the Score property and
a GridView bound to the Lives property. The GridView displays ships because its DataTemplate is
an Image control, so the Lives property in the ViewModel needs to be a collection of objects —
new object() — to make the GridView add or remove images.
The play area is always resized to keep a 4:3 aspect ratio.
The main play area is a Border with rounded corners that contains an ItemsControl with the
ItemsSource bound to the Sprites property, and whose ItemsPanel is a Canvas with a black
background. We’ll give you code on the next page that updates its margins to make sure it always
keeps a 4:3 aspect ratio — it will modify the Margin property of the Border to keep the Height 4/3
the size of the Width, even if the screen is rotated or resized.

Maintain the play area’s aspect ratio
The code-behind for the main page needs to do two things. It has to handle events when the page
resizes to maintain the play area’s 4:3 aspect ratio, and it needs to handle both keyboard and swipe
input. If the player is using a tablet, rotating it will change the play area size. So you’ll need to handle
a few events in your page root’s XAML code:

and in the Border around the play area:
<Border x:Name="playArea" BorderBrush="Blue" BorderThickness="2" CornerRadius="10"
 Background="Black" Margin="5" Grid.Row="1" Loaded="playArea_Loaded">
 <ItemsControl
 ...

Here’s the code-behind that keeps the play area’s 4:3 aspect ratio by adding either left and right
margins or top and bottom margins.

Respond to swipe and keyboard input
Your game will need to be able to respond to the user pressing keys and swiping a touchscreen to
control the player ship. And since this is an MVVM app, there’s an important separation of concerns.
It’s the page’s job to keep track of the keypresses, swipes, and taps, and let the ViewModel know
when they happen. It’s the ViewModel’s job to interpret them as game actions and call the appropriate
methods on the Model.

Keyboard event handlers are added in code-behind
Override the OnNavigatedTo() and OnNavigatedFrom() methods (like you did in Chapter 14) to
add and remove event handlers for the KeyUp and KeyDown events, calling methods on the
ViewModel to interpret the keystrokes. (You’ll need to add using Windows.UI.Core; to use the
KeyEventArgs class.)

Add page root event handlers for swipes and taps
You’ll need to handle left and right swipes to move the player ship, and taps to fire. The event
handlers were hooked up in the XAML on the previous page, so now you just need to add the event
handlers.

An AnimatedImage control displays the ships

You can use the same AnimatedImage control that you used in Chapter 16 to display both the invader
and player ships. The player ship only has a single, nonanimated image, so you can pass it an image
list with one image (this gives you options to animate it later if you want).
When the invader ships are hit, they should fade out rather than disappearing entirely. And anyone
who’s played 80s arcade games knows that when the player ship is hit, it should flash for 2.5 seconds
before the game resumes. So you’ll need to add these methods to the AnimatedImage control’s code-
behind:

public void InvaderShot() {
 invaderShotStoryboard.Begin();
}

public void StartFlashing() {
 flashStoryboard.Begin();
}

public void StopFlashing() {
 flashStoryboard.Stop();
}

And you’ll need to add the appropriate storyboards as well. The invaderShotStoryboard is a
DoubleAnimation that fades the Opacity property from 1 to 0. flashStoryboard is a key frame
animation that toggles Visibility to make the control disappear and reappear.

Add a control for the big stars
The starry background has three types of stars: circles, rectangles, and big stars. The big stars are still
pretty small — just 10 pixels by 10 pixels. So you’ll need to create a user control that has a Polygon.
The stars can be different colors, so your control will need a public method to change the color of the
Polygon:

public void SetFill(SolidColorBrush solidColorBrush) {
 polygon.Fill = solidColorBrush;
}

A static InvadersHelper class helps the ViewModel
The ViewModel could use a helper class with factory methods for the invader, player ship, shot, and
star controls. The StarControlFactory() method should pick a random number and return either a
rectangle, ellipse, or big star. You can also add a private method to return a color at random (return
Colors.LightBlue;) so StarControlFactory() can return different stars with different colors.
You’ll also need a ScanLineFactory() method to create the simulated scan lines. Each scan line is a
rectangle with Fill set to new SolidColorBrush(Colors.White), Height set to 2, and Opacity
set to .1.
All of the factory methods should take a double scale parameter, which we’ll talk about with the
ViewModel.

Use the Settings charm to open a SettingsFlyout

In Chapter 15 you learned how to add a callback for the About command in the Settings charm. Your
job now is to figure out how to add a SettingsFlyout to your page. Here’s the code-behind to hook it
up to the Settings charm:

public InvadersPage() {
 this.InitializeComponent();

 SettingsPane.GetForCurrentView().CommandsRequested
 += InvadersPage_CommandsRequested;
}
void InvadersPage_CommandsRequested(SettingsPane sender,
 SettingsPaneCommandsRequestedEventArgs args) {
 UICommandInvokedHandler invokedHandler =
 new UICommandInvokedHandler(AboutInvokedHandler);
 SettingsCommand aboutCommand = new SettingsCommand(
 "About", "About Invaders", invokedHandler);
 args.Request.ApplicationCommands.Add(aboutCommand);
}
private void AboutInvokedHandler(IUICommand command) {
 viewModel.Paused = true;
 AboutSettingsFlyout aboutSettingsFlyout = new
AboutSettingsFlyout();
 aboutSettingsFlyout.Unloaded += aboutSettingsFlyout_Unloaded;
 aboutSettingsFlyout.Show();
}
void aboutSettingsFlyout_Unloaded(object sender, RoutedEventArgs e) {
 viewModel.Paused = false;
}

You should also add a button to the main page that displays a Flyout whenever it’s clicked. You don’t
need any code-behind or a Click event handler for this. All you need is a <Button.Flyout> section that

contains the XAML for the flyout window that you want to display. Here’s some XAML to get you
started:

<Button Content="Learn to build this app" Background="Black"
 HorizontalAlignment="Center" FontSize="30" >
 <Button.Flyout>
 <Flyout Placement="Full">
 <StackPanel Width="400" VerticalAlignment="Center">
 <!-- XAML for your button flyout goes here -->
 </Flyout>
 </Button.Flyout>
</Button>

We’ve been pointing you to MSDN pages throughout this book, because they’re a great way to learn more. You can learn
more about the Flyout and SettingsFlyout controls here: http://msdn.microsoft.com/en-
us/library/windows/apps/bg182878.aspx

http://msdn.microsoft.com/en-us/library/windows/apps/bg182878.aspx

Build the ViewModel

The ViewModel has two classes in it. InvadersViewModel is the main ViewModel object, and
BooleanVisibilityConverter is the same as the one you used in Chapter 16 — you can use it to
bind the “Game Over” and “Paused” TextBlock controls’ Visible properties to the GameOver and
Paused properties on the ViewModel. So the rest of this lab is all about building out the ViewModel.
Here’s the top of the InvadersViewModel class, to get you started:

Handling user input
You already saw how the main page in the View calls methods in the ViewModel to handle
keypresses, swipes, and taps. Here are the methods that it calls. The user needs to be able to use the
keyboard or touch screen interchangeably. To accomplish this, both the tap and spacebar cause the
ViewModel to call the Model’s FireShot() method. Moving the player’s ship left and right is a little
more complex: both keypresses and swipes update DateTime? fields that contain the date of the most
recent keypress or swipe, or are null if there is no current keypress or swipe.

Did you notice how all of the methods on this page have the internal access modifier? That’s because we added these
methods by first adding the code from a few pages earlier, and then using the Generate Method Stub feature of the IDE to
create the method declarations. The internal modifier means the method is publicly accessible from inside this assembly,
but appears as private to other assemblies. You can learn more about assemblies in leftover #3 in the appendix.

Build the InvadersViewModel methods

We’ll get you started with a constructor and two useful methods.
THE INVADERSVIEWMODEL CONSTRUCTOR HOOKS UP THE INVADERSMODEL EVENT
HANDLERS AND ENDS THE GAME.

THE STARTGAME() METHOD CLEARS THE INVADERS AND SHOTS FROM THE
SPRITES COLLECTION, TELLS THE MODEL TO START THE GAME, AND STARTS
THE TIMER.

THE RECREATESCANLINES() METHOD ADDS SIMULATED SCAN LINES.

The View’s updated when the timer ticks
When the InvadersModel fires a ShipChanged event, the ViewModel needs to figure out what kind
of ship changed, and update its collections appropriately so that the View accurately reflects the
current state of the Model. Here’s how the ShipChanged event handler works:

void TimerTickEventHandler(object sender, object e) {
 if (_lastPaused != Paused)
 {
 Use the _lastPaused field to fire a PropertyChanged event any time
 the Paused property changes.
 }
 if (!Paused)
 {
 If both the _leftAction and _rightAction fields have a value, that means
 there are either two keys being mashed or a key and a swipe at the same
 time — use the one with the later time to choose a direction to move the player.
 If not, choose the one with a value and use that to pass to _model.MovePlayer().
 }

 Tell the InvadersModel to update itself. Then check the Score property. If it
 doesn’t match _model.Score, update it and fire a PropertyChanged event.

 Update the Lives so that it matches _model.Lives by either removing an
 object or adding a new object().

 foreach (FrameworkElement control in _shotInvaders.Keys.ToList())
 {

 Each key in the _shotInvaders Dictionary is an AnimatedImage control,
 and its value is the time that it died. It takes half a second for the invader
 fade-out animation to complete, so any invader who died more than
 half a second ago should be removed from both _sprites and _shotInvaders.
 }

 If the game is over, fire a PropertyChanged event and stop the timer.
}

The player’s ship can move and die

When the InvadersModel fires a ShipChanged event, the ViewModel needs to figure out what kind
of ship changed, and update its collections appropriately so that the View accurately reflects the
current state of the Model. Here’s how the ShipChanged event handler works:

“Shots fired!”

The InvadersViewModel’s event handlers for the ShotMoved and StarChanged events are pretty
similar.

void ModelShotMovedEventHandler(object sender, ShotMovedEventArgs e) {
 if (!e.Disappeared)
 {
 If the shot is not a key in the _shots Dictionary, use its factory method to
 create a new shot control, then add it to _shots and _sprites. If it is in the
 _shots Dictionary, then it’s already on screen, so look up its control and
 use the helper method to move it using its Location property.
 } else {
 The shot disappeared, so check _shots to see if it’s there. If it is, remove its
 control from _sprites, and remove the Shot object from _shots.
 }
}

void ModelStarChangedEventHandler(object sender, StarChangedEventArgs e) {
 if (e.Disappeared && _stars.ContainsKey(e.Point))
 {
 Look up the control in _stars and remove it from _sprites.
 } else {
 if (!_stars.ContainsKey(e.Point))
 {
 Use the factory method to create a new control, add it to _stars (using
 the Point from the EventArgs as the key), and add it to the sprites.
 } else {
 Stars typically won’t change locations, so this else clause probably won’t
 get hit — but you can use it to add shooting stars if you
 want. Look up the star’s control in _stars and use a
 helper method to move it to the new location.
 }
 }
}

And yet there’s more to do...
Think the game’s looking pretty good? You can take it to the next level with a few more additions:
Add sounds
The MediaElement XAML tag lets you add sounds to your apps. Can you figure out how to use it to
add sounds when the invaders march, the player fires shots, and ships are destroyed? This page will
help:
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465160.aspx
Add a mothership
Once in a while, a mothership worth 250 points can travel across the top of the battlefield. If the
player hits it, he gets a bonus.
Add shields
Add floating shields the player can hide behind. You can add simple shields that the enemies and
player can’t shoot through. Then, if you really want your game to shine, add breakable shields that the
player and invaders can blast holes through after a certain number of hits.

NOTE

Each shield can consist of lots of little blocks that disappear just like invaders when they’re hit, but don’t add to the score.

Add divebombers
Create a special type of enemy that divebombs the player. A divebombing enemy should break
formation, take off toward the player, fly down around the bottom of the screen, and then resume its
position.
Add more weapons
Start an arms race! Smart bombs, lasers, guided missiles...there are all sorts of weapons that both the
player and the invaders can use to attack each other. See if you can add three new weapons to the
game.
Add a Preferences command to the Settings charm
You can add a Preferences command to the Settings charm just like you did with the About command
to open a second pop up that lets you turn scan lines on and off, change the number of lives, mute
sounds, etc.

This is your chance to show off! Did you come up with a cool new version of the game? Publish your Invaders code on
CodePlex or another project hosting website, then claim your bragging rights on the Head First C# forum:
www.headfirstlabs.com/books/hfcsharp/

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465160.aspx
http://www.headfirstlabs.com/books/hfcsharp/

Appendix A. Leftovers: The top 10 things we
wanted to include in this book

The fun’s just beginning!
We’ve shown you a lot of great tools to build some really powerful software with C#. But there’s no
way that we could include every single tool, technology, or technique in this book — there just
aren’t enough pages. We had to make some really tough choices about what to include and what to
leave out. Here are some of the topics that didn’t make the cut. But even though we couldn’t get to
them, we still think that they’re important and useful, and we wanted to give you a small head start
with them.

#1. There’s so much more to Windows Store
Looking to learn more about programming Windows Store apps? Microsoft has some fantastic
resources to help you learn. The first step is downloading the Windows 8 Camp Training Kit, which
has presentations, samples, links to really useful resources, and most importantly, a set of hands-on
labs that teach you about everything from capturing data from a device’s camera to adding live tiles
and push notifications to your apps. You can download the installer for the Windows 8 Camp Training
Kit here:
http://www.microsoft.com/en-us/download/details.aspx?id=29854
Once you install it, you’ll get a set of web pages, media files, and presentations, as well as
documentation and source code for the hands-on labs. It’s a great next step for continuing to get C#
concepts into your brain.

http://www.microsoft.com/en-us/download/details.aspx?id=29854

#2. The Basics
Before we get started, here’s a Guy class that we’ll be using throughout this appendix. Take a look at
how it’s commented. Notice how the class, its methods, and its properties are all commented with
triple-slash (///) comments? Those are called XML comments, and the IDE will help you add them.
Just type “///” right before a class, method, property, or field declaration (and a few other places,
too), and the IDE will fill in the skeleton of the XML comment for it. Then later, when you go to use
the property, method, etc., the IDE will display information from the XML comments in its
IntelliSense window.

NOTE

We wish we could give this material the same kind of thorough treatment we were able to provide throughout the book, but we just
didn’t have enough pages to do it! But we still want to give you a good starting point and a place to go for more information.

...more basics...
It’s easy to get overwhelmed when learning any computer language, and C# is no exception. That’s
why we concentrated on the parts of the language that, in our experience, are most common for novice
and intermediate developers. But there’s some basic C# and .NET syntax that’s really useful, but are a
lot easier to approach at your own speed once you’re used to things. Here’s a console application that
demonstrates some of it.

#3. Namespaces and assemblies
We made the decision to focus this book on the really practical stuff you need to know in order to
build and run applications. Throughout every chapter, you create your projects in Visual Studio and
run them in the debugger. We showed you where your compiled code ended up in an executable, and
how to publish that executable so that other people can install it on their machines. That’s enough to
get you through every exercise in this book, but it’s worth taking a step back and looking a little closer
at what it is that you’re building.
When you compile your C# program, you’re creating an assembly. An assembly is a file that contains
the compiled code. There are two kinds of assemblies. Executables (occasionally called “process
assemblies”) have the EXE file extension. All of the programs you write in this book are compiled as
executables. Those are the assemblies that you can execute (you know, EXE files you can double-
click and run). There are also library assemblies, which have the DLL file extension. They contain
classes that you can use in your programs, and, as you’ll see shortly, namespaces play a big role in
how you use them.
You can get a handle on the basics of assemblies by first creating a class library, and then building a
program that uses it. Start by opening Visual Studio 2013 for Desktop and creating a new Class
Library project called Headfirst.Csharp.Leftover3. When the library is first created, it contains
the file Class.cs. Delete that file and add a new class called Guy.cs. Open up the new Guy.cs file:

namespace Headfirst.Csharp.Leftover3
{
 class Guy
 {
 }
}

You can also create class libraries in Visual Studio for Windows 8. We asked you to create this project in the Desktop
edition because all of the Framework assemblies are already referenced, so the “Add Reference” window that we show
on the facing page will be empty.

Notice how Visual Studio made the namespace match your class library name? That’s a very standard
pattern.
Go ahead and fill in the Guy class with the code from leftover #2 — we’ll use it in a minute. Next,
add two more classes called HiThereWriter and LineWriter. Here’s the code for
HiThereWriter:

namespace Headfirst.Csharp.Leftover3
{
 public static class HiThereWriter
 {
 public static void HiThere(string name)
 {
 MessageBox.Show("Hi there! My name is " + name);
 }
 }
}

And here’s the code for LineWriter (it’s also in the Headfirst.Csharp.Leftover3 namespace):
internal static class LineWriter {
 public static void WriteALine(string message)
 {
 Console.WriteLine(message);

 }
}

We named the class library Headfirst.Csharp.Leftover3 because that’s a pretty standard way of naming assemblies. Read
more about assembly naming here: http://msdn.microsoft.com/en-us/library/ms229048.aspx

Now try to compile your program. You’ll get an error:

OK, no problem — we know how to fix this in a Desktop app. Add a line to the top of your class:
using System.Windows.Forms;

Wait, it still doesn’t compile! And something’s weird here. When you typed in that line, did you
notice that when you got as far as “using System.Win” the IntelliSense window stopped giving you
suggestions? That’s because your project hasn’t referenced the System.Windows.Forms assembly.
Let’s fix this by referencing the correct assembly. Go to the Solution Explorer and expand the
“References” folder in your project. Right-click on it and choose “Add Reference...”; a window
should pop up:

On the .NET tab, start typing “System.Windows.Forms” — it should jump down to that assembly.
Make sure it’s highlighted and click OK. Now System.Windows.Forms should show up under the
References folder in the Solution Explorer — and your program compiles!

The “Add References” window figures out which assemblies to display by checking a registry key, not the GAC. For
more info: http://support.microsoft.com/kb/306149

http://msdn.microsoft.com/en-us/library/ms229048.aspx
http://support.microsoft.com/kb/306149

...so what did I just do?
Take a close look at the declarations for LineWriter and HiThereWriter:

public class HiThereWriter

internal static class LineWriter

There are access modifiers on the class declarations: HiThereWriter is declared with the public
access modifier, and LineWriter is declared with the internal one. In a minute, you’ll write a
console application that references this class library. A program can only directly access another
class library’s public classes — although they can be accessed indirectly, like when one method calls
another or returns an instance of an internal object that implements a public interface.
Now go back to your Guy class and look at its declaration:

class Guy

Since there’s no access modifier, it defaults to internal. We’ll want to expose Guy to other
assemblies that reference this one, so change the declaration to be public:

public class Guy

Next, try running your program in the debugger. You’ll see this error:

That makes sense when you think about it, because a class library doesn’t have an entry point. It’s just
a bunch of classes that other programs can use. So let’s add an executable program that uses those
classes — that way the debugger has something to run. Visual Studio has a really useful feature that
we’ll take advantage of next: it can load multiple projects into a single solution. Right-click on the
Solution in the Solution Explorer and choose Add >> New Project... to bring up the usual Add
Project window. Add a new console application called MyProgram.
Once your new program’s added, it should appear in the Solution Explorer right under the class
library. Right-click on References underneath MyProgram, choose “Add reference...” from the
menu, expand , and click on Projects. You should see your class library project listed (

). Make sure it’s checked. It should now appear in the Solution Explorer
when you expand “References” under your MyProgram project.
Next, go to the top of your new project’s Program.cs file and start adding this using line:

Now we can write a new program. Start by typing Guy. Watch what pops up:
static void Main(string[] args)
{

The IntelliSense window lists the entire namespace for Guy, so you can see that you’re actually using
the class that you defined in the other assembly. Finish the program:

static void Main(string[] args {
 Guy guy = new Guy("Joe", 43, 125);
 HiThereWriter.HiThere(guy.Name);
}

Now run your program. Oh, wait — you get the same error message as before, because you can’t run
a class library! No problem. Right-click on your new MyProgram project in the Solution Explorer and
choose . Your solution can have many different projects, and this is how you tell it
which one to start when you run it in the debugger. Now run your program again — this time it runs!

NOTE

Throughout the book we tell you that you compile your code. When you do, it’s compiled to Common Intermediate Language (IL),
the low-level language used by .NET. It’s a human-readable assembly language, and all .NET languages (including C# and Visual
Basic) are compiled into it. The IL code is compiled into native machine language when you run your program using the CLR’s just-
intime compiler, so named because it compiles the IL into native code just in time to execute it (rather than pre-compiling it before
it’s run).

That means your EXEs and DLLs contain IL, and not native assembly code, which is important because it means many languages
can compile to IL that the CLR can run — including Visual Basic .NET, F#, J#, managed C++/CLI, JScript .NET, Windows
PowerShell, IronPython, Iron Ruby, and more. This is really useful: since VB.NET code compiles to IL, you can build an assembly in
C# and use it in a VB.NET program (or vice versa).

If you have a Macintosh or Linux box, try installing Mono. It’s an open source implementation of IL that runs EXE files that you’ve
built on the PC (typically by typing “mono MyProgram.exe” — but this only works on some .NET assemblies). We’re not going to
talk any more about that, though, because this book is focused on Microsoft technology. But we do have to admit that it is pretty cool
to see the Go Fish game or Hide and Seek running natively on Mac or Linux!

Building a “Hello World” program from the command line
There’s a tradition in programming called Hello World: a program that just prints one line of text
(“Hello World”). This is typically the first program you’ll write in a new language, because if you
can do that it proves that your tools work well enough to run more complex programs. The Developer
Command Prompt is a shortcut installed with Visual Studio 2013 (typically in the C:\Program Files
(x86)\Microsoft Visual Studio 12.0\Common7\Tools\Shortcuts folder) that puts the C# compiler
csc.exe and other tools in your path. Run the Developer Command Prompt, then try using Notepad to
create HelloWorld.cs, using csc.exe to build an executable, and then running that executable:

We’re just scratching the surface of assemblies. There’s a lot more (including versioning and signing them for security).
You can read more about assemblies here: http://msdn.microsoft.com/en-us/library/k3677y81.aspx

http://msdn.microsoft.com/en-us/library/k3677y81.aspx

#4. Use BackgroundWorker to make your WinForms responsive
Throughout the book, we’ve shown you a few ways that you can make your programs do more than
one thing at a time. In Chapter 2, you learned about how to use the Application.DoEvents()
method to let your form respond to button clicks while still in a loop. But that’s not a good solution
(for a bunch of reasons we didn’t get into), so we showed you a much better solution in Chapter 4:
using a timer to trigger an event at a regular interval. Later on, you learned how ot use async, await,
and Task. An alternative to asynchronous methods is threading, but it can be very tricky and can lead
to some very nasty bugs if you’re not careful. Luckily, .NET gives you a really useful component
called BackgroundWorker that makes it easier to let your program use threads safely.
Here’s a simple project to help you understand how BackgroundWorker works. Start by building this
form. You’ll need to drag a CheckBox onto it (name it useBackgroundWorkerCheckbox), two
buttons (named goButton and cancelButton) and a ProgressBar (named progressBar1). Then
drag a BackgroundWorker onto the form. It’ll show up in the gray box on the bottom of the designer.
Keep its name backgroundWorker1, and set its WorkerReportsProgress and
WorkerSupportsCancellation properties to true.

Select the BackgroundWorker and go to the Events page in the Properties window (by clicking on the
lightning-bolt icon). It’s got three events: DoWork, ProgressChanged, and RunWorkerCompleted.
Double-click on each of them to add an event handler for each event.

The code for the form is on the next two pages.

Once you’ve got your form working, run the program. It’s easy to see how BackgroundWorker makes
your program much more responsive:

Make sure the “Use BackgroundWorker” checkbox isn’t checked, then click the Go! button. You’ll
see the progress bar start to fill up. Try to drag the form around — you can’t. The form’s all locked
up. If you’re lucky, it might jump a bit as it eventually responds to your mouse drag.
When it’s done, check the “Use BackgroundWorker” checkbox and click the Go! button again. This
time, the form is perfectly responsive. You can move it around and even close it, and there’s no
delay. When it finishes, it uses the RunWorkerCompleted method to re-enable the buttons.
While the program is running (using BackgroundWorker), click the Cancel button. It will update
its CancellationPending property, which will tell the program to cancel and exit the loop.

Are you wondering why you need to use the ReportProgress() method rather than setting the
ProgressBar’s Value property directly? Try it out. Add the following line to the DoWork event
handler:

progressBar1.Value = 10;

Then run your program again. As soon as it hits that line, it throws an InvalidOperationException
with this message: “Cross-thread operation not valid: Control ‘progressBar1’ accessed from a thread
other than the thread it was created on.” The reason it throws that exception is that
BackgroundWorker starts a separate thread and executes the DoWork method on it. So there are two
threads: the GUI thread that’s running the form and the background thread. One of the .NET threading
rules is that only the GUI thread can update form controls; otherwise, that exception is thrown.

This is just one of the many threading pitfalls that can trap a new developer — that’s why we didn’t talk about
threading anywhere in this book. If you’re looking to get started with threads, we highly recommend Joe Albahari’s
excellent e-book about threading in C# and .NET: http://www.albahari.com/threading

http://www.albahari.com/threading

#5. The Type class and GetType()
One of the most powerful aspects of the C# programming language is its rich type system. But until
you’ve got some experience building programs, it’s difficult to appreciate it — in fact, it can be a
little baffling at first. But we want to give you at least a taste of how types work in C# and .NET.
Here’s a console application that gives you an introduction to some of the tools you have at your
disposal to work with types.

There’s so much more to learn about types! Read more about them here: http://msdn.microsoft.com/en-
us/library/ms173104.aspx

http://msdn.microsoft.com/en-us/library/ms173104.aspx

#6. Equality, IEquatable, and Equals()
Throughout the book, when you’ve wanted to compare values in two variables, you’d use the ==
operator. But you already know that all things being equal, some values are more “equal” than others.
The == operator works just fine for value types (like ints, doubles, DateTimes, or other structs),
but when you use it on reference types you just end up comparing whether two reference variables are
pointing to the same object (or if they’re both null). That’s fine for what it is, but it turns out that C#
and .NET provide a rich set of tools for dealing with value equality in objects.
To start out, every object has a method Equals(), which by default returns true only if you pass it a
reference to itself. And there’s a static method, Object.ReferenceEquals(), which takes two
parameters and returns true if they both point to the same object (or if they’re both null). Here’s an
example, which you can try yourself in a console application:

But that’s just the beginning. There’s an interface built into .NET called IEquatable<T> that you can
use to add code to your objects so they can tell if they’re equal to other objects. An object that
implements IEquatable<T> knows how to compare its value to the value of an object of type T. It
has one method, Equals(), and you implement it by writing code to compare the current object’s
value to that of another object. There’s an MSDN page that has more information about it
(http://msdn.microsoft.com/en-us/library/ms131190.aspx). Here’s an important excerpt:

NOTE

“If you implement Equals, you should also override the base class implementations of Object.Equals(Object) and
GetHashCode so that their behavior is consistent with that of the IEquatable<T>.Equals method. If you do override
Object.Equals(Object), your overridden implementation is also called in calls to the static Equals(System.Object,
System.Object) method on your class. This ensures that all invocations of the Equals method return consistent results, which
the example illustrates.”

If you don’t do this, the compiler will give you a warning.

Here’s a class called EquatableGuy, which extends Guy and implements IEquatable<Guy>:

http://msdn.microsoft.com/en-us/library/ms131190.aspx

And here’s what it looks like when you use Equals() to compare two EquatableGuy objects:

And now that Equals() and GetHashCode() are implemented to check the values of the fields and
properties, the method List.Contains() now works. Here’s a List<Guy> that contains several Guy

objects, including a new EquatableGuy object with the same values as the one referenced by joe1.

If you try to compare two EquatableGuy references with the == or != operators, they’ll just check if
both references are pointing to the same object or if they’re both null. But what if you want to make
them actually compare the values of the objects? It turns out that you can actually overload an
operator — redefining it to do something specific when it operates on references of a certain type.
You can see an example of how it works in the EquatableGuyWithOverload class, which extends
EquatableGuy and adds overloading of the == and != operators:

Here’s some code that uses EquatableGuyWithOverload objects:

#7. Using yield return to create enumerable objects
In Chapter 8 we learned about the IEnumerable interface and how it’s used by the foreach loop. C#
and .NET give you some useful tools for building your own collections and enumerable types, starting
with the IEnumerable interface. Let’s say you want to create your own enumerator that returns values
from this Sport enum in order:

enum Sport
{
 Football, Baseball,
 Basketball, Hockey,
 Boxing, Rugby, Fencing,
}

You could manually implement IEnumerable yourself, building the Current property and
MoveNext() method:

Here’s a foreach loop that loops through SportCollection. It returns the sports in order (Football,
Baseball, Basketball, Hockey, Boxing, Rugby, Fencing):

Console.WriteLine("SportCollection contents:");
SportCollection sportCollection = new SportCollection();
foreach (Sport sport in sportCollection)
 Console.WriteLine(sport.ToString());

That’s a lot of work to build an enumerator — it has to manage its own state, and keep track of which
sport it returned. Luckily, C# gives you a really useful tool to help you easily build enumerators. It’s
called yield return, and you’ll learn about it when you flip the page.

NOTE

Just a reminder of something from Chapter 14: all collections are enumerable, but not everything that’s enumerable is technically a
collection unless it implements the ICollection<T> interface. We didn’t show you how to build collections from the ground up, but
understanding enumerators is definitely enough to get you started down that road.

The yield return statement is a kind of all-in-one automatic enumerator creator. This
SportCollection class does exactly the same thing as the one on the previous page, but its
enumerator is only three lines long.:

That looks a little odd, but if you actually debug through it you can see what’s going on. When the
compiler sees a method with a yield return statement that returns an IEnumerator or
IEnumerator<T>, it automatically adds the MoveNext() method and Current property. When it
executes, the first yield return that it encounters causes it to return the first value to the foreach
loop. When the foreach loop continues (by calling the MoveNext() method), it resumes execution
with the statement immediately after the last yield return that it executed. Its MoveNext() method
returns false when the enumerator is positioned after the last element in the collection. This may be a
little hard to follow on paper, but it’s much easier to follow if you load it into the debugger and step
through it using Step Into (F11). To make it a little easier, here’s a really simple enumerator called
NameEnumerator() that iterates through four names:

static IEnumerable<string> NameEnumerator() {
 yield return "Bob"; // The method exits after this statement ...
 yield return "Harry"; // ... and resumes here the next time through
 yield return "Joe";
 yield return "Frank";
}

And here’s a foreach loop that iterates through it. Use Step Into (F11) to see exactly what’s going on:
IEnumerable<string> names = NameEnumerator(); // Put a breakpoint here
foreach (string name in names)
 Console.WriteLine(name);

There’s another thing that you typically see in a collection: an indexer. When you use brackets [] to
retrieve an object from a list, array, or dictionary (like myList[3] or myDictionary["Steve"]),
you’re using an indexer. An indexer is actually just a method. It looks a lot like a property, except it’s
got a single named parameter.
The IDE has an especially useful code snippet. Type indexer followed by two tabs, and the IDE will
add the skeleton of an indexer for you automatically.
Here’s an indexer for the SportCollection class:

public Sport this[int index] {
 get { return (Sport)index; }
}

Passing that indexer 3 will return the enum value Hockey.
Here’s an IEnumerable<Guy> that keeps track of a bunch of guys, with an indexer that lets you get or
set guys’ ages.

And here’s some code that uses the indexers to update one guy’s age and add two more guys, and then
loop through them:

Console.WriteLine("Adding two guys and modifying one guy");
guyCollection["Bob"] = guyCollection["Joe"] + 3;
guyCollection["Bill"] = 57;
guyCollection["Harry"] = 31;
foreach (Guy guy in guyCollection)

 Console.WriteLine(guy.ToString());

#8. Refactoring
Refactoring means changing the way your code is structured without changing its behavior. Whenever
you write a complex method, you should take a few minutes to step back and figure out how you can
change it so that you make it easier to understand. Luckily, the IDE has some very useful refactoring
tools built in. There are all sorts of refactorings you can do — here are some we use often.

Extract a method
When we were writing the control-based renderer for the GDI+ PDF, we originally included this
foreach loop:

One of our tech reviewers, Joe Albahari, pointed out that this was a little hard to read. He suggested
that we extract those two four-line blocks into methods. So we selected the first block, right-
clicked on it, and selected “Refactor >> Extract Method...”. This window popped up:

Then we did the same thing for the other four-line block, extracting it into a method that we named
MoveBeeFromHiveToField(). Here’s how that foreach loop ended up — it’s a lot easier to read:

foreach (Bee bee in world.Bees) {
 beeControl = GetBeeControl(bee);
 if (bee.InsideHive) {
 if (fieldForm.Controls.Contains(beeControl))
 MoveBeeFromFieldToHive(beeControl);
 } else if (hiveForm.Controls.Contains(beeControl))
 MoveBeeFromHiveToField(beeControl, bee);
 beeControl.Location = bee.Location;
}

NOTE

You did some refactoring back in Chapter 5 when you changed the structure of the Farmer class (by adding a
constructor) without changing its behavior.

Rename a variable
Back in Chapter 3, we explained how choosing intuitive names for your classes, methods, fields, and
variables makes your code a lot easier to understand. The IDE can really help you out when it comes
to naming things in your code. Just right-click on any class, variable, field, property, namespace,
constant — pretty much anything that you can name — and choose “Refactor >> Rename”. You can
also just use F2, which comes in handy because once you start renaming things, you find yourself
doing it all the time.
We selected “beeControl” in the code from the simulator and renamed it. Here’s what popped up:

Consolidate a conditional expression
Here’s a neat way to use the “Extract Method” feature. Open up any program, add a button, and add
this code to its event handler:

private void button1_Click(object sender, EventArgs e) {
 int value = 5;
 string text = "Hi there";
 if (value == 36 || text.Contains("there"))
 MessageBox.Show("Pow!");
}

Select everything inside the if statement: value == 36 || text.Contains("there"). Then right-
click on it and select “Refactor >> Extract Method...”. Here’s what pops up:

#9. Anonymous types, anonymous methods, and lambda
expressions
C# lets you create types and methods without using explicitly named declarations. A type or method
that’s declared without a name is called anonymous. These are very powerful tools — for example,
LINQ wouldn’t be possible without them. But it’s a lot easier to master anonymous types, anonymous
methods, and lambda expressions once you have a firm grasp on the language. So we only briefly
covered anonymous types, and anonymous methods or lambda expressions didn’t make the cut at all.
Here’s a quick introduction, so you can get started learning about them.

#10. LINQ to XML
You’ve seen XML throughout the book as a format for files that represents complex data as text. The
.NET Framework gives you some really powerful tools for creating, loading, and saving XML files.
And once you’ve got your hands on XML data, you can use LINQ to query it. Add “using
System.Xml.Linq;” to the top of a file and enter this method that generates an XML document with
some Starbuzz Coffee customer loyalty data.

Microsoft has a lot of great documentation about LINQ and LINQ to XML online. You can read more about LINQ to
XML and classes in the System.Xml.Linq namespace here: http://msdn.microsoft.com/en-us/library/bb387098.aspx

http://msdn.microsoft.com/en-us/library/bb387098.aspx

Save and load XML files
You can write an XDocument object to the console or save it to a file, and you can load an XML file
into it:

Query your data
Here’s a simple LINQ query that queries the Starbuzz data using its XDocument:

And you can do more complex queries too:
var zipcodeGroups = from item in doc.Descendants("person")
 group item.Element("favoriteDrink").Value
 by item.Element("personalInfo").Element("zip").Value
 into zipcodeGroup
 select zipcodeGroup;
foreach (var group in zipcodeGroups)
 Console.WriteLine("{0} favorite drinks in {1}",
 group.Distinct().Count(), group.Key);

Read data from an RSS feed
You can do some pretty powerful things with LINQ to XML. Here’s a simple query to read articles
from our blog:

Did you know that C# and the .NET Framework can...
Give you much more power over your data with advanced LINQ queries?
Access websites and other network resources using built-in classes?
Let you add advanced encryption and security to your programs?
Create complex multithreaded applications?
Let you deploy your classes so that other people can use them?
Use regular expressions to do advanced text searching?
And a whole lot more! You’ll be amazed at how powerful C# can be.

There’s a great book that explains it all!

NOTE

Joseph Albahari helped us out a whole lot by giving the first edition of this book a really thorough tech review. Thanks so much for all
your help, Joe!

It’s called C# 5.0 in a Nutshell by Joseph Albahari and Ben Albahari, and it’s a thorough guide to
everything that C# has to offer. You’ll learn about advanced C# language features, you’ll see all of the

essential .NET Framework classes and tools, and you’ll learn more about what’s really going on
under the hood of C#.
Check it out at: http://www.oreilly.com/.

http://www.oreilly.com/

Appendix B. Windows Presentation
Foundation: WPF Learner’s Guide to Head
First C#

NOTE

There are many projects in Head First C# where you build Windows Store apps that require Windows 8. In this appendix, you’ll use
WPF to build them as desktop apps instead.

Not running Windows 8? Not a problem.
We wrote many chapters in the third edition of Head First C# using the latest technology available
from Microsoft, which requires Windows 8 and Visual Studio 2013. But what if you’re using this
book at work, and you can’t install the latest version? That’s where Windows Presentation
Foundation (or WPF) comes in. It’s an older technology, so it works with Visual Studio 2010 and
2008 running on Windows editions as mature as 2003. But it’s also a core C# technology, so even if
you’re running Windows 8 it’s a good idea to get some experience with WPF. In this appendix,
we’ll guide you through building most of the Windows Store projects in the book using WPF.

Why you should learn WPF
Windows Presentation Foundation, or WPF, is a technology that’s used to build user interfaces for
programs written in .NET. WPF programs typically run on the Windows desktop and display their
user interfaces in windows. WPF is one of the most popular technologies for developing Windows
software, and familiarity with WPF is considered by many employers to be a required skill for
professional C# and .NET developers.
WPF programs use XAML (Extensible Application Markup Language) to lay out their UIs. This is
great news for Head First C# readers who have been reading about Windows Store apps. Most of the
Windows Store projects in the book can be built for WPF with few or no modifications to the
XAML code.

NOTE

Some things, like app bars and page navigation, are specific to Windows Store apps. In this appendix, we show you WPF alternatives
wherever possible.

Every C# developer should work with WPF.
Almost every programming language can be used in lots of different environments and operating
systems, and C# is no exception. If your goal is to improve as a C# developer, you should go out of
your way to work with as many different technologies as possible. And WPF in particular is
especially important for C# developers, because there are many programs that use WPF in
companies, and this will continue for a long time. If your goal is to use C# in a professional
environment, WPF is technology you’ll want to list on your resumé.
Learning WPF is also great for a hobby programmer who’s using Windows 8 and can build all of the
code in Head First C#. One of the most effective learning tools you have as a developer is seeing the
same problem solved in different ways. This appendix will guide you through building many of the
projects in Head First C# using WPF. Seeing those projects built in WPF and Windows 8 will give
you valuable perspective, and that’s one of the things that helps turn good programmers into great

developers.

Build WPF projects in Visual Studio
Creating a new WPF application in Visual Studio works just like creating other kinds of desktop
applications. If you’re using Visual Studio Express 2013, make sure you’re using Visual Studio 2013
Express for Desktop (the edition for Windows 8 will not create WPF projects). You can also create
programs using Visual Studio 2013 Professional, Premium, or Ultimate. When you create a new
project, Visual Studio displays a “New Project” dialog. Make sure you select Visual C#, and then
choose :

You can also create C# WPF applications using all editions of Visual Studio 2010, Visual C# 2010
Express, and Visual Studio 2008. Note that if you use the Express editions of Visual Studio 2010 or
2008, the project files are initially created in a temporary folder and are not saved to the location
specified in the New Project dialog until you use Save or Save All to save your files.

NOTE

WPF can also be used to build XAML browser applications that run inside Internet Explorer and other browsers. We
won’t be covering it in this appendix, but you can learn more about it here: http://msdn.microsoft.com/en-
us/library/aa970060.aspx

Microsoft has yet another technology that also uses XAML. It’s called Silverlight, and you can read about it here:
http://www.microsoft.com/silverlight/

http://msdn.microsoft.com/en-us/library/aa970060.aspx
http://www.microsoft.com/silverlight/

Did you find an error in this appendix? Please submit it using the Errata page for Head First C#
(3rd edition) so we can fix it as quickly as possible!
http://www.oreilly.com/catalog/errata.csp?isbn=0636920027812

http://www.oreilly.com/catalog/errata.csp?isbn=0636920027812

How to use this appendix
This appendix contains complete replacements for pages in Head First C# (3rd edition). We’ve
divided this appendix up into individual guides for each chapter, starting with an overview page that
has specific instructions for how to work through that chapter: what pages to replace in the chapter,
what to read in it, and any specific instructions to help you get the best learning experience.

NOTE

If you’re using an old version of Visual Studio, you’ll be able to do these projects... but things will be a little harder for
you.

The team at Microsoft did a really good job of improving the user interface of Visual Studio 2013, especially when it comes to editing
XAML. One important feature of Head First C# is its use of the Visual Studio IDE as a tool for teaching, learning, and exploration.
This is why we strongly recommend that you use the latest version of Visual Studio if possible.

However, we do understand that some readers cannot install Visual Studio 2013. (For example, a lot of our readers are using a
computer provided by an employer, and do not have administrative privileges to install new software.) We still want you to be able to
use our book, even if you’re stuck using an old version of Visual Studio! We’ll do our best to give you as much guidance as we can.
But we also need to strike a balance here, because we’re being careful not to compromise the learning for the majority of our readers
who are using the latest version of Visual Studio.

If you’re using Visual Studio 2010 or earlier, and you find yourself stuck because the IDE’s user interface doesn’t look right or menu
options aren’t where you expect them to be, we recommend that you enter the XAML and C# code by hand — or even better,
copy it and paste it into Visual Studio. Once the XAML is correct, it’s often easier to track down the feature in the IDE that generated
it.

NOTE

One more thing. This appendix has replacements for pages that you’ll find in the printed or PDF version this book, and
you can find those pages using their page numbers. However, if you’re using a Kindle or another eBook reader, you
might not be able to use the page numbers. Instead, just use the section heading to look up the section to replace. For
example, this appendix has replacements for pages 72 and 73 section called “Build an app from the ground up,” which
you can find in your eBook reader’s Table of Contents underneath Chapter 2. (Exercises like the one on page 83 and
the solution on page 85 might not show up in your reader’s Table of Contents, but you’ll get to the exercises as you go
through each chapter.) This will be much easier for you if you download the PDF of this appendix from the book’s
website.

Chapter 1

Build a game, and get a feel for the IDE.
The first project in the book walks you through building a complete — and fun! — video game. The
goal of the project is to help you get used to creating user interfaces and writing C# code using the
Visual Studio IDE.
We recommend that you read through Note in the main part of the book, and then flip to the next page
in this appendix. We designed Start with a blank application–Add a splash screen and a tile in this
appendix so that they can be 100% replacements for the corresponding pages in the book. Once
you’ve finished building the WPF version of Save the Humans, you can go on to Chapter 2 in the
book.

NOTE

The screenshots in this chapter are from Visual Studio 2013 for Windows Desktop, the latest version of Visual Studio available at this
time. If you’re using Visual Studio 2010, some of the menu options and windows in the IDE will be different. We’ll give you guidance
to help you find the right menu options.

We worked really hard to keep the page flipping to a minimum, because by reducing distractions we make it easier for
you to learn important C# concepts. After you read the first 11 pages of Chapter 1, you won’t have to flip back to the
main part of the book at all for the rest of the chapter. Then there are just five pages that you need in this appendix for
Chapter 2. After that, the book concentrates on building desktop applications, which you can build with any version of
Windows. You won’t need this appendix again until you get to Chapter 10.

Start with a blank application
Every great app starts with a new project. Choose New Project from the File menu. Make sure you
have Visual C#→Windows selected and choose WPF Application as the project type. Type “Save the
Humans” as the project name.

NOTE

If your code filenames don’t end in “.cs” you may have accidentally created a JavaScript, Visual Basic, or Visual C++ program. You
can fix this by closing the solution and starting over. If you want to keep the project name “Save the Humans,” then you’ll need to
delete the previous project folder.

➊ Your starting point is the Designer window. Double-click on MainWindow.xaml in the Solution
Explorer to bring it up (if it’s not already displayed). Find the zoom drop-down in the lower-left
corner of the designer and choose “Fit all” to zoom it out.

The bottom half of the Designer window shows you the XAML code. It turns out your “blank”
window isn’t blank at all — it contains a XAML grid. The grid works a lot like a table in an
HTML page or Word document. We’ll use it to lay out our windows in a way that lets them grow
or shrink to different screen sizes and shapes.
This part of the project has steps numbered ① to ③ . Flip the page to keep going!

THIS PROJECT CLOSELY FOLLOWS CHAPTER 1.

We want to give you a solid learning foundation, so we’ve designed this project so that it can replace Start with a blank
application-Publish your app of Head First C#. Other projects in this appendix will give you all the information that you need to
adapt the material in the book. So even when we don’t give you oneto-one page replacements, we’ll make sure you get all the
information you need to do the projects.

➋ Your app will be a grid with two rows and three columns, with one big cell in the middle that
will contain the play area. Start defining rows by hovering over the border of the window until a
line and triangle appear:

WPF apps often need to adapt to different window sizes displayed at different screen resolutions.

Laying out the window using a grid’s columns and rows allows your program to automatically adjust to the window
size.

THERE ARE NO DUMB QUESTIONS

Q: Q: But it looks like I already have many rows and columns in the grid. What are those gray lines?

A: A: The gray lines are just Visual Studio giving you a grid of guidelines to help you lay your controls out evenly in the window. You can turn them
on and off with the button. None of the lines you see in the designer show up when you run the app outside of Visual Studio. But when you
clicked and created a new row, you actually altered the XAML, which will change the way the app behaves when it’s compiled and executed.

Q: Q: Wait a minute. I wanted to learn about C#. Why am I spending all this time learning about XAML?

A: A: Because WPF apps built in C# almost always start with a user interface that’s designed in XAML. That’s also why Visual Studio has such a
good XAML editor — to give you the tools you need to build stunning user interfaces. Throughout the book, you’ll learn how to build other types
of programs with C#: Windows Store apps, which use XAML, and desktop applications and console applications, which don’t. Seeing all of these
different technologies will give you a deeper understanding of programming with C#.

➌ Do the same thing along the top border of the window — except this time create two columns, a
small one on the left-hand side and another small one on the right-hand side. Don’t worry about the
row heights or column widths — they’ll vary depending on where you click. We’ll fix them in a
minute.

When you’re done, look in the XAML window and go back to the same grid from the previous
page. Now the column widths and row heights match the numbers on the top and side of your
window.

Your grid rows and columns are now added!
XAML grids are container controls, which means they hold other controls. Grids consist of rows and
columns that define cells, and each cell can hold other XAML controls that show buttons, text, and
shapes. A grid is a great way to lay out a window, because you can set its rows and columns to resize
themselves based on the size of the screen.

Set up the grid for your window
Your program needs to be able to work on different sized windows, and using a grid is a great way to
do that. You can set the rows and columns of a grid to a specific pixel height. But you can also use the
Star setting, which keeps them the same size proportionally — to one another and also to the window
— no matter how big the window or resolution of the display.

➊ SET THE WIDTH OF THE LEFT COLUMN.
Hover over the number above the leftmost column until a drop-down menu appears. Choose Pixel
to change the star to a lock, and then click on the number to change it to 140. Your column’s
number should now look like this:

➋ REPEAT FOR THE RIGHT COLUMN AND THE BOTTOM ROW.
Make the right column 160 pixels and the bottom row 150 by choosing Pixel and typing 160 or 150
into the box.

Set your columns or rows to Pixel to give them a fixed width or height. The Star setting lets a row or column grow
or shrink proportionally to the rest of the grid. Use this setting in the designer to alter the Width or Height
property in the XAML. If you remove the Width or Height property, it’s the same as setting the property to 1*.

RELAX

It’s OK if you’re not a pro at app design...yet.

We’ll talk a lot more about what goes into designing a good app later on. For now, we’ll walk you through building this game. By
the end of the book, you’ll understand exactly what all of these things do!

➌ MAKE THE CENTER COLUMN THE DEFAULT SIZE.
Make sure that the center column width is set to . If it isn’t, click on the number above the center
column and enter 1. Don’t use the drop-down (leave it star) so it looks like the picture below.
Then make sure to look back at the other columns to make sure the IDE didn’t resize them. If it did,
just change them back to the widths you set in steps 1 and 2.

NOTE

XAML and C# are case sensitive! Make sure your uppercase and lowercase letters match example code.

➍ LOOK AT YOUR XAML CODE!
Click on the grid to make sure it’s selected, then look in the XAML window to see the code that
you built.

NOTE

If you’re using Visual Studio 2010, the IDE looks different. When you hover over a column size, you’ll see this box
to select pixel or star:

It’s possible to edit the column sizes in the designer using the older versions of the IDE, but it’s not nearly as easy
to do. We recommend that if you’re using an older version of the IDE, you create the columns and rows, and then
edit the XAML row and column definitions by hand.

Add controls to your grid
Ever notice how programs are full of buttons, text, pictures, progress bars, sliders, drop-downs, and
menus? Those are called controls, and it’s time to add some of them to your app — inside the cells
defined by your grid’s rows and columns.

➊ Expand the Common WPF Controls section of the toolbox and drag a into the bottom-
left cell of the grid.

Then look at the bottom of the Designer window and have a look at the XAML tag that the IDE
generated for you. You’ll see something like this — your margin numbers will be different
depending on where in the cell you dragged it, and the properties might be in a different order.

➋ Drag a into the lower-right cell of the grid. Your XAML will look something like
this. See if you can figure out how it determines which row and column the controls are placed in.

➌ Next, expand the All WPF Controls section of the toolbox. Drag a into the bottom-
center cell, a into the bottom-right cell (make sure it’s below the TextBlock you
already put in that cell), and a into the top center cell. Your window should now have
controls on it (don’t worry if they’re placed differently than the picture below; we’ll fix that in a
minute):

➍ You’ve got the Canvas control currently selected, since you just added it. (If not, use the pointer
to select it again.) Look in the XAML window:

It’s showing you the XAML tag for the Canvas control. It starts with <Canvas and ends with />,
and between them it has properties like Grid.Column="1" (to put the Canvas in the center
column) and Height="100" (to set its height in pixels). Try clicking in both the grid and the
XAML window to select different controls.

When you drag a control out of the toolbox and onto your window, the IDE automatically generates XAML to put it
where you dragged it.

Use properties to change how the controls look
The Visual Studio IDE gives you fine control over your controls. The Properties window in the IDE
lets you change the look and even the behavior of the controls on your window.

➊ Change the text of the button.
Right-click on the button control that you dragged onto the grid and choose Edit Text from the
menu. Change the text to: Start! and see what you did to the button’s XAML:

NOTE

When you’re editing text, use the Escape key to finish. This works for other things in the IDE, too.

➋ Use the Properties window to modify the button.
Make sure the button is selected in the IDE, and then look at the Properties window in the lower-
right corner of the IDE. Use it to change the name of the control to startButton and center the
control in the cell. Once you’ve got the button looking right, right-click on it and choose View
Source to jump straight to the <Button> tag in the XAML window.

You can use Edit→Undo (or Ctrl-Z) to undo the last change. Do it several times to undo the last few changes. If you
selected the wrong thing, you can choose Select None from the Edit menu to deselect. You can also hit Escape to
deselect the control. If it’s living inside a container like a StackPanel or Grid, hitting Escape will select the container,
so you may need to hit it a few times.

➌ Change the size and title of the window.
Select any of the controls. Then hit Escape, and keep hitting Escape until the outer <Window> tag
is displayed in the XAML editor:

Click in the XAML editor. The <Window> tag has properties for Height and Width. Look
for their corresponding values in the Properties window in the IDE:

Set the width to 1000 and height to 700, and the window immediately resizes itself to the new
size. You can use the “Fit all” option in the Zoom drop-down to show the whole window in the
designer. Notice how the center column and top row resized themselves to fit the new window,
while the other rows and columns kept their pixel sizes. Then expand the Common section in the
Properties window and set the Title property to Save the Humans. You’ll see the window title
get updated.

➍ Update the TextBlock to change its text and its font size.
Use the Edit Text right-mouse menu option to change the TextBlock so it says Avoid These (hit
Escape to finish editing the text). Then expand the Text section of the Properties window and
change the font size to 18 px. This may cause the text to wrap and expand to two lines. If it does,
drag the TextBlock to make it wider.
➎ Use a StackPanel to group the TextBlock and ContentControl.
Make sure that the TextBlock is near the top of the cell, and the ContentControl is near the bottom.
Click and drag to select both the TextBlock and ContentControl, and then right-click. Choose

 from the pop-up menu, then choose . This adds a new control to your form: a
StackPanel control. You can select the StackPanel by clicking between the two controls.
The StackPanel is a lot like the Grid and Canvas: its job is to hold other controls (it’s called a
“container”), so it’s not visible on the form. But since you dragged the TextBlock to the top of the
cell and the ContentControl to the bottom, the IDE created the StackPanel so it fills up most of the
cell. Click in the middle of the StackPanel to select it, then right-click and choose and

 to quickly reset its properties, which will set its vertical and horizontal alignment to

Stretch. Right-click on the TextBox and ContentControl to reset their properties as well. While you
have the ContentControl selected, set its vertical and horizontal alignments to Center.

The user interface for editing colors in earlier versions of Visual Studio is not as advanced, but you should still be able to set the colors
so they look correct. The Document Outline window is also a little more primitive, but it still works. However, there is not an easy
way to visually create a template in Visual Studio 2010. The easiest way to do this in the old version of the IDE is to copy the
entire <Window.Resources> section (up through the closing </Window.Resources> tag) from the downloadable source code and paste it
into your XAML just above the opening <Grid> tag. Make sure you download the code from the WPF folder! Then you can
select the ContentControl and use the Properties window to set the Template property to EnemyTemplate. Your enemies will already
look like evil aliens, so make sure you still read Dragging humans onto enemies ends the game and Your game is now playable.

Controls make the game work
Controls aren’t just for decorative touches like titles and captions. They’re central to the way your
game works. Let’s add the controls that players will interact with when they play your game. Here’s
what you’ll build next:

➊ Update the ProgressBar.
Right-click on the ProgressBar in the bottom-center cell of the grid, choose the Layout menu
option, and then choose Reset All to reset all the properties to their default values. Use the Height
box in the Layout section of the Properties window to set the Height to 20. The IDE stripped all
of the properties from the XAML, and then added the new Height:

➋ Turn the Canvas control into the gameplay area.
Remember that Canvas control that you dragged into the center square? It’s hard to see it right now
because a Canvas control is invisible when you first drag it out of the toolbox, but there’s an easy
way to find it. Click the very small button above the XAML window to bring up the Document
Outline. Click on to select the Canvas control.

Make sure the Canvas control is selected, then use the Name box in the Properties window to set
the name to playArea.

NOTE

Once you change the name, it’ll show up as playArea instead of [Canvas] in the Document Outline window.

After you’ve named the Canvas control, you can close the Document Outline window. Then use the
 and buttons in the Properties window to set its vertical and horizontal alignments to Stretch,

reset the margins, and click both buttons to set the Width and Height to Auto. Then set its
Column to 0, and its ColumnSpan (next to Column) to 3.
Finally, open the Brush section of the Properties window and use the button to give it a
gradient. Choose the starting and ending colors for the gradient by clicking each of the tabs at the

bottom of the color editor and then clicking a color.
➌ Create the enemy template.
Your game will have a lot of enemies bouncing around the screen, and you’re going to want them
all to look the same. Luckily, XAML gives us templates, which are an easy way to make a bunch
of controls look alike.
Next, right-click on the ContentControl in the Document Outline window. Choose Edit Template,
then choose Create Empty... from the menu. Name it EnemyTemplate. The IDE will add the
template to the XAML.

Your newly created template is currently selected in the IDE. Collapse the Document Outline
window so it doesn’t overlap the Toolbox. Your template is still invisible, but you’ll change that
in the next step. If you accidentally click out of the control template, you can always get back
to it by opening the Document Outline, right-clicking on the Content Control, and choosing
Edit Template→Edit Current.

NOTE

You’re “flying blind” for this next bit — the designer won’t display anything for the template until you add a control and set its
height and width so it shows up. Don’t worry; you can always undo and try again if something goes wrong.

NOTE

You can also use the Document Outline window to select the grid if it gets deselected.

➍ Edit the enemy template.
Add a red circle to the template:

NOTE

Make sure you don’t click anywhere else in the designer until you see the ellipse. That will keep the template selected.

Double-click on in the Toolbox to add an ellipse.
Set the ellipse’s Height and Width properties to 100, which will cause the ellipse to be displayed
in the cell.

Reset the Margin, HorizontalAlignment, and VerticalAlignment properties by clicking their
squares and choosing Reset.
Go to the Brush section of the Properties window and click on to select a solid-color brush.
Color your ellipse red by clicking in the color selector and dragging to the upper-right corner.

The XAML for your ContentControl now looks like this:

➎ Use the Document Outline to modify the StackPanel, TextBlock, and Grid controls.
Go back to the Document Outline (if you see at the top of the
Document Outline window, just click to get back to the Window outline). Select the StackPanel
control, make sure its vertical and horizontal alignments are set to center, and clear the margins.
Then do the same for the TextBlock, and use the Properties window to set the Foreground
property to white using the color selector.

Finally, select the Grid, then open the Brush section of properties and click to give it a black
Background.
You’re almost done laying out the form! Flip the page for the last steps...
➏ Add the human to the Canvas.
You’ve got two options for adding the human. The first option is to follow the next three
paragraphs. The second, quicker option is to just type the four lines of XAML into the IDE. It’s
your choice!
Select the Canvas control, and then open the All XAML Controls section of the toolbox and
double-click on Ellipse to add an Ellipse control to the Canvas. Select the Canvas control again
and double-click on Rectangle. The Rectangle will be added right on top of the Ellipse, so drag
the Rectangle below it.
Hold down the Shift key and click on the Ellipse so both controls are selected. Right-click on the
Ellipse, choose Group Into, and then StackPanel. Select the Ellipse, use the solid brush property

to change its color to white, and set its Width and Height properties to 10. Then select the
Rectangle, make it white as well, and change its Width to 10 and its Height to 25.
Use the Document Outline window to select the Stack Panel (make sure you see at
the top of the Properties window). Reset its margins, then click both buttons to set the Width
and Height to Auto. Then use the Name box at the top of the window to set its name to human.
Here’s the XAML you generated:

NOTE

If you choose to type this into the XAML window of the IDE, make sure you do it directly above the </Canvas> tag. That’s how
you indicate that the human is contained in the Canvas.

You might also see a Stroke property on the Ellipse and Rectangle set to "Black". (If you don’t
see one, try adding it. What happens?)
Go back to the Document Outline window to see how your new controls appear:

If human isn’t indented underneath playArea, click and drag human onto it.
➐ Add the Game Over text.
When your player’s game is over, the game will need to display a Game Over message. You’ll do
it by adding a TextBlock, setting its font, and giving it a name:
Select the Canvas, and then drag a TextBlock out of the toolbox and onto it.
Use the Name box in the Properties window to change its name to gameOverText.
Use the Text section of the Properties window to change the font to Arial, change the size to 100
px, and make it Bold and Italic.
Click on the TextBlock and drag it to the middle of the Canvas.
Edit the text so it says Game Over.

When you drag a control around a Canvas, its Left and Top properties are changed to set its position. If you change
the Left and Top properties, you move the control.

➑ Add the target portal that the player will drag the human onto.
There’s one last control to add to the Canvas: the target portal that your player will drag the human
into. (It doesn’t matter where in the Canvas you drag it.)
Select the Canvas control, and then drag a Rectangle control onto it. Use the button in the

Brushes section of the Properties window to give it a gradient. Set its Height and Width
properties to 50.
Turn your rectangle into a diamond by rotating it 45 degrees. Open the Transform section of the
Properties window to rotate the Rectangle 45 degrees by clicking and setting the angle to 45.

Finally, use the Name box in the Properties window to give it the name target.
➒ Take a minute and double-check a few things.
Open the Document Outline window and make sure that the human StackPanel, gameOverText
TextBlock, and target Rectangle are indented underneath the playArea Canvas control, which is
indented under the second [Grid]. Select the playArea Canvas control and make sure its Height
and Width are set to Auto. These are all things that could cause bugs in your game that will be
difficult to track down. Your Document Outline window should look like this:

Congratulations — you’ve finished building the window for your app!

WHO DOES WHAT?

Now that you’ve built a user interface, you should have a sense of what some of the controls do, and you’ve used a lot of different
properties to customize them. See if you can work out which property does what, and where in the Properties window in the IDE you
find it.

Solution in Note

NOTE

Here’s a hint: you can use the Search box in the Properties window to find properties —
but some of these properties aren’t on every type of control.

You’ve set the stage for the game
Your window is now all set for coding. You set up the grid that will serve as the basis of your
window, and you added controls that will make up the elements of the game.

Visual Studio gave you useful tools for laying out your window, but all it really did was help you create XAML code.
You’re the one in charge!

What you’ll do next
Now comes the fun part: adding the code that makes your game work. You’ll do it in three stages: first
you’ll animate your enemies, then you’ll let your player interact with the game, and finally you’ll add
polish to make the game look better.

Add a method that does something
It’s time to start writing some C# code, and the first thing you’ll do is add a method — and the IDE
can give you a great starting point by generating code.
When you’re editing a window in the IDE, double-clicking on any of the toolbox controls causes the
IDE to automatically add code to your project. Make sure you’ve got the window designer showing in
the IDE, and then double-click on the Start button. The IDE will add code to your project that gets run
anytime a user clicks on the button. You should see some code pop up that looks like this:

Use the IDE to create your own method
Click between the { } brackets and type this, including the parentheses and semicolon:
Notice the red squiggly line underneath the text you just typed? That’s the IDE telling you that
something’s wrong. If you click on the squiggly line, a blue box appears, which is the IDE’s way of
telling you that it might be able to help you fix the error.
Hover over the blue box and click the icon that pops up. You’ll see a box asking you to generate a
method stub. What do you think will happen if you click it? Go ahead and click it to find out!

THERE ARE NO DUMB QUESTIONS

Q: Q: What’s a method?

A: A: A method is just a named block of code. We’ll talk a lot more about methods in Chapter 2.

Q: Q: And the IDE generated it for me?

A: A: Yes...for now. A method is one of the basic building blocks of programs — you’ll write a lot of them, and you’ll get used to writing them by hand.

WATCH IT!

C# code must be added exactly as you see it here.

It’s really easy to throw off your code. When you’re adding C# code to your program, the capitalization has to be exactly
right, and make sure you get all of the parentheses, commas, and semicolons. If you miss one, your program won’t work!

Fill in the code for your method
It’s time to make your program do something, and you’ve got a good starting point. The IDE
generated a method stub for you: the starting point for a method that you can fill in with code.

➊ Delete the contents of the method stub that the IDE generated for you.

➋ Start adding code. Type the word “Content” into the method body. The IDE will pop up a
window called an IntelliSense Window with suggestions. Choose ContentControl from the list.

➌ Finish adding the first line of code. You’ll get another IntelliSense window after you type new.

➍ Before you fill in the AddEnemy() method, you’ll need to add a line of code near the top of the
file. Find the line that says public partial class MainWindow : Window and add this line
after the bracket ({):

➎ Finish adding the method. You’ll see some squiggly red underlines. The ones under

AnimateEnemy() will go away when you generate its method stub.

➏ Use the blue box and the button to generate a method stub for AnimateEnemy(), just like
you did for AddEnemy(). This time it added four parameters called enemy, p1, p2, and p3. Edit
the top line of the method to change the last three parameters. Change the property p1 to from, the
property p2 to to, and the property p3 to propertyToAnimate. Then change any int types to
double.

Flip the page to see your program run!

Finish the method and run your program
Your program is almost ready to run! All you need to do is finish your AnimateEnemy() method.
Don’t panic if things don’t quite work yet. You may have missed a comma or some parentheses —
when you’re programming, you need to be really careful about those things!

➊ Add a using statement to the top of the file.
Scroll all the way to the top of the file. The IDE generated several lines that start with using. Add
one more to the bottom of the list:

RELAX

Still seeing red? The IDE helps you track down problems.

If you still have some of those red squiggly lines, don’t worry! You probably just need to track down a typo or two. If you’re still
seeing squiggly red underlines, it just means you didn’t type in some of the code correctly. We’ve tested this chapter with a lot of
different people, and we didn’t leave anything out. All the code you need to get your program working is in these pages.

➋ Add code that creates an enemy bouncing animation.
You generated the method stub for the AnimateEnemy() method on the previous page. Now you’ll
add its code. It makes an enemy start bouncing across the screen.

➌ Look over your code.
You shouldn’t see any errors, and your Error List window should be empty. If not, double-click on
the error in the Error List. The IDE will jump your cursor to the right place to help you track down
the problem.

NOTE

If you can’t see the Error List window, choose Error List from the View menu to show it. You’ll learn more about using the error
window and debugging your code in Chapter 2.

Here’s a hint: if you move too many windows around your IDE, you can always reset by choosing Reset Window
Layout from the Window menu.

➍ Start your program.
Find the button at the top of the IDE. This starts your program running.

➎ Now your program is running!
When you start your program, the main window will be displayed. Click the “Start!” button a few
times. Each time you click it, a circle is launched across your canvas.

➏ Stop your program.

Press Alt-Tab to switch back to the IDE. The button in the toolbar has been replaced with
to break, stop, and restart your program. Click the square to stop the program running.

Here’s what you’ve done so far
Congratulations! You’ve built a program that actually does something. It’s not quite a playable game,
but it’s definitely a start. Let’s look back and see what you built.

Visual Studio can generate code for you, but you need to know what you want to build BEFORE you start building it. It
won’t do that for you!

Here’s the solution for the “Who Does What” exercise in Who Does What?. We’ll give you the answers to the pencil-
and-paper puzzles and exercises, but they won’t always be on the next page.

WHO DOES WHAT?

solution

Now that you’ve built a user interface, you should have a sense of what some of the controls do, and you’ve used a lot of different
properties to customize them. See if you can work out which property does what, and where in the Properties window in the IDE you
find it.

Add timers to manage the gameplay
NOTE

The MainWindow.Xaml.cs file you’ve been editing contains the code for a class called MainWindow. You’ll learn about classes in
Chapter 3.

Let’s build on that great start by adding working gameplay elements. This game adds more and more
enemies, and the progress bar slowly fills up while the player drags the human to the target. You’ll
use timers to manage both of those things.

➊ ADD ANOTHER LINE TO THE TOP OF YOUR C# CODE.
You’ll need to add one more using line right below the one you added a few pages ago:

Then go up to the top of the file where you added that Random line. Add three more lines:

➋ ADD A METHOD FOR ONE OF YOUR TIMERS.
Find this code that the IDE generated:

Put your cursor right after the semicolon, hit Enter two times, and type enemyTimer. (including
the period). As soon as you type the dot, an IntelliSense window will pop up. Choose Tick from
the IntelliSense window and type the following text. As soon as you enter += the IDE pops up a
box:

Timers “tick” every time interval by calling methods over and over again. You’ll use one timer to add enemies
every few seconds, and the other to end the game when time expires.

Press the Tab key. The IDE will pop up another box:

Press Tab one more time. Here’s the code the IDE generated for you:

➌ FINISH THE MAINWINDOW() METHOD.

NOTE

It’s normal to add parentheses () when writing about a method.

You’ll add another Tick event handler for the other timer, and you’ll add two more lines of code.
Here’s what your finished MainWindow() method and the two methods the IDE generated for you
should look like:

B RAIN POWER

Right now your Start button adds bouncing enemies to the play area. What do you think you’ll need to do to make it start the
game instead?

➍ ADD THE ENDTHEGAME() METHOD.
Go to the new targetTimer_Tick() method, delete the line that the IDE generated, and add the
following code. Type EndTheGame() and generate a method stub for it, just like before:

Notice how progressBar has an error? That’s OK. We did this on purpose (and we’re not even
sorry about it!) to show you what it looks like when you try to use a control that doesn’t have a
name, or has a typo in the name. Go back to the XAML code (it’s in the other tab in the IDE), find
the ProgressBar control that you added to the bottom row, and change its name to progressBar.
Next, go back to the code window and generate a method stub for EndTheGame(), just like you did
a few pages ago for AddEnemy(). Here’s the code for the new method:

NOTE

If you closed the Designer tab that had the XAML code, double-click on MainWindow.xaml in the Solution Explorer window to
bring it up.

This method ends the game by stopping the timers, making the Start button visible again, and adding the GAME
OVER text to the play area.

READY B AKE CODE

We’re giving you a lot of code to type in.

By the end of the book, you’ll know what all this code does — in fact, you’ll be able to write code just like it on your own.

For now, your job is to make sure you enter each line accurately and to follow the instructions exactly. This will get you used to
entering code and will help give you a feel for the ins and outs of the IDE..

Make the Start button work
Remember how you made the Start button fire circles into the Canvas? Now you’ll fix it so it actually
starts the game.

➊ Make the Start button start the game.
Find the code you added earlier to make the Start button add an enemy. Change it so it looks like
this:

➋ Add the StartGame() method.
Generate a method stub for the StartGame() method. Here’s the code to fill into the stub method
that the IDE added:

➌ Make the enemy timer add the enemy.
Find the enemyTimer_Tick() method that the IDE added for you and replace its contents with
this:

Are you seeing errors in the Error List window that don’t make sense? One misplaced
comma or semicolon can cause two, three, four, or more errors to show up. Don’t waste your
time trying to track down every typo! Just go to the Head First Labs web page — we made
it really easy for you to copy and paste all the code in this program.
There’s also a link to the Head First C# forum, which you can check for tips to get this game
working!

NOTE

Once you’re used to working with code, you’ll be good at spotting those missing parentheses, semicolons, etc.

Run the program to see your progress
Your game is coming along. Run it again to see how it’s shaping up.

B RAIN POWER

What do you think you’ll need to do to get the rest of your game working?

Flip the page to find out!

Add code to make your controls interact with the player
Make sure you switch back to the IDE and stop the app before you make more changes to the
code.
You’ve got a human that the player needs to drag to the target, and a target that has to sense when the
human’s been dragged to it. It’s time to add code to make those things work.

➊ Go to the XAML designer and use the Document Outline window to select human (remember,
it’s the StackPanel that contains a Circle and a Rectangle). Then go to the Properties window and
press the button to switch it to show event handlers. Find the MouseDown row and double-
click in the empty box.

NOTE

You’ll learn more about the event handlers in the Properties window in Chapter 4.

Now go back and check out what the IDE added to your XAML for the StackPanel:

It also generated a method stub for you. Right-click on human_MouseDown in the XAML and
choose “Navigate to Event Handler” to jump straight to the C# code:

➋ Fill in the C# code:

➌ Use the Document Outline window to select the Rectangle named target, and then use the
event handlers view of the Properties window to add a MouseEnter event handler. Here’s the
code for the method:

NOTE

Make sure you add the right event handler! You added a MouseDown event handler to the human, but now you’re adding a
MouseEnter event handler to the target.

When the Properties window is in the mode where it displays event handlers, double-clicking on an empty event
handler box causes the IDE to add a method stub for it.

➍ Now you’ll add two more event handlers, this time to the playArea Canvas control. You’ll
need to find the [Grid] in the Document Outline, select it, and set its name to grid. Then you can
add these methods to handle the MouseMove and MouseLeave event handlers for the Canvas:

NOTE

You’ll need to switch your Properties window back to show properties instead of event handlers.

NOTE

Make sure you put the right code in the correct event handler! Don’t accidentally swap them.

Dragging humans onto enemies ends the game
When the player drags the human into an enemy, the game should end. Let’s add the code to do that.
Go to your AddEnemy() method and add one more line of code to the end. Use the IntelliSense
window to fill in enemy.PointerEntered from the list:

Choose MouseEnter from the list. (If you choose the wrong one, don’t worry — just backspace over
it to delete everything past the dot. Then enter the dot again to bring up the IntelliSense window.)
Next, add an event handler, just like you did before. Type += and then press Tab:

Then press Tab again to generate the stub for your event handler:

Now you can go to the new method that the IDE generated for you and fill in the code:

Your game is now playable
Run your game — it’s almost done! When you click the Start button, your play area is cleared of any
enemies, and only the human and target remain. You have to get the human to the target before the
progress bar fills up. Simple at first, but it gets harder as the screen fills with dangerous alien
enemies!

Make your enemies look like aliens
Red circles aren’t exactly menacing. Luckily, you used a template. All you need to do is update it.

➊ Go to the Document Outline, right-click on the ContentControl, choose Edit Template, and then
Edit Current to edit the template. You’ll see the template in the XAML window. Edit the XAML
code for the ellipse to set the width to 75 and the fill to Gray. Then add to add a
black outline. Here’s what it should look like (you can delete any additional properties that may
have inadvertently been added while you worked on it):

WATCH IT!

Seeing events instead of properties?

You can toggle the Properties window between displaying properties or events for the selected control by clicking the
wrench or lightning bolt icons.

➋ Drag another Ellipse control out of the toolbox on top of the existing ellipse. Change its Fill to
black, set its width to 25, and its height to 35. Set the alignment and margins like this:

NOTE

You can also “eyeball” it (excuse the pun) by using the mouse or arrow keys to drag the ellipse into place. Try using Copy and
Paste in the Edit menu to copy the ellipse and paste another one on top of it.

➌ Use the button in the Transforms section of the Properties window to add a Skew transform:

➍ Drag one more Ellipse control out of the toolbox on top of the existing ellipse. Change its fill to
Black, set its width to 25, and set its height to 35. Set the alignment and margins like this: and add
a skew like this:

and add a skew like this:

Here’s the final XAML for the updated enemy ControlTemplate you created:

NOTE

See if you can get creative and change the way the human, target, play area, and enemies look.

NOTE

And don’t forget to step back and really appreciate what you built. Good job!

THERE’S JUST ONE MORE THING YOU NEED TO DO... PLAY YOUR GAME!

Chapter 2

Start diving into code with WPF projects.
The second chapter gets you started writing C# code, and most of the chapter is focused around
building Windows Store apps.
We recommend that you do the following:

Read Chapter 2 in the main part of the book through C# uses familiar math symbols.
We provide a replacement for Use the debugger to see your variables change in this appendix.
After that, you can read IDE Tip: , Loops perform an action over and over, and if/else statements
make decisions in the book.
Then there are replacements for Build an app from the ground up and Exercise Solution, where
you build a program from scratch. You can follow the rest of the project in the book.
The book will work just fine for you through Code Magnets.
There’s an exercise in Note, and its solution is in Exercise Solution. We provide replacements for
those pages in this PDF.

Once you finish that exercise, the chapter no longer requires any Windows Store apps or Windows 8.
You’ll be able to continue on in the book through Chapter 9, and you can do the first and second labs.

Use the debugger to see your variables change
The debugger is a great tool for understanding how your programs work. You can use it to see the
code on the previous page in action.

DEB UG THIS!

➊ CREATE A NEW WPF APPLICATION PROJECT.
Drag a TextBlock onto your page and give it the name output. Then add a button and double-click it to add a method called
Button_Click(). The IDE will automatically open that method in the code editor. Enter all the code on the previous page into the
method.
➋ INSERT A BREAKPOINT ON THE FIRST LINE OF CODE.
Right-click on the first line of code (int number = 15;) and choose Insert Breakpoint from the Breakpoint menu. (You can also
click on it and choose Debug→Toggle Breakpoint or press F9.)

Creating a new WPF Application project will tell the IDE to create a new project with a blank window. You might
want to name it something like UseTheDebugger (to match the header of this page). You’ll be building a whole lot of
programs throughout the book, and you may want to go back to them later.
Flip back to IDE Tip: in the book and keep going!

NOTE

We left this page blank so that you can read this appendix in two-page mode, so the exercise and its solution appear on different two-
page spreads. If you’re viewing this as a PDF in two-page mode, you may want to turn on the cover page so the even pages are on
the right and the odd pages are on the left.

Build an app from the ground up
NOTE

Make sure you choose a sensible name for this project, because you’ll refer back to it later in the book.

The real work of any program is in its statements. You’ve already seen how statements fit into a
window. Now let’s really dig into a program so you can understand every line of code. Start by
creating a new Visual C# WPF Application project. Open the main window and use the IDE to
modify it by adding three rows and two columns to the grid, and then adding four button controls and
a TextBlock to the cells.

EXERCISE

Build this window

NOTE

When you see these sneakers, it means that it’s time for you to come up with code on your own.

EXERCISE SOLUTION

NOTE

Here’s our solution to the exercise. Does your solution look similar? Are the line breaks different, or
the properties in a different order? If so, that’s OK!

A lot of programmers don’t use the IDE to create their XAML — they build it by hand. If we asked you to type in the
XAML by hand instead of using the IDE, would you be able to do it?

Try removing the HorizontalAlignment or VerticalAlignment property from one of the buttons.
It expands to fill the entire cell horizontally or vertically if the alignment isn’t set.

B RAIN POWER

Why do you think the left column and top row are given the number 0, not 1? Why is it OK to leave out the Grid.Row and
Grid.Column properties for the top-left cell?

EXERCISE

NOTE

We’ll give you a lot of exercises like this throughout the book. We’ll give you the answer in a couple
of pages. If you get stuck, don’t be afraid to peek at the answer — it’s not cheating!

NOTE

You’ll be creating a lot of applications throughout this book, and you’ll need to give each one a
different name. We recommend naming this one “PracticeUsingIfElse”. It helps to put programs
from a chapter in the same folder.

Time to get some practice using if/else statements. Can you build this program?

Here’s the conditional test to see if the checkbox is checked:

enableCheckbox.IsChecked == true

If that test is NOT true, then your program should execute two statements:

If the user clicks the button and the box IS checked, change the TextBlock so it either shows on the left-hand side or on
the right-hand side.

If the label’s Text property is currently equal to "Right" then the program should change the text to "Left" and set its
HorizontalAlignment property to HorizontalAlignment.Left. Otherwise, set its text to "Right"and its HorizontalAlignment
property to HorizontalAlignment.Right. This should cause the program to flip the label back and forth when the user presses the
button — but only if the checkbox is checked.

EXERCISE SOLUTION

Time to get some practice using if/else statements. Can you build this program?

Here’s the XAML code for the grid:

NOTE

We added line breaks as usual to make it easier to read on the window.

And here’s the C# code for the button’s event handler method:

private void changeText_Click(object sender, RoutedEventArgs e)
{
 if (enableCheckbox.IsChecked == true)
 {
 if (labelToChange.Text == "Right")
 {
 labelToChange.Text = "Left";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Left;
 }
 else
 {
 labelToChange.Text = "Right";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Right;
 }
 }
 else
 {
 labelToChange.Text = "Text changing is disabled";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Center;
 }
}

You won’t use XAML for the next part of the book.
The rest of Chapter 2 doesn’t require Windows 8 and can be done with Visual Studio 2010, or using a
Windows operating system as early as Windows 2003. You won’t need to replace any pages in the
book until you get to Chapter 10. That’s because the next part of the book uses Windows Forms
Application (or WinForms) projects. These C# projects use an older technology for building desktop
apps. You’ll use WinForms as a teaching and learning tool, just like you’ve been using the IDE to
learn and explore C# and XAML.

NOTE

Have a look at Windows Desktop apps are easy to build, which explains why switching to WinForms is a good tool for getting C#
concepts into your brain.

NOTE

This applies to WPF, too! Building these WinForms projects will help get core C# concepts into your brain faster, and that’s the
quickest route to learning WPF.

Sometimes older technologies make great learning tools.
If you want to build a desktop app, WPF is a superior tool for doing it. But if you want to learn C#, a
simpler technology can make it easier to make concepts stick. And there’s another important reason
for using WinForms. When you see the same thing done in more than one way, you learn a lot from
seeing what they have in common, and also what’s different between them — like in Rebuild your app
for Windows Desktop, when you rebuild the WPF you just built using WinForms. We’ll get back to
XAML in Chapter 10, and by that time you’ll have laid down a solid foundation that will make it
much easier for those WPF concepts to stick.

WATCH IT!

Some chapters use C# features introduced in .NET 4.0 that are not supported by Visual Studio 2008.

If you’re using Visual Studio 2008, you may run into a few problems once you reach the end of Chapter 3. That’s because the
latest version of the .NET Framework available in 2008 was 3.5. And that’s a problem, because the book uses features of C#
that were only introduced in .NET 4.0. In Chapter 3 we’ll teach you about object initializers, and in Chapter 8 you’ll learn
about collection initializers and covariance — and if you’re using Visual Studio 2008, the code for those examples won’t
compile because in 2008 those things hadn’t been added to C# yet! If you absolutely can’t install a newer version of Visual
Studio, you’ll still be able to do almost all the exercises, but you won’t be able to use these features of C#.

NOTE

We left this page blank so that you can read this appendix in two-page mode, so the exercise and its solution appear on different two-
page spreads. If you’re viewing this as a PDF in two-page mode, you may want to turn on the cover page so the even pages are on
the right and the odd pages are on the left.

Chapter 10

You can port your WinForms apps to WPF.
If you’ve completed Chapter 3–Chapter 9 and finished all the exercises and labs so far, then you’ve
written a lot of code. In this chapter, you’ll revisit some of that code and use it as a springboard for
learning WPF.
Here’s how we recommend that you work through Chapter 10:

We recommend that you follow the chapter in the main part of the book through Use the IDE to
explore the object graph. This includes doing everything in Behind the scenes, the “Sharpen your
Pencil” exercises, and the “Do this!” exploration project in Use the IDE to explore the object
graph.
This appendix has replacement pages for Windows Store apps use XAML to create UI objects–
505, so use those instead.
Use the grid system to lay out app pages applies only to Windows Store projects, so you can
read it but it won’t help you with WPF.
After that, use Exercise Solution–Brain Power from this appendix.
Finally, read XAML controls can contain text...and more and There are no Dumb Questions in the
book. Once you’ve read them, you can replace the rest of the chapter (Use data binding to build
Sloppy Joe a better menu–Exercise Solution) with pages in this appendix.

WPF applications use XAML to create UI objects
Do this!
When you use XAML to build the user interface for a WPF application, you’re building out an object
graph. And just like with WinForms, you can explore it with IDE’s Watch window. Open the “fun
with if-else statements” program from Chapter 2. Then open MainWindow. xaml.cs, place a
breakpoint in the constructor on the call to InitializeComponent(), and use the IDE to explore
the app’s UI objects.

➊ Start debugging, then press F10 to step over the method. Open a Watch window using the
Debug menu. Start by choosing Debug→Windows→Watch→Watch 1, and add a watch for this:

➋ Now have another look at the XAML that defines the page:
<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Button x:Name="changeText" Content="Change the label if checked"
 HorizontalAlignment="Center" Click="changeText_Click"/>

 <CheckBox x:Name="enableCheckbox" Content="Enable label changing"
 HorizontalAlignment="Center" IsChecked="true"
 Grid.Column="1"/>

 <TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
 Text="Press the button to set my text"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Grid.ColumnSpan="2"/>
</Grid>

The XAML that defines the controls on a page is turned into a Page object with fields and properties that contain
references to UI controls.

➌ Add some of the labelToChange properties to the Watch window:

The app automatically sets the properties based on your XAML:
<TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
 Text="Press the button to set my text" →
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Grid.ColumnSpan="2"/>

But try putting labelToChange.Grid or labelToChange.ColumnSpan into the Watch window.
The control is a Windows.UI.Controls.TextBlock object, and that object doesn’t have those
properties. Can you guess what’s going on with those XAML properties?
➍ Stop your program, open MainWindow.xaml.cs, and find the class declaration for MainWindow.
Take a look at the declaration — it’s a subclass of Window. Hover over Window so the IDE shows
you its full class name:

Now start your program again and press F10 to step over the call to InitializeComponent().
Go back to the Watch window and expand this >> base >> base to traverse back up the
inheritance hierarchy.

Take a little time and explore the objects that your XAML generated. We’ll dig into some of these
objects later on in the book. For now, just poke around and get a sense of how many objects are
behind your app.

Redesign the Go Fish! form as a WPF application
The Go Fish! game that you built in Chapter 8 would make a great WPF application. Open Visual
Studio and create a new WPF Application project (just like you did for Save the Humans). Over the
next few pages, you’ll redesign it in XAML, with a main window that adjusts its content as it’s
resized. Instead of using Windows Forms controls on a form, you’ll use WPF XAML controls.

DO THIS!

Here’s how those controls will look on the app’s main window:

The controls will be contained in a grid, with rows and columns that expand or contract based on the
size of the window. This will allow the game to shrink or grow if the user resizes the window:

Page layout starts with controls
WPF apps and WinForms have one thing in common: they both rely on controls to lay out your page.
The Go Fish! page has two buttons, a ListBox to show the hand, a TextBox for the user to enter the
name, and four TextBlock labels. It also has two ScrollViewer controls with a white background to
display the game progress and books.

The XAML for the main window starts with an opening <Window> tag. The title property sets the title
of the window to “Go Fish!” Setting the Height and Width property changes the window size — and
you’ll see the size change in the designer as soon as you change those properties. Use the Background
property to give it a gray background.
Here’s the updated <Window> opening tag. We named our project GoFish — if you use a different
name, the first line will have that name in its x:Class property.

We’ll use a StackPanel to put the TextBox for the player’s name and the Start button in one cell:
➊

<TextBlock Text="Your Name" />

<StackPanel Orientation="Horizontal" Grid.Row="1">
 <TextBox x:Name="playerName" FontSize="12" Width="150" />

➋

Each label on the page (“Your name,” “Game progress,” etc.) is a TextBlock. Use the Margin
property to add a 10-pixel margin above the label:

<TextBlock Text="Game progress" Grid.Row="2"
 Margin="0,10,0,0"/>

A ScrollViewer control displays the game progress, with scrollbars that appear if the text is too
big for the window:
➌

<ScrollViewer Grid.Row="3" FontSize="12"
 Background="White" Foreground="Black" />

Here’s another TextBlock and ScrollViewer to display the books. The default vertical and
horizontal alignment for the ScrollViewer is Stretch, and that’s going to be really useful. We’ll
set up the rows and columns so the ScrollViewer controls expand to fit any screen size.
➍

<TextBlock Text="Books"
 Margin="0,10,0,0" Grid.Row="4"/>

<ScrollViewer FontSize="12" Background="White" Foreground="Black"
 Grid.Row="5" Grid.RowSpan="2" />

We used a small 40-pixel column to add space, so the ListBox and Button controls need to go in
the third column. The ListBox spans rows 2–6, so we gave it Grid.Row="1" and
Grid.RowSpan="5" — this will also let the ListBox grow to fill the page.
➎

The “Ask for a card” button has its horizontal and vertical alignment set to Stretch so that it fills
up the cell. The 20-pixel margin at the bottom of the ListBox adds a small gap.

➏

<Button x:Name="askForACard" Content="Ask for a card"
 HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Grid.Row="6" Grid.Column="2"/>

We’ll finish this grid on the next page

Rows and columns can resize to match the page size
Grids are very effective tools for laying out windows because they help you design pages that can be
displayed on many different devices. Heights or widths that end in * adjust automatically to different
screen geometries. The Go Fish! window has three columns. The first and third have widths of 5* and
2*, so they will grow or shrink proportionally and always keep a 5:2 ratio. The second column has a
fixed width of 40 pixels to keep them separated. Here’s how the rows and columns for the window
are laid out (including the controls that live inside them):

Here’s how the row and column definitions make the window layout work:

EXERCISE

Use XAML to redesign each of these Windows desktop forms as WPF applications. Create a new WPF Application project for each
of them, and modify each page by updating or replacing the grid and adding controls. You don’t need to get them working. Just create
the XAML so they match the screenshots.

NOTE

Use a Border control to draw a border around ScrollViewers.

If you look in the Properties window or look at the IntelliSense window, you’ll see that the
ScrollViewer control has BorderBrush and BorderThickness properties. This is a little misleading,
because these properties don’t actually do anything. ScrollViewer is a subclass of ContentControl,
and it inherits those properties from ContentControl but doesn’t actually do anything with them.

Luckily, there’s an easy way to draw a border around a ScrollViewer, or any other control, by using
a Border control. Here’s XAML code that you can use in the Breakfast for Lumberjacks window:

Use StackPanels to design this window. Its height is set to 300, its width is 525, and its ResizeMode property is set to NoResize. It
uses two <Border> controls, one to draw a border around the top StackPanel and one to draw a border around the ScrollViewer.

NOTE

Use the Content property to add text to this ScrollViewer.  will add line breaks. Give it a 2-
pixel white border using BorderThickness and BorderBrush, and a height of 250.

Use a Grid to design this form. It has seven rows with height set to Auto so they expand to fit their contents, and one with the default
height (which is the same as 1*) so that row expands with the grid. Use StackPanels to put multiple controls in the same row. Each
TextBlock has a 5-pixel margin below it, and the bottom two TextBlocks each have a 10-pixel margin above them. Use the <Window>
properties

Get your pages to look just like these screenshots by adding dummy data to the controls that would normally be filled in using the
methods and properties in your classes.

EXERCISE SOLUTION

Use XAML to redesign each of these Windows desktop forms as WPF applications. Create a new WPF Application project for each
of them, and modify each page by updating or replacing the grid and adding controls. You don’t need to get them working. Just create
the XAML so they match the screenshots.

Use data binding to build Sloppy Joe a better menu
Remember Sloppy Joe from Chapter 4? Well, he’s heard that you’re becoming an XAML pro, and he
wants a WPF app for his sandwich menu. Let’s build him one.
Here’s the window we’re going to build.
It uses one-way data binding to populate a ListView and a Run inside a TextBlock, and it uses two-
way data binding for a TextBox, using one of its <Run> tags to do the actual binding.

We’ll need an object with properties to bind to.
The Window object will have an instance of the MenuMaker class, which has three public properties:
an int called NumberOfItems, an ObservableCollection of menu items called Menu, and a
DateTime called GeneratedDate.

The Window object creates an instance of MenuMaker and uses it for the data context.
The constructor for the Page object will set the StackPanel’s DataContext property to an instance of
MenuMaker. The binding will all be done in XAML.
The TextBox uses two-way binding to set the number of menu items.

That means the TextBox doesn’t need an x:Name property. Since it’s bound to the NumberOfItems
property in the MenuMaker object, we don’t need to write any C# code that refers to it.
The button tells the MenuMaker to update.
The button calls the MenuMaker’s UpdateMenu() method, which updates its menu by clearing the
ObservableCollection and then adding new MenuItems to it. The ListView will automatically
update anytime the ObservableCollection changes.
Here’s a coding challenge. Based on what you’ve read so far, how much of the new and
improved Sloppy Joe app can you build before you flip the page and see the code for it?

DO THIS!

➊ Create the project.
Create a new WPF Application project. You’ll keep the default window size. Set the window title to Welcome to Sloppy Joe’s.
➋ Add the new and improved MenuMaker class.
You’ve come a long way since Chapter 4. Let’s build a well-encapsulated class that lets you set the number of items with a
property. You’ll create an ObservableCollection of MenuItem in its constructor, which is updated every time the UpdateMenu()
is called. That method will also update a DateTime property called GeneratedDate with a timestamp for the current menu. Add
this MenuMaker class to your project:

USE DATETIME TO WORK WITH DATES

You’ve already seen the DateTime type that lets you store a date. You can also use it to create and modify dates and times. It
has a static property called Now that returns the current time. It also has methods like AddSeconds() for adding and
converting seconds, milliseconds, days, etc., and properties like Hour and DayOfWeek to break down the date. How timely!

➌ Add the MenuItem class.
You’ve already seen how you can build more flexible programs if you use classes instead of strings to store data. Here’s a simple
class to hold a menu item — add it to your project, too:

➍ Build the XAML page.
Here’s the screenshot. Can you build it using StackPanels? The TextBox has a width of 100. The bottom TextBlock has the style
BodyTextStyle, and it has two <Run> tags (the second one just holds the date).

NOTE

Don’t add dummy data this time. We’ll let data binding do that for us.

Can you build this page on your own just from the screenshot before you see the XAML?
➎ Add object names and data binding to the XAML.
Here’s the XAML that gets added to MainWindow.xaml. We used a StackPanel to lay it out, so you can replace the opening
<Grid> and closing </Grid> tags with the XAML below. We named the button newMenu. Since we used data binding of the
ListView, TextBlock, and TextBox, we didn’t need to give them names. (Here’s a shortcut. We didn’t even really need to name

the button; we did it just to get the IDE to automatically add an event handler named newMenu_Click when we double-
clicked it in the IDE. Try it out!)

➏ Add the code-behind for the page to MainWindow.xaml.cs.
The page constructor creates the menu collection and the MenuMaker instance and sets the data contexts for the controls that use
data binding. It also needs a MenuMaker field called menuMaker.

You just need to set the data context for the outer StackPanel. It will pass that data context on to all the controls contained inside
it.
Finally, double-click on the button to generate a method stub for its Click event handler. Here’s the code for it — it just updates
the menu:

private void newMenu_Click(object sender, RoutedEventArgs e) {
 menuMaker.UpdateMenu();
}

There’s an easy way to rename an event handler so that it updates XAML and C# code at the same time. Flip to
leftover #8 in Appendix A to learn more about the refactoring tools in the IDE.

Now run your program! Try changing the TextBox to different values. Set it to 3, and it generates a
menu with three items:

Now you can play with binding to see just how flexible it is. Try entering “xyz” or no data at all into
the TextBox. Nothing happens! When you enter data into the TextBox, you’re giving it a string. The
TextBox is pretty smart about what it does with that string. It knows that its binding path is
NumberOfItems, so it looks in its data context to see if there are any properties with that name, and
then does its best to convert the string to whatever that property’s type is.

NOTE

Keep your eye on the generated date. It’s not updating, even though the menu updates. Hmm, maybe there’s still something we need
to do.

Use static resources to declare your objects in XAML
When you build a page with XAML, you’re creating an object graph with objects like StackPanel,
Grid, TextBlock, and Button. And you’ve seen that there’s no magic or mystery to any of that — when
you add a <TextBox> tag to your XAML, then your page object will have a TextBox field with a
reference to an instance of TextBox. And if you give it a name using the x:Name property, your code-
behind C# code can use that name to access the TextBox.
You can do exactly the same thing to create instances of almost any class and store them as fields in
your page by adding a static resource to your XAML. And data binding works particularly well with
static resources, especially when you combine it with the visual designer in the IDE. Let’s go back to
your program for Sloppy Joe and move the MenuMaker to a static resource.

➊ DELETE THE MENUMAKER FIELD FROM THE CODE-BEHIND.
You’re going to be setting up the MenuMaker class and the data context in the XAML, so delete
these lines from your C# code:

MenuMaker menuMaker = new MenuMaker();

public MainWindow() {
 this.InitializeComponent();

 pageLayoutStackPanel.DataContext = menuMaker;
}

➋ ADD YOUR PROJECT’S NAMESPACE TO THE XAML.
Look at the top of the XAML code for your window, and you’ll see that the opening tag has a set of
xmlns properties. Each of these properties defines a namespace:

Start adding a new xmlns property:

Here’s what you’ll end up with:

➌ ADD THE STATIC RESOURCE TO YOUR XAML AND SET THE DATA CONTEXT.
Add a <Window.Resources> tag to the top of the XAML (just under the opening tag), and add a
closing </Window.Resources> tag for it. Then type <local: between them to pop up an
IntelliSense window:

You can add static resources only if their classes have parameterless constructors. This makes sense! If the
constructor has a parameter, how would the XAML page know what arguments to pass to it?

The window shows all the classes in the namespace that you can use. Choose MenuMaker. Then
give it the resource key menuMaker using the x:Key XAML property:

<local:MenuMaker x:Key="menuMaker"/>

Now your page has a static MenuMaker resource with the key menuMaker.
➍ SET THE DATA CONTEXT FOR YOUR STACKPANEL AND ALL OF ITS CHILDREN.
Then go to the outermost StackPanel and set its DataContext property:

<StackPanel Margin="5"
 DataContext="{StaticResource ResourceKey=menuMaker}">

Finally, modify the button’s Click event handler to find the static resource and method to update the
menu:

Your program will still work, just like before. But did you notice what happened in the IDE when
you added the data context to the XAML? As soon as you added it, the IDE created an instance of
MenuMaker and used its properties to populate all the controls that were bound to it. You got a
menu generated immediately, right there in the designer — before you even ran your program.
Neat!

Use a data template to display objects
When you show items in a list, you’re showing contents of ListViewItem (which you use for
ListViews), ListBoxItem, or ComboBoxItem controls, which get bound to objects in an
ObservableCollection. Each ListViewItem in the Sloppy Joe menu generator is bound to a
MenuItem object in its Menu collection. The ListViewItem objects call the MenuMaker objects’
ToString() methods by default, but you can use a data template that uses data binding to display
data from the bound object’s properties.
Modify the <ListView> tag to add a basic data template. It uses the basic {Binding} to call the
item’s ToString().

Change your data template to add some color to your menu.

Go crazy! The data template can contain any controls you want.

THERE ARE NO DUMB QUESTIONS

Q: Q: So I can use a StackPanel or a Grid to lay out my page. I can use XAML static resources, or I can use fields in code-behind. I can set
properties on controls, or I can use data binding. Why are there so many ways to do the same things?

A: A: Because C# and XAML are extremely flexible tools for building apps. That flexibility makes it possible to design very detailed pages that work on
many different devices and displays. This gives you a very large toolbox that you can use to get your pages just right. So don’t look at it as a confusing
set of choices; look at it as many different options that you can choose from.

Q: Q: I’m still not clear on how static resources work. What happens when I add a tag inside <Window.Resources>?

A: A: When you add that tag, it updates the Window object and adds static resources. In this case, it created an instance of MenuMaker and added it to
the Window object’s resources. The Window object contains a dictionary called Resources, and if you use the debugger to explore the Window object
after you add the tag you can find that it contains an instance of MenuMaker. When you declared the resource, you used x:Key to assign the resource a
key. That allowed you to use that key to look up your MenuMaker object in the window’s static resources with the FindResource() method.

Q: Q: I used x:Key to set my MenuMaker resource’s key. But earlier in the chapter, I used x:Name to give names to my controls. What’s the
difference? Why did I have to use FindResources() to look up the MenuMaker object — couldn’t I give it a name instead?

A: A: When you add a control to a WPF window, it actually adds a field to the Window object that’s created by the XAML. When you use the x:Name
property, you give it a name that you can use in your code. If you don’t give it a name, the control object is still created as part of the Window object’s
graph. However, if you give it a name, then the XAML object is given a field with that name with a reference to that control. You can see this in your
code by putting a breakpoint in the button’s event handler and adding newMenu to the Watch window. You’ll see that it refers to a
System.Windows.Controls. Button object whose Content property is set to “Make a new menu.”
Resources are treated differently: they’re added to a dictionary in the Window object. The FindResource() method uses the key specified in the x:Key
markup. Set the same breakpoint and try adding this.Resources["menuMaker"] to the Watch window. This time, you’ll see a reference to your
MenuMaker object, because you’re looking it up in the Resources dictionary.

Q: Q: Does my binding path have to be a string property?

A: A: No, you can bind a property of any type. If it can be converted between the source and property types, then the binding will work. If not, the data
will be ignored. And remember, not all properties on your controls are text, either. Let’s say you’ve got a bool in your data context called EnableMyObject.
You can bind it to any Boolean property, like IsEnabled. This will enable or disable the control based on the value of the EnableMyObject property:

IsEnabled="{Binding EnableMyObject}"

Of course, if you bind it to a text property it’ll just print True or False (which, if you think about it, makes perfect sense).

Q: Q: Why did the IDE display the data in my form when I added the static resource and set the data context in XAML, but not when I did it in
C#?

A: A: Because the IDE understands your XAML, which has all the information that it needs to create the objects to render your page. As soon as you
added the MenuMaker resource to your XAML code, the IDE created an instance of MenuMaker. But it couldn’t do that from the new statement in its
constructor, because there could be many other statements in the constructor, and they would need to be run. The IDE runs the code-behind C# code
only when the program is executed. But if you add a static resource to the page, the IDE will create it, just like it creates instances of TextBlock,
StackPanel, and the other controls on your page. It sets the controls’ properties to show them in the designer, so when you set up the data context and
binding paths, those got set as well, and your menu items showed up in the IDE’s designer.

The static resources in your page are instantiated when the page is first loaded and can be used at any time by the objects in the
application.

NO TE

The name “static resource” is a little misleading. Static resources are definitely created for each instance; they’re
not static fields!

INotifyPropertyChanged lets bound objects send updates
When the MenuMaker class updates its menu, the ListView that’s bound to it gets updated. But the
MenuMaker updates the GeneratedDate property at the same time. Why doesn’t the TextBlock that’s
bound to it get updated, too? The reason is that every time an ObservableCollection changes, it
fires off an event to tell any bound control that its data has changed. This is just like how a Button
control raises a Click event when it’s clicked, or a Timer raises a Tick event when its interval
elapses. Whenever you add, remove, or delete items from an ObservableCollection, it raises an
event.
You can make your data objects notify their target properties and bound controls that data has
changed, too. All you need to do is implement the INotifyPropertyChanged interface, which
contains a single event called PropertyChanged. Just fire off that event whenever a property
changes, and watch your bound controls update themselves automatically.

WATCH IT!

Collections work almost the same way as data objects.

The ObservableCollection<T> object doesn’t actually implement INotifyPropertyChanged. Instead, it implements a closely
related interface called INotifyCollectionChanged that fires off a CollectionChanged event instead of a PropertyChanged
event. The control knows to look for this event because ObservableCollection implements the INotifyCollectionChanged
interface. Setting a ListView’s DataContext to an INotifyCollectionChanged object will cause it to respond to these events.

Modify MenuMaker to notify you when the GeneratedDate
property changes

RELAX

This is the first time you’re raising events.

You’ve been writing event handler methods since Chapter 1, but this is the first time you’re firing an event. You’ll learn all about how
this works and what’s going on in Chapter 15. For now, all you need to know is that an interface can include an event, and that your
OnPropertyChanged() method is following a standard C# pattern for raising events to other objects.

INotifyPropertyChanged is in the System.ComponentModel namespace, so start by adding this
using statement to the top of the MenuMaker class file:

using System.ComponentModel;

Update the MenuMaker class to implement INotifyPropertyChanged, and then use the IDE to
automatically implement the interface:

This will be a little different from what you saw in Chapter 7 and Chapter 8. It won’t add any
methods or properties. Instead, it will add an event:

public event PropertyChangedEventHandler PropertyChanged;

Next, add this OnPropertyChanged() method, which you’ll use to raise the PropertyChanged
event.

Now all you need to do to notify a bound control that a property is changed is to call
OnPropertyChanged() with the name of the property that’s changing. We want the TextBlock that’s
bound to GeneratedDate to refresh its data every time the menu is updated, so all we need to do is
add one line to the end of UpdateMenu():

public void UpdateMenu() {

 Menu.Clear();

 for (int i = 0; i < NumberOfItems; i++) {

 Menu.Add(CreateMenuItem());

 }

 GeneratedDate = DateTime.Now;

 OnPropertyChanged("GeneratedDate");
}

Now the date should change when you generate a menu.

WATCH IT!

Don’t forget to implement INotifyPropertyChanged.

Data binding works only when the controls implement that interface. If you leave : INotifyPropertyChanged out of the class
declaration, your bound controls won’t get updated — even if the data object fires PropertyChanged events.

EXERCISE

Finish porting the Go Fish! game to a WPF application. You’ll need to modify the XAML from earlier in this chapter to add data
binding, copy all the classes and enums from the Go Fish! game in Chapter 8 (or download them from our website), and update the
Player and Game classes.

➊ Add the existing class files and change their namespace to match your app.
Add these files to your project from the Chapter 8 Go Fish! code: Values.cs, Suits.cs, Card.cs, Deck.cs,
CardComparer_bySuit.cs, CardComparer_byValue.cs, Game.cs, and Player.cs. You can use the Add Existing Item option in
the Solution Explorer, but you’ll need to change the namespace in each of them to match your new projects (just like you did
with multipart projects earlier in the book).
Try building your project. You should get errors in Game.cs and Player.cs that look like this:

➋ Remove all references to WinForms classes and objects; add using lines to Game.
You’re not in the WinForms world anymore, so delete using System.Windows.Forms; from the top of Game.cs and Player.cs.
You’ll also need to remove all mentions of TextBox. You’ll need to modify the Game class to use INotifyPropertyChanged and
ObservableCollection<T>, so add these using lines to the top of Game.cs:

using System.ComponentModel;
using System.Collections.ObjectModel;

➌ Add an instance of Game as a static resource and set up the data context.
Modify your XAML to add an instance of Game as a static resource and use it as the data context for the grid that contains the Go
Fish! page you built earlier in the chapter. Here’s the XAML for the static resource: <local:Game x:Key="game"/> — and
you’re going to need a new constructor because you can include only resources that have parameterless constructors:

public Game() {
 PlayerName = "Ed";
 Hand = new ObservableCollection<string>();
 ResetGame();
}

Make sure you add the <Window.Resources> section to the top of your XAML, and you’ll also need to add the xmlns:local
tag, exactly like you did in Use static resources to declare your objects in XAML and There are no Dumb
Questions.

➍ Add public properties to the Game class for data binding.
Here are the properties you’ll be binding to properties of the controls in the page:

public bool GameInProgress { get; private set; }
public bool GameNotStarted { get { return !GameInProgress; } }
public string PlayerName { get; set; }
public ObservableCollection<string> Hand { get; private set; }
public string Books { get { return DescribeBooks(); } }
public string GameProgress { get; private set; }

➎ Use binding to enable or disable the TextBox, ListBox, and Buttons.
You want the “Your Name” TextBox and the “Start the game!” Button to be enabled only when the game is not started, and you
want the “Your hand” ListBox and “Ask for a card” Button to be enabled only when the game is in progress. You’ll add code to
the Game class to set the GameInProgress property. Have a look at the GameNotStarted property. Figure out how it works, and
then add the following property bindings to the TextBox, ListBox, and two Buttons:

➏ Modify the Player class so it tells the Game to display the game’s progress.
The WinForms version of the Player class takes a TextBox as a parameter for its constructor. Change that to take a reference to
the Game class and store it in a private field. (Look at the StartGame() method below to see how this new constructor is used
when adding players.) Find the lines that use the TextBox reference and replace them with calls to the Game object’s
AddProgress() method.
➐ Modify the Game class.
Change the PlayOneRound() method so that it’s void instead of returning a Boolean, and have it use the AddProgress() method
instead of the TextBox to display progress. If a player won, display that progress, reset the game, and return. Otherwise, refresh
the Hand collection and describe the hands.
You’ll also need to add/update these four methods and figure out what they do and how they work.

public void StartGame() {
 ClearProgress();
 GameInProgress = true;
 OnPropertyChanged("GameInProgress");
 OnPropertyChanged("GameNotStarted");
 Random random = new Random();
 players = new List<Player>();
 players.Add(new Player(PlayerName, random, this));
 players.Add(new Player("Bob", random, this));
 players.Add(new Player("Joe", random, this));
 Deal();
 players[0].SortHand();
 Hand.Clear();
 foreach (String cardName in GetPlayerCardNames())
 Hand.Add(cardName);
 if (!GameInProgress)
 AddProgress(DescribePlayerHands());
 OnPropertyChanged("Books");
}

 public void ClearProgress() {
 GameProgress = String.Empty;
 OnPropertyChanged("GameProgress");
 }

 public void AddProgress(string progress)
 {
 GameProgress = progress +
 Environment.NewLine +
 GameProgress;
 OnPropertyChanged("GameProgress");
 }

 public void ResetGame() {
 GameInProgress = false;
 OnPropertyChanged("GameInProgress");
 OnPropertyChanged("GameNotStarted");
 books = new Dictionary<Values, Player>();
 stock = new Deck();
 Hand.Clear();
 }

You’ll also need to implement the INotifyPropertyChanged interface and add the same OnPropertyChanged() method that you used in the
MenuMaker class. The updated methods use it, and your modified PullOutBooks() method will also use it.

EXERCISE SOLUTION

Here’s all the code-behind that you had to write.

Game game;

public MainWindow() {
 InitializeComponent();
 game = this.FindResource("game") as Game;
}
private void startButton_Click(object sender, RoutedEventArgs e) {
 game.StartGame();
}
private void askForACard_Click(object sender, RoutedEventArgs e) {
 if (cards.SelectedIndex >= 0)
 game.PlayOneRound(cards.SelectedIndex);
}
private void cards_MouseDoubleClick(object sender, MouseButtonEventArgs e) {
 if (cards.SelectedIndex >= 0)
 game.PlayOneRound(cards.SelectedIndex);
}

A These are the changes needed for the Player class:

class Player {
 private string name;
 public string Name { get { return name; } }
 private Random random;
 private Deck cards;
 private Game game;
 public Player(String name, Random random, Game game) {
 this.name = name;
 this.random = random;
 this.game = game;
 this.cards = new Deck(new Card[] { });
 game.AddProgress(name + " has just joined the game");
 }
 public Deck DoYouHaveAny(Values value)
 {
 Deck cardsIHave = cards.PullOutValues(value);
 game.AddProgress(Name + " has " + cardsIHave.Count + " " + Card.Plural(value));
 return cardsIHave;
 }
 public void AskForACard(List<Player> players, int myIndex, Deck stock, Values value) {
 game.AddProgress(Name + " asks if anyone has a " + value);
 int totalCardsGiven = 0;
 for (int i = 0; i < players.Count; i++) {
 if (i != myIndex) {
 Player player = players[i];
 Deck CardsGiven = player.DoYouHaveAny(value);
 totalCardsGiven += CardsGiven.Count;
 while (CardsGiven.Count > 0)
 cards.Add(CardsGiven.Deal());
 }
 }
 if (totalCardsGiven == 0) {
 game.AddProgress(Name + " must draw from the stock.");
 cards.Add(stock.Deal());
 }
 }
 // ... the rest of the Player class is the same ...

These are the changes needed for the XAML:

EXERCISE SOLUTION

Here’s everything that changed in the Game class, including the code we gave you with the instructions.

WATCH IT!

Are you getting a strange XAML error about a class not existing in the namespace? Make sure that ALL your C# code
compiles and that every control’s event handler method is declared in the code-behind.

Sometimes you’ll get an error like this when you declare a static resource, even though you definitely have a class called
MyDataClass in the namespace MyWpfApplication:

This is often caused by either an error in the code-behind or a missing event handler for a XAML control. This can be a little
misleading, because the IDE is telling you that there’s an error on the tag that declares the static resource, when the error is
actually somewhere else in the code.

You can reproduce this yourself: create a new WPF project called MyWpfApplication, add a data class called MyDataClass,
add it as a static resource to your page’s <Window.Resources>, and add a button to your page. Then add
Click="Button_Click" to the XAML to add an event handler for the button, but don’t add the Button_Click() method. When
you try to rebuild your code, you should see the error above. You can make it go away by adding the Button_Click() method
to the code-behind.

NOTE

Sometimes the error message becomes a little clearer if you right-click on the project in the Solution Explorer, click “Unload Project”
to unload it, and then right-click it again and choose “Reload Project” to load it again. This may cause the IDE to show you a different
error message that might be more helpful.

Chapter 11

Windows Store was built for asynchronous programming, but WPF can still use it... but not all
the tools are there.
Read through Brian runs into file trouble and Note in the main part of the book — see how Brian is
shocked (shocked!) to find that his familiar file classes from Chapter 9 aren’t there? Well, WPF apps
don’t have that problem. That’s a good thing, because it means you can keep using the file classes and
serialization that you’re used to. But it also means that your WPF apps can’t take advantage of the
new asynchronous file and dialog classes that come with the .NET Framework for Windows Store.
In this appendix, we’ll give you two replacement projects to show you how to use the async and
await keywords and data contract serialization with WPF apps. Here’s how we recommend that you
work through Chapter 11:

Windows Store apps use await to be more responsive and Do this! have replacements in this
appendix. Use the replacements in place of the book pages.
Use the FileIO class to read and write files–??? are specific to Windows Store apps. Skip them.
Read Note and A data contract is an abstract definition of your object’s data to learn about data
contract serialization.
Skip Use async methods to find and open files, Use async methods to find and open files, and
KnownFolders helps you access high-profile folders; they apply only to Windows Store apps.
Read The whole object graph is serialized to XML in the book. Then follow the “Do this!” project
on the replacement Stream some Guy objects to XML files–Take your Guy Serializer for a test
drive in this appendix.
The rest of the chapter has you build a Windows Store replacement for Brian’s excuse manager.
The goal of this project is to learn about the file tools in the Windows.Storage namespace for
Windows Store apps. We don’t have a WPF alternative for this project, because those classes are
specific to Windows Store apps.

C# programs can use await to be more responsive
What happens when you call MessageBox.Show() from a WinForms program? Everything stops, and
your program freezes until the dialog disappears. That’s literally the most unresponsive that a
program can be! Windows Store apps should always be responsive, even when they’re waiting for
feedback from a user. But some things — like waiting for a dialog, or reading or writing all the bytes
in a file — take a long time. When a method sits there and makes the rest of the program wait for it to
complete, programmers call that blocking, and it’s one of the biggest causes of program
unresponsiveness.
Windows Store apps use the await operator and the async modifier to keep from becoming
unresponsive during operations that block. You can see how it works by looking at an example of how
a WPF could call a define task that blocks, but can be called asynchronously:

The Task class is in the System.Threading.Tasks namespace. Its Delay() method blocks for a specified number of
milliseconds. That method is really similar to the Thread.Sleep() method that you used in Chapter 2, but it’s defined with
the async modifier so it can be called asynchronously with await.

The await operator causes the method that’s running this code to stop and wait until the
ShowAsync() method completes — and that method will block until the user chooses one of the
commands. In the meantime, the rest of the program will keep responding to other events. As soon as
the LongTaskAsync() method returns, the method that called it will pick up where it left off
(although it may wait until after any other events that started up in the meantime have finished).
If your method uses the await operator, then it must be declared with the async modifier:

When a method is declared with async, you have some options with how you call it. If you call the
method as usual, then as soon as it hits the await statement it returns, which keeps the blocking call
from freezing your app.
You can see exactly how this works by creating a new WPF application with the following main
window XAML:
Do this!

<Window x:Class="WpfAndAsync.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="WPF and async" Height="150" Width="200" ResizeMode="CanResizeWithGrip">
 <Grid>
 <StackPanel>
 <CheckBox x:Name="useAwaitAsync" IsChecked="True" Content="Use await/async" Margin="5"/>
 <Button x:Name="countButton" Content="Start counting"
 HorizontalAlignment="Left" Click="countButton_Click" Margin="5"/>
 <TextBlock x:Name="progress" HorizontalAlignment="Left" Margin="5" />
 </StackPanel>
 </Grid>
</Window>

Here’s the code-behind:

We named our project WpfAndAsync. If you named your project something else, you’ll need to change this line to match
its namespace: x:Class="WpfAndAsync.MainWindow"

Make sure the box is checked, and then click the button. You’ll see the numbers increase, and the form
is responsive: the button disables itself, and you can move and resize the form. Then uncheck the box
and click the button — now the form freezes.

Stream some Guy objects to a file
Here’s a project to help you experiment with data contract serialization. Create a new WPF
application. Then add both classes with the data contracts from The whole object graph is serialized
to XML in the book (you’ll need using System.Runtime.Serialization in each of them). And
add the familiar Suits and Values enums, too (for the Card class). Here’s the window you’ll build
next:
Do this!

➊ Before you start coding, you’ll need to right-click on References in the Solution Explorer
and choose Add Reference from the menu. Click on Framework, scroll down to
System.Runtime.Serialization, check it, and click OK:

This will allow your WPF application to use the System.Runtime.Serialization namespace.
You can also add an empty GuyManager class to get rid of the IDE error on the
<local:GuyManager> tag when you add the XAML in step 2. You’ll fill in the GuyManager in
step 3 when you flip the page.

➋ Here’s the XAML for the page.

 We’re not done yet — flip the page!
➌ Add the GuyManager class.

This program uses TextBoxes that are bound to read-only properties that have only get accessors. If you try to bind
to a property that has a public get accessor with a private set accessor, you’ll get an error. Luckily, a backing field will
work just fine.

➍ Here’s the code-behind for MainWindow.xaml.cs:
public partial class MainWindow : Window
{
 GuyManager guyManager;

 public MainWindow() {
 InitializeComponent();

 guyManager = FindResource("guyManager") as GuyManager;
 }

 private void WriteJoe_Click(object sender, RoutedEventArgs e) {
 guyManager.WriteGuy(guyManager.Joe);
 }
 private void WriteBob_Click(object sender, RoutedEventArgs e) {
 guyManager.WriteGuy(guyManager.Bob);
 }
 private void WriteEd_Click(object sender, RoutedEventArgs e) {
 guyManager.WriteGuy(guyManager.Ed);
 }
 private void ReadNewGuy_Click(object sender, RoutedEventArgs e) {
 guyManager.ReadGuy();
 }
}

Take your Guy Serializer for a test drive
Use the Guy Serializer to experiment with data contract serialization:

Write each Guy object to the files — they’ll be written to the bin\Debug folder in your projects
folder. Click the ReadGuy button to read the guy that was just written. It uses the path in the
TextBox to read the file, so try updating that path to read a different guy. Try reading a file that
doesn’t exist. What happens?
Open up the Simple Text Editor you built earlier in the chapter. You added XML files as options
for the open and save file pickers, so you can use it to edit Guy files. Open one of the Guy files,
change it, save it, and read it back into your Guy Serializer. What happens if you add invalid
XML? What if you change the card suit or value so it doesn’t match a valid enum value?
Try adding or removing the DataMember names ([DataMember(Name="...")]). What does that
do to the XML? What happens when you update the contract and then try to load a previously
saved XML file? Can you fix the XML file to make it work?
Try changing the namespace of the Card data contract. What happens to the XML?

THERE ARE NO DUMB QUESTIONS

Q: Q: Sometimes I make a change in my XAML or my code, and the IDE’s designer gives me a message that I need to rebuild. What’s going on?

A: A: The XAML designer in the IDE is really clever. It’s able to show you an updated page in real time as you make changes to your XAML code. You
already know that when the XAML uses static resources, that adds object references to the Page class. Well, those objects need to get instantiated in
order for them to be displayed in the designer. If you make a change to the class that’s being used for a static resource, the designer doesn’t get updated
until you rebuild that class. That makes sense — the IDE rebuilds your project only when you ask it to, and until you do that it doesn’t actually have
the compiled code in memory that it needs to instantiate the static resources.
You can use the IDE to see exactly how this works. Open your Guy Serializer and edit the Guy.ToString() method to add some extra words to the return
value. Then go back to the main page designer. It’s still showing the old output. Now choose Rebuild from the Build menu. The designer will update
itself as soon as the code finishes rebuilding. Try making another change, but don’t rebuild yet. Instead, add another TextBlock that’s bound to a Guy
object. The IDE will use the old version of the object until you rebuild.

Q: Q: I’m confused about namespaces. How is the namespace in the program different from the one in an XML file?

A: A: Let’s take a step back and understand why namespaces are necessary. C#, XML files, the Windows filesystem, and web pages all use different (but
often related) naming systems to give each class, XML document, file, or web page its own unique name. So why is this important? Well, let’s say back
in Chapter 9, you created a class called KnownFolders to help Brian keep track of excuse folders. Uh-oh! Now you find out that the .NET Framework for
Windows Store already has a KnownFolders class. No worries. The .NET KnownFolders class is in the Windows.Storage namespace, so it can exist happily
alongside your class with the same name, and that’s called disambiguation.
Data contracts also need to disambiguate. You’ve seen several different versions of a Guy class throughout this book. What if you wanted to have two
different contracts to serialize different versions of Guy? You can put them in different namespaces to disambiguate them. And it makes sense that these
namespaces would be separate from the ones for your classes, because you can’t really confuse classes and contracts.

One more thing. Your WPF applications can use the same OpenFileDialog and SaveFileDialog classes that you used in
your WinForms projects. Here’s an MSDN page that has more information and code samples:

http://msdn.microsoft.com/en-us/library/aa969773.aspx

http://msdn.microsoft.com/en-us/library/aa969773.aspx

Chapter 12

Exception handling works the same in WPF as it does in WinForms and Windows Store.
If you flip through the replacement pages for Chapter 12, you’ll notice that there’s no XAML. That’s
because the material on exception handling that we cover in Head First C# is basically the same
whether you’re working on a WPF application, a WinForms program, a Windows Store app, or even
a console application.
Here’s how you should use this appendix for Chapter 12:

Read through There are no Dumb Questions in the book, including the “Sharpen your Pencil”
exercise.
Use the appendix replacement pages for Brian’s code did something unexpected and 577.
Read All exception objects inherit from Exception and The debugger helps you track down and
prevent exceptions in your code in the book.
Follow Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse Manager–If
you have code that ALWAYS should run, use a finally block in this appendix, and skip 591 in the
main part of the book.
Finish the rest of the chapter in the book.
Then do all of Chapter 13 in the book, too!

Once you’re done with this chapter, you can go straight through Chapter 13 in the book. It
doesn’t depend on Windows 8 or Windows Store apps at all.

Brian’s code did something unexpected
This appendix depends on the Excuse Manager WinForms app that you built in Chapter 9. If your code doesn’t match the
code in the appendix, you can download it from http://headfirstlabs.com/hfcsharp.

When Brian wrote his Excuse Manager, he never expected the user to try to pull a random excuse out
of an empty directory.

DO THIS!

➊ The problem happened when Brian pointed his Excuse Manager program at an empty folder on his laptop and clicked the
Random Excuse button. Let’s take a look at it and see if we can figure out what went wrong. Here’s the unhandled exception
window that popped up when he ran the program in the IDE:

➋ OK, that’s a good starting point. It’s telling us that there’s some value that doesn’t fall inside some range. Clicking the Break
button drops the IDE back into the debugger, with the execution halted on a specific line of code:

public Excuse(Random random, string folder)
{
 string[] fileNames = Directory.GetFiles(folder, "*.excuse");
 OpenFile(fileNames[random.Next(fileNames.Length)]);
}

➌ Let’s use the Watch window to track down the problem. Add a watch for fileNames.Length. Looks like that returns 0. Try
adding a watch for random.Next(fileNames.Length). That returns 0, too. So add a watch for
fileNames[random.Next(fileNames.Length)]. This time the Value column in the Watch window has the same error message
that you saw in step 1: “Out of bounds array index.”

NOTE

You can call methods and use indexers in the Watch window. When one of those things throws an exception, you’ll see that
exception in the Watch window, too.

➍ So what happened? It turns out that Directory.GetFiles() returns an empty array when you point it at an empty folder. So

http://headfirstlabs.com/hfcsharp

fileNames.Length is zero, and passing 0 to Random.Next() will always return 0 as well. Try to get the 0th element of an empty
array and your program will throw a System.IndexOutOfRangeException, with the message “Index was outside the bounds of
the array.”
Now that we know what the problem is, we can fix it. All we need to do is check to see if the selected folder has excuses in it
before we try to load a random excuse from it:

What do you think about that solution? Does it make the most sense to put it in the form, or would it be better to
find a way to encapsulate it inside the Excuse class?

That’s right. Exceptions are a really useful tool that you can use to find places where your code acts in ways you don’t
expect.

A lot of programmers get frustrated the first time they see an exception. But exceptions are really useful, and you can use them to
your advantage. When you see an exception, it’s giving you a lot of clues to help you figure out when your code is reacting to a
situation that you didn’t anticipate. And that’s good for you: it lets you know about a new scenario that your program has to handle,
and it gives you an opportunity to do something about it.

Use the IDE’s debugger to ferret out exactly what went wrong in the
Excuse Manager
Let’s use the debugger to take a closer look at the problem that we ran into in the Excuse Manager.
You’ve probably been using the debugger a lot over the last few chapters, but we’ll go through it step
by step anyway to make sure we don’t leave out any details.

DEB UG THIS

➊ ADD A BREAKPOINT TO THE RANDOM BUTTON’S EVENT HANDLER.
You’ve got a starting point — the exception happens when the Random Excuse button is clicked after an empty folder is selected.
So open up the button’s event handler and use Debug→Toggle Breakpoint (F9) to add a breakpoint to the first line of the method.
Start debugging, choose an empty folder, and then click the Random button to make your program break at the breakpoint:

➋ STEP INTO THE EXCUSE CONSTRUCTOR.
We want to reproduce the problem, but we already added code to get past it. No problem. Right-click on the line currentExcuse
= new Excuse(random, selectedFolder); and choose Set Next Statement (Ctrl+Shift+F10). Then use Step Into (F11) to
step into the constructor:

➌ STEP THROUGH THE PROGRAM UNTIL IT THROWS THE EXCEPTION.
You’ve already seen how handy the Watch window is. Now we’ll use it to reproduce the exception. Choose Step Over (F10)
twice to get your program to throw the exception. Then use the IDE to select fileNames.Length, right-click on it, and choose

 to add a watch. Then do it again for random.Next(fileNames.Length) and
fileNames[random.Next(fileNames.Length)]:

The Watch window has another very useful feature. It lets you change the value of variables and fields that it’s displaying, and
it even lets you execute methods and create new objects . When you do, it displays its reevaluate icon that you can click to
tell it to execute that method again.
➍ ADD A WATCH FOR THE EXCEPTION OBJECT.
Debugging is a little like performing a forensic crime scene investigation on your program. You don’t necessarily know what
you’re looking for until you find it, so you need to use your debugger “CSI kit” to follow clues and track down the culprit. One
important tool is adding $exception to the Watch window, because it shows you the contents of the Exception object that’s been
thrown:

When you get an exception, you can go back and reproduce it in the debugger and use the Exception object to help
you fix your code.

THERE ARE NO DUMB QUESTIONS

Q: Q: How do I know where to put a breakpoint?

A: A: That’s a really good question, and there’s no one right answer. When your code throws an exception, it’s always a good idea to start with the
statement that threw it. But usually, the problem actually happened earlier in the program, and the exception is just fallout from it. For example, the
statement that throws a divide-by-zero error could be dividing values that were generated 10 statements earlier but just haven’t been used yet. So there’s
no one good answer to where you should put a breakpoint, because every situation is different. But as long as you’ve got a good idea of how your code
works, you should be able to figure out a good starting point.

Q: Q: Can I run any method in the Watch window?

A: A: Yes. Any statement that’s valid in your program will work inside the Watch window, even things that make absolutely no sense to run inside a Watch
window. Here’s an example. Bring up a program, start it running, break it, and then add this to the Watch window:
System.Threading.Thread.Sleep(2000). That method causes your program to delay for two seconds.There’s no reason you’d ever do that in real life, but
it’s interesting to see what happens: the IDE will block and you’ll get a wait cursor for two seconds while the method evaluates. Then, since Sleep() has
no return value, the Watch window will display the value Expression has been evaluated and has no value to let you know that it didn’t return
anything. But it did evaluate it. Not only that, but it displays IntelliSense pop-ups to help you type code into the window. That’s useful because it
shows the available properties and methods for objects currently in memory.

Q: Q: Wait, so isn’t it possible for me to run something in the Watch window that’ll change the way my program runs?

A: A: Yes! Not permanently, but it can definitely affect your program’s output. But even better, just hovering over fields inside the debugger can cause
your program to change its behavior, because hovering over a property executes its get accessor. If you have a property that has a get accessor that
executes a method, then hovering over that property will cause that method to execute. And if that method sets a value in your program, then that value
will stay set if you run the program again. And that can cause some pretty unpredictable results inside the debugger. Programmers have a name for
results that seem to be unpredictable and random: they’re called heisenbugs (which is a joke that makes sense to physicists and cats trapped in boxes).

When you run your program inside the IDE, an unhandled exception will cause it to break as if it had run into a breakpoint.

Uh-oh — the code’s still got problems...
Brian was happily using his Excuse Manager when he accidentally chose a folder full of files that
weren’t created by the Excuse Manager. Let’s see what happens when he tries to load one of them....

➊ You can re-create Brian’s problem. Take a random file that isn’t a serialized excuse and give it
the .excuse file extension.
➋ Pop open the Excuse Manager in the IDE and open up the file you created. It throws an
exception! Look at the message, then click the Break button to start investigating.

➌ Open up the Locals window and expand $exception (you can also enter it into the Watch
window). Take a close look at its members to see if you can figure out what went wrong.

DO YOU SEE WHY THE PROGRAM THREW THE EXCEPTION?
DOES IT MAKE SENSE FOR THE PROGRAM TO CRASH IF IT ENCOUNTERS AN INVALID EXCUSE XML
FILE?
CAN YOU THINK OF ANYTHING YOU CAN DO ABOUT THIS?

Actually, there is something you can do about it.
Yes, it’s true that users screw up all the time. That’s a fact of life. But that doesn’t mean you can’t do
anything about it. There’s a name for programs that deal with bad data, malformed input, and other
unexpected situations gracefully: they’re called robust programs. And C# gives you some really
powerful exception handling tools to help you make your programs more robust. Because while you
can’t control what your users do, you can make sure that your program doesn’t crash when they do it.

NOTE

ro-bust, adj.

sturdy in construction; able to withstand or overcome adverse conditions. After the Tacoma Narrows Bridge disaster, the civil
engineering team looked for a more robust design for the bridge that would replace it.

WATCH IT!

Serializers will throw an exception if there’s anything at all wrong with a serialized file.

It’s easy to get the Excuse Manager to throw a SerializationException — just feed it any file that’s not a serialized Excuse
object. When you try to deserialize an object from a file, DataContractSerializer expects the file to contain a serialized
object that matches the contract of the class that it’s trying to read. If the file contains anything else, almost anything at all,
then the ReadObject() method will throw a SerializationException.

NOTE

The BinaryFormatter class will also throw a SeralizationException if you give it a file that doesn’t contain exactly the right serialized
object. It’s even more finicky than DataContractSerializer!

Handle exceptions with try and catch
In C#, you can basically say, “Try this code, and if an exception occurs, catch it with this other bit of
code.” The part of the code you’re trying is the try block, and the part where you deal with
exceptions is called the catch block. In the catch block, you can do things like print a friendly error
message instead of letting your program come to a screeching halt:

NOTE

You’ll also need to add these lines to the top of Excuse.cs:

using System.Runtime.Serialization;
using System.Windows.Forms;

This is the simplest kind of exception handling: stop the program, write out the exception
message, and keep running.

B RAIN POWER

If throwing an exception makes your code automatically jump to the catch block, what happens to the objects and data you were
working with before the exception happened?

What happens when a method you want to call is risky?
Users are unpredictable. They feed all sorts of weird data into your program and click on things in
ways you never expected. And that’s just fine, because you can handle unexpected input with good
exception handling.

➊ Let’s say your user is using your code and gives it some input that it didn’t expect.

➋ That method does something risky, something that might not work at runtime.

NOTE

“Runtime” just means “while your program is running.” Some people refer to exceptions as “runtime errors.”

➌ You need to know that the method you’re calling is risky.

➍ You then write code that can handle the failure if it does happen. You need to be prepared,
just in case.

NOTE

If you can come up with a way to do a less risky thing that avoids throwing the exception, that’s the best possible outcome! But
some risks just can’t be avoided, and that’s when you want to do this.

THERE ARE NO DUMB QUESTIONS

Q: Q: So when do I use try and catch?

A: A: Anytime you’re writing risky code, or code that could throw an exception. The trick is figuring out which code is risky, and which code is safer.
You’ve already seen that code that uses input provided by a user can be risky. Users give you incorrect files, words instead of numbers, and names
instead of dates, and they pretty much click everywhere you could possibly imagine. A good program will take all that input and work in a calm,
predictable way. It might not give the users a result they can use, but it will let them know that it found the problem and hopefully suggest a solution.

Q: Q: How can a program suggest a solution to a problem it doesn’t even know about in advance?

A: A: That’s what the catch block is for. A catch block is executed only when code in the try block throws an exception. It’s your chance to make sure the
user knows that something went wrong, and to let the user know that it’s a situation that might be corrected.
If the Excuse Manager simply crashes when there’s bad input, that’s not particularly useful. But if it tries to read the input and displays garbage in the
form, that’s also not useful — in fact, some people might say that it’s worse. But if you have the program display an error message telling the user that
it couldn’t read the file, then the user has an idea of what went wrong, and information that he can use to fix the problem.

Q: Q: So the debugger should really only be used to troubleshoot exceptions then?

A: A: No. As you’ve already seen many times throughout the book, the debugger’s a really useful tool that you can use to examine any code you’ve
written. Sometimes it’s useful to step through your code and check the values of certain fields and variables — like when you’ve got a really complex
method and you want to make sure it’s working properly.
But as you may have guessed from the name “debugger,” its most common use is to track down and remove bugs. Sometimes those bugs are exceptions
that get thrown. But a lot of the time, you’ll be using the debugger to try to find other kinds of problems, like code that gives a result that you don’t
expect.

Q: Q: I’m not sure I totally got what you did with the Watch window.

A: A: When you’re debugging a program, you usually want to pay attention to how a few variables and fields change. That’s where the Watch window
comes in. If you add watches for a few variables, the Watch window updates their values every time you step into, out of, or over code. That lets you
monitor exactly what happens to them after every statement, which can be really useful when you’re trying to track down a problem.
The Watch window also lets you type in any statement you want, and even call methods, and the IDE will evaluate it and display the results. If the
statement updates any of the fields and variables in your program, then it does that, too. That lets you change values while your program is running,
which can be another really useful tool for reproducing exceptions and other bugs.

NO TE

Any changes you make in the Watch window just affect the data in memory, and last only as long as the program
is running. Restart your program, and values that you changed will be undone.

The catch block is executed only when code in the try block throws an exception. It gives you a chance to make sure your user has the
information to fix the problem.

Use the debugger to follow the try/catch flow
An important part of exception handling is that when a statement in your try block throws an
exception, the rest of the code in the block gets short-circuited. The program’s execution immediately
jumps to the first line in the catch block. But don’t take our word for it...

DEB UG THIS

➊ Add the try/catch from a few pages ago to your Excuse Manager app’s ReadExcuseAsync() method. Then place a
breakpoint on the opening bracket { in the try block.
➋ Start debugging your app and open up a file that’s not a valid excuse file (but still has the .excuse extension). When the
debugger breaks on your breakpoint, click the Step Over button (or F10) five times to get to the statement that calls
ReadObject() to deserialize the Excuse object. Here’s what your debugger screen should look like:

➌ Step over the next statement. As soon as the debugger executes the Deserialize() statement, the exception is thrown and
the program short-circuits right past the rest of the method and jumps straight to the catch block.

➍ Start the program again by pressing the Continue button (or F5). It’ll begin running the program again, starting with whatever’s
highlighted by the yellow “next statement” block — in this case, the catch block. It will just display the dialog and then act as if
nothing happened. The ugly crash has now been handled.

WATCH IT!

Keep risky code out of the constructor!

You’ve noticed by now that a constructor doesn’t have a return value, not even void. That’s because a constructor doesn’t
actually return anything. Its only purpose is to initialize an object — which is a problem for exception handling inside the
constructor. When an exception is thrown inside the constructor, then the statement that tried to instantiate the class won’t end
up with an instance of the object.

Here’s a career tip: a lot of C# programming job interviews include a question about how you deal with exceptions in a
constructor.

If you have code that should ALWAYS run, use a finally block
When your program throws an exception, a couple of things can happen. If the exception isn’t
handled, your program will stop processing and crash. If the exception is handled, your code jumps to
the catch block. But what about the rest of the code in your try block? What if you were closing a
stream, or cleaning up important resources? That code needs to run, even if an exception occurs, or
you’re going to make a mess of your program’s state. That’s where the finally block comes in really
handy. It comes after the try and catch blocks. The finally block always runs, whether or not an
exception was thrown.

Always catch specific exceptions like SerializationException. You typically follow a catch
statement with a specific kind of exception telling it what to catch. It’s valid C# code to just have
catch (Exception) and you can even leave the exception type out and just use catch. When you do
that, it catches all exceptions, no matter what type of exception is thrown. But it’s a really bad
practice to have a catch-all exception handler like that. Your code should always catch as specific
an exception as possible.
Reminder: Once you finish Chapter 12, you can go straight through Chapter 13 in the book. It
doesn’t depend on Windows 8 or Windows Store apps at all.

Chapter 14

LINQ works with any kind of C# program.
When you read Chapter 14 in the main part of the book, you’ll see that it’s structured differently from
other chapters. It has a series of increasingly complex LINQ queries, and small console apps to
demonstrate each of them. Throughout the chapter, you’ll also see exercises to build a Windows Store
app that combines all the queries into a single user interface. Over the next few pages of this
appendix, we’ll show you how to build a WPF application that executes those same queries. Here’s
how we recommend you use this appendix with Chapter 14:

Read through Jimmy could use some help in the book.
Even though pages in the chapter through 665 are about building a Windows Store app, read them
— especially the parts about anonymous types. It will help to get a sense of how the Comic,
ComicQuery, and ComicQueryManager classes work.
LINQ is versatile and Note describe more LINQ queries. You can skim Add the new queries to
Jimmy’s app and 669, because those are more Windows Store-related pages.
Read Bullet Points–There are no Dumb Questions, but don’t do the exercise in Bullet Points.
You can skip the rest of the chapter, because it’s related to Windows Store apps. Instead, follow
the replacement There are no Dumb Questions–683.

Build a WPF comic query application
When you read through Chapter 14 in the book, you saw that we built a Windows Store app to execute
the LINQ queries throughout the chapter. Since we followed the principle of separation of concerns,
the classes for managing data and issuing queries were separated from the code that created the user
interface. That let us reuse the same data and query management classes to build another app
using the Visual Studio Split App template. Now we’ll be able to take advantage of the same
separation of concerns and build a WPF application using the same data and query classes.

DO THIS!

➊ CREATE A NEW WPF APPLICATION AND ADD EXISTING CLASSES AND IMAGES FROM THE COMIC
APP.
Before you start this project, you’ll need to download source code to the JimmysComics app from Chapter 14. See the Head First
Labs website (http://headfirstlabs.com/hfcsharp) for a link to the source code.
Once you’ve got the source code, you’ll build a new WPF application called JimmysComics. Then right-click on the project name
in the Solution Explorer and choose “Add Existing Item” to add the following items from the Windows Store app we built in the
book (you can download the source from the book’s website):

Purchase.cs
Comic.cs
ComicQuery.cs
ComicQueryManager.cs
PriceRange.cs.
The following files are in the Assets folder: bluegray_250x250.jpg, bluegray_250x250.jpg, captain_ amazing_250x250.jpg,
captain_amazing_zoom_250x250.jpg — add them to the root level of your WPF application so they’re alongside your XAML and
C# files.

If you give your project a different name, make sure you change the namespace for the C# files you added to match your
project’s namespace.

Your Solution Explorer should look like this:

You’ll also need to select each image file in the Solution Explorer and use the Properties window to set “Build Action” to

http://headfirstlabs.com/hfcsharp

Content and “Copy to Output Directory” to Copy always. Here’s what it looks like — make sure you do this for each of the .jpg
files that you added:

➋ MAKE TWO MODIFICATIONS TO COMICQUERYMANAGER.CS .
There are two small changes you’ll need to make to ComicQueryManager.cs. WPF applications cannot use the Windows.UI
namespace because it’s only part of the .NET Framework for Windows Store. You’ll need to change the using statements at the
top to replace “Windows.UI” with “System.Windows”:

using System.Collections.ObjectModel;
using System.Windows.Media.Imaging;

And WPF applications load images slightly differently from Windows Store apps, so you’ll need to change the
CreateImageFromAssets() method in ComicQueryManager. Here’s the new method:

➌ ADD CODE-BEHIND FOR THE MAIN WINDOW.
Here’s all the code-behind you’ll need for MainWindow.xaml.cs.

➍ ADD THE XAML FOR THE MAIN WINDOW.
Here’s the XAML for the main window. Remember, if you used a different project name, make sure you change JimmysComics
to match your project’s namespace.

When you run the app, the queries appear on the left, and the results of the selected query appear on
the right.

QUERIES THAT RETURN COMIC BOOKS HAVE ADDITIONAL INFORMATION: PRICE, SYNOPSIS, EVEN A
COVER IMAGE. CAN YOU FIGURE OUT HOW TO GET THE COMIC QUERIES TO DISPLAY ALL THE
INFORMATION ABOUT EACH COMIC? YOU’LL NEED TO ADD THE COMIC BOOK COVER IMAGES TO
THE PROJECT. YOU’LL FIND SOME HELPFUL XAML CODE IN THE CHAPTER ON PAGES 689 AND 690.

NOTE

We left this page blank so that you can read this appendix in two-page mode, so the exercise and its solution appear on different two-
page spreads. If you’re viewing this as a PDF in two-page mode, you may want to turn on the cover page so the even pages are on
the right and the odd pages are on the left.

Chapter 15

Events are useful for any app, but especially important for understanding XAML.
Events can be simple and straightforward, because you’ve been using them throughout the book. But
there’s a lot more depth to them than you might expect. This chapter helps you understand events in
more detail.
Here’s what we recommend for this chapter:

Read the chapter in the book through page 711.
Use the replacement pages in this appendix for the exercise in Exercise–713 and its solution in
Exercise Solution–Note.
Read Generic EventHandlers let you define your own event types–719 in the book.
Windows Store apps use events for process lifetime management–723 are specific to Windows
Store apps, but we recommend that you read them anyway. They give you some insight not just
into Windows Store apps, but also into some basic features of Windows 8.
We provide replacement pages for XAML controls use routed events-729 in this appendix.
Read the rest of the chapter in the book. The only pages you should skip are the top of
MessageDialog uses the callback pattern, and Use delegates to use the Windows settings charm–
743.

EXERCISE

It’s time to put what you’ve learned so far into practice. Your job is to complete the Ball and Pitcher classes, add a Fan class, and
make sure they all work together with a very basic version of your baseball simulator.

➊ COMPLETE THE PITCHER CLASS.
Below is what we’ve got for Pitcher. Add the CatchBall() and CoverFirstBase() methods. Both should create a string saying
that the catcher has either caught the ball or run to first base and add that string to a public ObservableCollection<string>
called PitcherSays.

➋ WRITE A FAN CLASS.
Create another class called Fan. Fan should also subscribe to the BallInPlay event in its constructor. The fan’s event handler
should see if the distance is greater than 400 feet and the trajectory is greater than 30 (a home run), and grab for a glove to try to
catch the ball if it is. If not, the fan should scream and yell. Everything that the fan screams and yells should be added to an
ObservableCollection<string> called FanSays.

NOTE

Look at the output on the facing page to see exactly what it should print.

➌ BUILD A VERY SIMPLE SIMULATOR.
If you didn’t do it already, create a new WPF Application and add the following BaseballSimulator class. Then add it as a static
resource to the page.

using System.Collections.ObjectModel;

class BaseballSimulator {
 private Ball ball = new Ball();
 private Pitcher pitcher;
 private Fan fan;
 public ObservableCollection<string> FanSays { get { return fan.FanSays; } }
 public ObservableCollection<string> PitcherSays { get { return pitcher.PitcherSays; } }

 public int Trajectory { get; set; }
 public int Distance { get; set; }
 public BaseballSimulator() {
 pitcher = new Pitcher(ball);
 fan = new Fan(ball);
 }
 public void PlayBall() {
 BallEventArgs ballEventArgs = new BallEventArgs(Trajectory, Distance);
 ball.OnBallInPlay(ballEventArgs);
 }
}

➍ BUILD THE MAIN WINDOW.
Can you come up with the XAML just from looking at the screenshot to the right? The two TextBox controls are bound to the
Trajectory and Distance properties of the BaseballSimulator static resource, and the pitcher and fan chatter are ListView
controls bound to the two ObservableCollections.
See if you can make your simulator generate the above fan and pitcher chatter with three successive balls put into play. Write
down the values you used to get the result below:

Ball 1: Ball 2: Ball 3:

Trajectory: _____________ Trajectory: _____________ Trajectory: _____________

Distance: _____________ Distance: _____________ Distance: _____________

EXERCISE SOLUTION

Here are the Ball and BallEventArgs from earlier, and the new Fan class that needed to be added:

Here’s the code-behind for the page:

public partial class MainWindow : Window {
 BaseballSimulator baseballSimulator;

 public MainWindow() {
 InitializeComponent();

 baseballSimulator = FindResource("baseballSimulator") as BaseballSimulator;
 }

 private void Button_Click(object sender, RoutedEventArgs e) {
 baseballSimulator.PlayBall();
 }
}

Here’s the XAML for the page. It also needs: <local:BaseballSimulator x:Key="baseballSimulator"/>

And here’s the Pitcher class (it needs using System.Collections.ObjectModel; at the top):

XAML controls use routed events
Flip to Note in the main part of the book and have a closer look at the IntelliSense window that pops
up when you type override into the IDE. Yes, it’s for a Windows Store app, but the same exact
principle applies to WPF. Two of the names of the event argument types are a little different from the
others. The DoubleTapped event’s second argument has the type DoubleTappedRoutedEventArgs,
and the GotFocus event’s is a RoutedEventArgs. The reason is that the DoubleTapped and
GotFocus events are routed events. These are like normal events, except for one difference: when a
control object responds to a routed event, first it fires off the event handler method as usual. Then it
does something else: if the event hasn’t been handled, it sends the routed event up to its container.
The container fires the event, and then if it isn’t handled, it sends the routed event up to its container.
The event keeps bubbling up until it’s either handled or it hits the root, or the container at the very
top. Here’s a typical routed event handler method signature.

private void EventHandler(object sender, RoutedEventArgs e)

The RoutedEventArgs object has a property called Handled that the event handler can use to
indicate that it’s handled the event. Setting this property to true stops the event from bubbling up.
In both routed and standard events, the sender parameter always contains a reference to the object
that called the event handler. So if an event is bubbled up from a control to a container like a Grid,
then when the Grid calls its event handler, sender will be a reference to the Grid control. But what if
you want to find out which control fired the original event? No problem. The RoutedEventArgs
object has a property called OriginalSource that contains a reference to the control that initially
fired the event. If OriginalSource and sender point to the same object, then the control that called
the event handler is the same control that originated the event and started it bubbling up.

IsHitTestVisible determines if an element is “visible” to the pointer
or mouse
Typically, any element on the page can be “hit” by the pointer or mouse — as long as it meets certain
criteria. It needs to be visible (which you can change with the Visibility property), it has to have a
Background or Fill property that’s not null (but can be Transparent), it must be enabled (with the
IsEnabled property), and it has to have a height and width greater than zero. If all of these things
are true, then the IsHitTestVisible property will return True, and that will cause it to respond to
pointer or mouse events.
This property is especially useful if you want to make your events “invisible” to the mouse. If you set
IsHitTestVisible to False, then any pointer taps or mouse clicks will pass right through the
control. If there’s another control below it, that control will get the event instead.

The structure of controls that contain other controls that in turn contain yet more controls is called an object tree, and
routed events bubble up the tree from child to parent until they hit the root element at the top.

You can see a list of input events that are routed events here: http://msdn.microsoft.com/en-
us/library/windows/apps/Hh758286.aspx

http://msdn.microsoft.com/en-us/library/windows/apps/Hh758286.aspx

Create an app to explore routed events
Here’s a WPF application that you can use to experiment with routed events. It’s got a StackPanel that
contains a Border, which contains a Grid, and inside that grid are an Ellipse and a Rectangle. Have a
look at the screenshot. See how the Rectangle is on top of the Ellipse? If you put two controls into the
same cell, they’ll stack on top of each other. But both of those controls have the same parent: the Grid,
whose parent is the Border, and the Border’s parent is the StackPanel. Routed events from the
Rectangle or Ellipse bubble up through the parents to the root of the object tree.

Flip the page to finish the app
YOU’LL NEED THIS OBSERVABLECOLLECTION TO DISPLAY OUTPUT IN THE LISTBOX.
Make a field called outputItems and set the ListBox.ItemsSource property in the page

constructor. And don’t forget to add the using System.Collections.ObjectModel; statement for
ObservableCollection<T>.

Here’s the code-behind. Each control’s MouseDown event handler clears the output if it’s the original
source, and then it adds a string to the output. If its “handled” toggle switch is on, it uses e.Handled
to handle the event.

HERE’S THE OBJECT GRAPH FOR YOUR MAIN WINDOW.
The Mainwindow class is at the root of the object tree. When you create the new WPF application, the
MainWindow.xaml and MainWindow.xaml.cs files create an object that extends the Window class.
Flip the page to use your new app to explore routed events
RUN THE APP AND CLICK OR TAP THE GRAY RECTANGLE.
You should see the output in the screenshot to the right.

You can see exactly what’s going on by putting a breakpoint on the first line of
Rectangle_MouseDown(), the Rectangle control’s MouseDown event handler:

Click the gray rectangle again — this time the breakpoint should fire. Use Step Over (F10) to step
through the code line by line. First you’ll see the if block execute to clear the outputItems
ObservableCollection that’s bound to the ListBox. This happens because sender and
e.OriginalSource reference the same Rectangle control, which is true only inside the event handler
method for the control that originated the event (in this case, the control that you clicked or tapped),
so sender == e.OriginalSource is true.
When you get to the end of the method, keep stepping through the program. The event will bubble
up through the object tree, first running the Rectangle’s event handler, then the Grid’s event handler,
then the Border’s, then the Panel’s, and finally it runs an event handler method that’s part of
LayoutAwarePage — this is outside of your code and not part of the routed event, so it will always
run. Since none of those controls are the original source for the event, none of their senders will be
the same as e.OriginalSource, so none of them clear the output.
TURN ISHITTESTVISIBLE OFF, PRESS THE “UPDATE” BUTTON, AND THEN CLICK OR
TAP THE RECTANGLE.
You should see this output.

Wait a minute! You pressed the Rectangle, but the Ellipse control’s MouseDown event handler fired.

What’s going on?

When you pressed the button, its Click event handler updated the Rectangle control’s
IsHitTestVisible property to false, which made it “invisible” to pointer presses, clicks, and
other pointer events. So when you tapped the Rectangle, your tap passed right through it to the
topmost control underneath it on the page that has IsHitTestVisible set to true and has a
Background property that’s set to a color or Transparent. In this case, it finds the Ellipse control
and fires its MouseDown event.
CHECK THE “GRID SETS HANDLED” BOX AND CLICK OR TAP THE GRAY
RECTANGLE.
You should see this output.

So why did only two lines get added to the output ListBox? Step through the code again to see
what’s going on. This time, gridSetsHandled.IsOn was true because you toggled the
gridSetsHandled to On, so the last line in the Grid’s event handler set e.IsHandled to true. As
soon as a routed event handler method does that, the event stops bubbling up. As soon as the Grid’s
event handler completes, the app sees that the event has been handled, so it doesn’t call the Border or
Panel’s event handler method, and instead skips to the event handler method in LayoutAwarePage
that’s outside of the code you added.
USE THE APP TO EXPERIMENT WITH ROUTED EVENTS.
Here are a few things to try:

Click on the gray Rectangle and the red Ellipse and watch the output to see how the events bubble
up.
Turn on each of the toggle switches, starting at the top, to cause the event handlers to set
e.Handled to true. Watch the events stop bubbling when they’re handled.
Set breakpoints and debug through all of the event handler methods.

Try setting a breakpoint in the Ellipse’s event handler method, and then turn the gray Rectangle’s
IsHitTestVisible property on and off by toggling the bottom switch and pressing the button.
Step through the code for the Rectangle when IsHitTestVisible is set to false.
Stop the program and add a Background property to the Grid to make it visible to pointer hits.
A routed event first fires the event handler for the control that originated the event, and then bubbles up through the
control hierarchy until it hits the top — or an event handler sets e.Handled to true.

NOTE

We left this page blank so that you can read this appendix in two-page mode, so the exercise and its solution appear on different two-
page spreads. If you’re viewing this as a PDF in two-page mode, you may want to turn on the cover page so the even pages are on
the right and the odd pages are on the left.

Chapter 16

Great developers follow design patterns.
In this chapter, you’ll learn about Model-View-ViewModel (MVVM), a design pattern for building
effective WPF apps. Along the way, you’ll learn what a design pattern is, and you’ll learn how to use
XAML controls to create great animations.
Here’s how we recommend that you work through Chapter 16:

Read through MVVM lets you design for binding and data.
Follow our replacement pages for 750–757.
Read Note–Events alert the rest of the app to state changes.
Start the Stopwatch project in MVVM means thinking about the state of the app in the book, and
continue it using a combination of book pages and appendix replacement Build the view for a
simple stopwatch, Finish the stopwatch app, Converters automatically convert values for binding–
773, and Build an analog stopwatch using the same ViewModel–787.
Read C# can build “real” animations, too in the book.
The rest of Chapter 16 is replaced with Create a user control to animate a picture–Part III in this
appendix.
There’s information in Congratulations! (But you’re not done yet...) about how to do Lab #3.

Use the MVVM pattern to start building the basketball roster app
Create a new WPF application and make sure it’s called BasketballRoster (because we’ll be using
the namespace BasketballRoster in the code, and this will make sure your code matches what’s on
the next few pages).

DO THIS

➊ CREATE THE MODEL, VIEW, AND VIEWMODEL FOLDERS IN THE PROJECT.
Right-click on the project in the Solution Explorer and choose New Folder from the Add menu:

When you use the Solution Explorer to add a new folder to your project, the IDE creates a new namespace based
on the folder name. This causes the Add→Class... menu option to create classes with that namespace. So if you add
a class to the Model folder, the IDE will add BasketballRoster.Model to the namespace line at the top of the class file.

Add a Model folder. Then do it two more times to add the View and ViewModel folders, so your project looks like this:

➋ START BUILDING THE MODEL BY ADDING THE PLAYER CLASS.
Right-click on the Model folder and add a class called Player. When you add a class into a folder, the IDE updates the
namespace to add the folder name to the end. Here’s the Player class:

➌ FINISH THE MODEL BY ADDING THE ROSTER CLASS
Next, add the Roster class to the Model folder. Here’s the code for it.

Your Model folder should now look like this:

We’ll add the view on the next page

➍ ADD A NEW MAIN WINDOW TO THE VIEW FOLDER.
Right-click on the View folder and add a new Window called LeagueWindow.xaml.

Your project’s View folder should now have a XAML window in it called LeagueWindow.xaml. This is just like the
MainWindow.xaml window that you’ve been working with throughout the book. It’s still a Window object with a graph that’s
defined with XAML. The only difference is that it’s called LeagueWindow instead of MainWindow.
➎ DELETE THE MAIN WINDOW AND REPLACE IT WITH YOUR NEW WINDOW.
Delete the MainWindow.xaml file from the project by right-clicking on it and choosing Delete . Now try building and running
your project — you’ll get an exception when the program starts:

Well, that makes sense, since you deleted MainWindow.xaml. When a WPF application starts up, it shows the window specified
in the StartupUri property in the <Application> tag App.xaml:

Open App.xaml and edit StartupUri so your program pops up the window you just added:

<Application x:Class="BasketballRoster.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="View/LeagueWindow.xaml">

Once you make that change, rebuild and rerun your program. Now it should start and show your newly added window.

User controls let you create your own controls
Take a look at the basketball roster program that you’re building. Each team gets an identical set of
controls: a TextBlock, another TextBlock, a ListView, another TextBlock, and another ListView, all
wrapped up by a StackPanel inside a Border. Do we really need to add two identical sets of controls
to the page? What if we want to add a third and fourth team — that’s going to mean a whole lot of
duplication. And that’s where user controls come in. A user control is a class that you can use to
create your own controls. You use XAML and code-behind to build a user control, just like you do
when you build a page. Let’s get started and add a user control to your BasketballRoster project.

➊ Add a new user control to your View folder.
Right-click on the View folder and add a new item. Choose from the dialog and call it
RosterControl.xaml.
➋ Look at the code-behind for the new user control.
Open up RosterControl.xaml.cs. Your new control extends the UserControl base class. Any
code-behind that defines the user control’s behavior goes here.

➌ Look at the XAML for the new user control.
The IDE added a user control with an empty <Grid>. Your XAML will go here.
UserControl is a base class that gives you a way to encapsulate controls that are related to each other, and lets you
build logic that defines the behavior of the control.

Before you flip the page, see if you can figure out what XAML should go into the new
RosterControl by looking at the Windows Store app screenshot in The Head First Basketball
Conference needs an app.

It will have a <StackPanel> to stack up the controls that live inside a blue <Border>. Can you
figure out which property gives a Border control rounded corners?
It has two ListView controls that display data for players, so it also needs a
<UserControl.Resources> section that contains a DataTemplate. We called it
PlayerItemTemplate.
Bind the ListView items to properties called Starters and Bench, and the top TextBlock to a
property called TeamName.
The Border control lives inside a <Grid> with a single row that has Height="Auto" to keep it
from expanding past the bottom of the ListView controls to fill up the entire page.

“Teach a man to fish...”

We’re nearing the end of the book, so we want to challenge you with problems that are similar to ones you’ll face in the
real world. A good programmer takes a lot of educated guesses, so we’re giving you barely enough information about how
a UserControl works. You don’t even have binding set up, so you won’t see data in the designer! How much of the XAML
can you build before you flip the page to see the code for RosterControl?

➍ Finish the RosterControl XAML.
Here’s the code for the RosterControl user control that you added to the View folder. Did you
notice how we gave you properties for binding, but no data context? That should make sense. The
two controls on the page show different data, so the page will set different data contexts for each
of them.

EXERCISE

Build the ViewModel for the BasketballRoster app by looking at the data in the Model and the bindings in the View, and figuring out
what “plumbing” the app needs to connect them together.

➊ ADD THE ROSTER CONTROLS TO LEAGUEWINDOW.XAML.
First add these xmlns properties to the page so it recognizes the new namespaces:

xmlns:view="clr-namespace:BasketballRoster.View"
xmlns:viewmodel="clr-namespace:BasketballRoster.ViewModel"

Then add an instance of LeagueViewModel as a static resource:

<Window.Resources>
 <viewmodel:LeagueViewModel x:Key="LeagueViewModel"/>
</Window.Resources>

Now you can add a StackPanel with two RosterControls to the page:

<StackPanel Orientation="Horizontal" Margin="5"
 VerticalAlignment="Center" HorizontalAlignment="Center"
 DataContext="{StaticResource ResourceKey=LeagueViewModel}" >
 <view:RosterControl Width="200" DataContext="{Binding JimmysTeam}" Margin="0,0,20,0" />
 <view:RosterControl Width="200" DataContext="{Binding BriansTeam}" />
</StackPanel>

➋ CREATE THE VIEWMODEL CLASSES.

NOTE

Make sure you created the classes and pages in the right folders; otherwise, the namespaces
won’t match the code in the solution.

Create these three classes in the ViewModel folder.

➌ MAKE THE VIEWMODEL CLASSES WORK.

The PlayerViewModel class is a simple data object with two properties.
The LeagueViewModel class has two private methods to create dummy data for the page. It creates Model.Roster objects for
each team that get passed to the RosterViewModel constructor.
The RosterViewModel class has a constructor that takes a Model.Roster object. It sets the TeamName property, and then it calls
its private UpdateRosters() method, which uses LINQ queries to extract the starting and bench players and update the Starters
and Bench properties. Add using Model; to the top of the classes so you can use objects in the Model namespace.

NOTE

— See Do you design for binding or for working with data? for a hint about the LINQ query...

If the IDE gives you an error message in the XAML designer that LeagueViewModel does not exist in the ViewModel namespace,
but you’re 100% certain you added it correctly, try right-clicking on the BasketballRoster project and choosing Unload
Project, and then right-click again and choose Reload Project to reload it. But make sure you don’t have any errors in
any of the C# code files.

EXERCISE SOLUTION

The ViewModel for the BasketballRoster app has three classes: LeagueViewModel, PlayerViewModel, and RosterViewModel. They
all live in the ViewModel folder.

In a typical MVVM app, only classes in the ViewModel implement INotifyPropertyChanged. That’s because the ViewModel
contains the only objects that XAML controls are bound to. In this project, however, we didn’t need to implement
INotifyPropertyChanged because the bound properties are updated in the constructor. If you wanted to modify the
project to let Brian and Jimmy change their team names, you’d need to fire a PropertyChanged event in the
TeamName set accessor.

There is one change you’ll need to make to get the ViewModel code in Add the stopwatch ViewModel and 767 in the
book to work. In Add the stopwatch ViewModel you’re given three using statements, including this one:

using Windows.UI.Xaml;

You’ll need to replace it with this using statement:

using System.Windows.Threading;

The Windows.UI.Xaml namespace is part of the .NET Framework for Windows Store, so you don’t use it for WPF
applications. But you need System.Windows.Threading because your ViewModel has a DispatcherTimer.

Other than that change, the code is identical. This is a good example of decoupled layers in the Model-View-ViewModel
pattern: since you used identical C# code (except for that one using statement) for the ViewModel and Model, you could
reuse those classes to port the stopwatch app to WPF.

Build the view for a simple stopwatch
Here’s the XAML for a simple stopwatch control. Add a WPF user control to the View folder
called BasicStopwatch.xaml and add this code. The control has TextBlock controls to display the
elapsed and lap times, and buttons to start, stop, reset, and take the lap time.

You’ll need to add Click event handlers to the control and a StopwatchViewModel class to the ViewModel namespace for this
to compile.

NOTE

Here’s a hint: use a DispatcherTimer to constantly check the Model and update the properties.

The code for the ViewModel is in Add the stopwatch ViewModel and 767 in the book. How
much of the ViewModel code can you build just from the View and Model code before you flip

the page? Add a BasicStopwatch control to the main window and see how far you can get.

But be really careful and don’t assume the IDE is necessarily wrong. Sometimes an error in the XAML for one page (like
a broken xmlns property) can cause all the designers to break.

Finish the stopwatch app
There are just a few more loose ends to tie together. Your BasicStopwatch user control doesn’t have
event handlers, so you need to add them. And then you just need to add the control to your main
window.

➊ First, go back to BasicStopwatch.xaml.cs and add these event handlers to the code-behind:

➋ Here’s all the XAML for MainWindow.xaml:

Your app should now run. Click the Start, Stop, Reset, and Lap buttons to see your stopwatch
work.

NOTE

We left this page blank so that you can read this appendix in two-page mode, so the exercise and its solution appear on different two-
page spreads. If you’re viewing this as a PDF in two-page mode, you may want to turn on the cover page so the even pages are on
the right and the odd pages are on the left.

Converters automatically convert values for binding
Anyone with a digital clock knows that it typically shows the minutes with a leading zero. Our
stopwatch should also show the minutes with two digits. And it should show the seconds with two
digits, and round to the nearest hundredth of a second. We could modify the ViewModel to expose
string values that are formatted properly, but that would mean that we’d need to keep adding more and
more properties each time we wanted to reformat the same data. That’s where value converters
come in very handy. A value converter is an object that the XAML binding uses to modify data before
it’s passed to the control. You can build a value converter by implementing the IValueConverter
interface (which is in the System.Windows.Data namespace). Add a value converter to your
stopwatch now.

➊ Add the TimeNumberFormatConverter class to the ViewModel folder.
Add using System.Windows.Data; to the top of the class, and then have it implement the
IValueConverter interface. Use the IDE to automatically implement the interface. This will add
two method stubs for the Convert() and ConvertBack() methods.
➋ Implement the Convert() method in the value converter.
The Convert() method takes several parameters — we’ll use two of them. The value parameter
is the raw value that’s passed into the binding, and parameter lets you specify a parameter in
XAML.

Is it a good idea to leave this NotImplementedException in your code? For this project, this is code that is never
supposed to be run. If it does get run, is it better to fail silently, so the user never sees it? Or is it better to throw an
exception so that you can track down the problem? Which of those gives you a more robust app? There’s not
necessarily one right answer.

➌ Add the converter to your stopwatch control as a static resource.
It should go right below the ViewModel object:

➍ Update the XAML code to use the value converter.
Modify the {Binding} markup by adding the Converter= to it in each of the <Run> tags.

Now the stopwatch runs the values through the converter before passing them into the TextBlock
controls, and the numbers are formatted correctly on the page.

Converters can work with many different types
TextBlock and TextBox controls work with text, so binding strings or numbers to the Text property
makes sense. But there are many other properties, and you can bind to those as well. If your
ViewModel has a Boolean property, it can be bound to any true/false property. You can even bind
properties that use enums — the IsVisible property uses the Visibility enum, which means you
can also write value converters for it. Let’s add Boolean and Visibility binding and conversion to
the stopwatch.

Here are two converters that will come in handy.

Sometimes you want to bind Boolean properties like IsEnabled so that a control is enabled if the bound property is false.
We’ll add a new converter called BooleanNotConverter, which uses the ! operator to invert a Boolean target property.

IsEnabled="{Binding Running, Converter={StaticResource notConverter}}"

You’ll often want to have controls show or hide themselves based on a Boolean property in the data context. You can only
bind the Visibility property of a control to a target property that’s of the type Visibility (meaning it returns values like
Visibility.Collapsed). We’ll add a converter called BooleanVisibilityConverter that will let us bind a control’s
Visibility property to a Boolean target property to make it visible or invisible.

Visibility="{Binding Running, Converter={StaticResource visibilityConverter}}"

➊ MODIFY THE VIEWMODEL’S TICK EVENT HANDLER.
Modify the DispatcherTimer’s Tick event handler to raise a PropertyChanged event if the
value of the Running property has changed:

➋ ADD A CONVERTER THAT INVERTS BOOLEAN VALUES.

Here’s a value converter that converts true to false and vice versa. You can use it with Boolean
properties on your controls like IsEnabled.

using System.Windows.Data;

class BooleanNotConverter : IValueConverter {
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 if ((value is bool) && ((bool)value) == false)
 return true;
 else
 return false;
 }
 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 throw new NotImplementedException();
 }
}

➌ ADD A CONVERTER THAT CONVERTS BOOLEANS TO VISIBILITY ENUMS.
You’ve already seen how you can make a control visible or invisible by setting its Visibility
property to Visible or Collapsed. These values come from an enum in the System.Windows
namespace called Visibility. Here’s a converter that converts Boolean values to Visibility
values:

using System.Windows;
using System.Windows.Data;

class BooleanVisibilityConverter : IValueConverter {
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 if ((value is bool) && ((bool)value) == true)
 return Visibility.Visible;
 else
 return Visibility.Collapsed;
 }
 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 throw new NotImplementedException();
 }
}

➍ MODIFY YOUR BASIC STOPWATCH CONTROL TO USE THE CONVERTERS.
Modify BasicStopwatch.xaml to add instances of these converters as static resources:

<viewmodel:BooleanVisibilityConverter x:Key="visibilityConverter"/>
<viewmodel:BooleanNotConverter x:Key="notConverter"/>

Now you can bind the controls’ IsEnabled and Visibility properties to the ViewModel’s
Running property:

NOTE

We left this page blank so that you can read this appendix in two-page mode, so the exercise and its solution appear on different two-
page spreads. If you’re viewing this as a PDF in two-page mode, you may want to turn on the cover page so the even pages are on
the right and the odd pages are on the left.

Build an analog stopwatch using the same ViewModel
The MVVM pattern decouples the View from the ViewModel, and the ViewModel from the Model.
This is really useful if you need to make changes to one of the layers. Because of that decoupling, you
can be very confident that the changes you make will not cause the “shotgun surgery” effect and ripple
into the other layers. So did we do a good job decoupling the stopwatch program’s View from its
ViewModel? There’s one way to be sure: let’s build an entirely new View without changing the
existing classes in the ViewModel. The only change you’ll need in the C# code is a new converter in
the ViewModel that converts minutes and seconds into angles.

NOTE

Remember how you used the data classes you built for Jimmy’s Comics in Chapter 14 and reused them to create a Split App without
making any changes? This is the same idea.

DO THIS!

➊ ADD A CONVERTER TO CONVERT TIME TO ANGLES.
Add the AngleConverter class to the ViewModel folder. You’ll use it for the hands on the face.

➋ ADD THE NEW USERCONTROL.
Add a new WPF user control called AnalogStopwatch to the View folder and add the ViewModel namespace to the
<UserControl> tag. Also, change the design width and height:

d:DesignHeight="300"
d:DesignWidth="400"
xmlns:viewmodel="clr-namespace:Stopwatch.ViewModel">

And add the ViewModel, two converters, and a style to the user control’s static resources.

<UserControl.Resources>
 <viewmodel:StopwatchViewModel x:Key="viewModel"/>
 <viewmodel:BooleanNotConverter x:Key="notConverter"/>
 <viewmodel:AngleConverter x:Key="angleConverter"/>
</UserControl.Resources>

➌ ADD THE FACE AND HANDS TO THE GRID.
Modify the <Grid> tag to add the stopwatch face, using four rectangles for hands.

➍ ADD THE BUTTONS TO THE STOPWATCH.
Since the ViewModel is the same, the buttons should work the same. Add the same buttons to AnalogStopwatch.xaml that you
used for the basic stopwatch:

<StackPanel Orientation="Horizontal" VerticalAlignment="Bottom">
 <Button IsEnabled="{Binding Running, Converter={StaticResource notConverter}}"
 Click="StartButton_Click" Margin="0,0,5,0">Start</Button>
 <Button IsEnabled="{Binding Running}"
 Click="StopButton_Click" Margin="0,0,5,0">Stop</Button>
 <Button Click="ResetButton_Click" Margin="0,0,5,0">Reset</Button>
 <Button IsEnabled="{Binding Running}" Click="LapButton_Click">Lap</Button>
</StackPanel>

Here’s the code-behind for AnalogStopwatch.xaml.cs:

ViewModel.StopwatchViewModel viewModel;

public AnalogStopwatch() {
 InitializeComponent();

 viewModel = FindResource("viewModel") as ViewModel.StopwatchViewModel;

}

private void StartButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Start();
}

private void StopButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Stop();
}

private void ResetButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Reset();
}

private void LapButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Lap();
}

➎ UPDATE THE MAIN WINDOW TO SHOW BOTH STOPWATCHES.
Now you just need to modify your MainWindow.xaml to add an AnalogStopwatch control:

<Window x:Class="Stopwatch.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Two Stopwatches" Height="450" Width="400" ResizeMode="NoResize"
 xmlns:view="clr-namespace:Stopwatch.View">
 <Grid>
 <StackPanel>
 <view:BasicStopwatch Margin="5"/>
 <view:AnalogStopwatch Margin="5"/>
 </StackPanel>
 </Grid>
</Window>

Run your app. Now you have two stopwatch controls on the page.

Try changing the ViewModel to make the _stopwatchModel field static. What does this change about how the
stopwatch app behaves? Can you figure out why that happens?

UI controls can be instantiated with C# code, too
You already know that your XAML code instantiates classes in the Windows.UI namespace, and you
even used the Watch window in the IDE back in Chapter 10 to explore them. But what if you want to
create controls from inside your code? Well, controls are just objects, so you can create them and
work with them just like you would with any other object. Go ahead and modify the code-behind to
add markings to the face of your analog stopwatch.

Controls like Grid, StackPanel, and Canvas have a Children collection with references to all the other controls contained
inside them. You can add controls to the grid with its Add() method and remove all controls by calling its Clear() method.
You add transforms to a TransformGroup the same way.

You used a Binding object to set up data binding in C# code back in Chapter 11. Can you figure
out how to remove the XAML to create the Rectangle controls for the hour and minute hands
and replace it with C# code to do the same thing?

For the next few projects, you’ll need to download the bee images from the your class website. Make sure that you
add the images to your project so they’re in the top-level folder, just like you did with the Jimmy’s Comics app. You’ll
also need to select each image file in the Solution Explorer
and use the Properties window to set the “Build Action” to Content and “Copy to Output Directory” to Copy always.
Here’s what it looks like when you did it for the Jimmy’s Comics app:

Make sure you do this for Bee animation 1.png, Bee animation 2.png, Bee animation 3.png, and Bee animation 4.png.

Create a user control to animate a picture
Let’s encapsulate all the frame-by-frame animation code. Add a WPF user control called
AnimatedImage to your View folder. It has very little XAML — all the intelligence is in the code-
behind. Here’s everything inside the <UserControl> tag in the XAML:

<Grid>
 <Image x:Name="image" Stretch="Fill"/>
</Grid>

The work is done in the code-behind. Notice its overloaded constructor that calls the
StartAnimation() method, which creates storyboard and key frame animation objects to
animate the Source property of the Image control.

Make your bees fly around a page
Let’s take your AnimatedImage control out for a test flight.

DO THIS!

➊ REPLACE THE MAIN WINDOW WITH A WINDOW IN THE VIEW FOLDER.
Add a Window to your View folder called FlyingBees.xaml. Delete MainWindow.xaml from the project. Then modify the
StartupUri property in the <Application> tag App.xaml:

StartupUri="View\FlyingBees.xaml"

➋ THE BEES WILL FLY AROUND A CANVAS CONTROL.
Here’s the code for the window (you’ll need to change the AnimatedBee namespace if you used a different project name). It
uses a Canvas control in FlyingBees.xaml. A Canvas control is a container, so it can contain other controls like a Grid or
StackPanel. The difference is that a Canvas lets you set the coordinates of the controls using the Canvas.Left and Canvas.Top
properties. You used a Canvas back in Chapter 1 to create the play area for Save the Humans. Here’s the XAML for the
FlyingBees.xaml window:

<Window x:Class="AnimatedBee.View.FlyingBees"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:view="clr-namespace:AnimatedBee.View"
 Title="Flying Bees" Height="600" Width="600">
 <Grid>
 <Canvas Background="SkyBlue">
 <view:AnimatedImage Canvas.Left="55" Canvas.Top="40"
 x:Name="firstBee" Width="50" Height="50"/>
 <view:AnimatedImage Canvas.Left="80" Canvas.Top="260"
 x:Name="secondBee" Width="200" Height="200"/>
 <view:AnimatedImage Canvas.Left="230" Canvas.Top="100"
 x:Name="thirdBee" Width="300" Height="125"/>
 </Canvas>
 </Grid>
</Window>

➌ ADD THE CODE-BEHIND FOR THE PAGE.
You’ll need this using statement for the namespace that contains Storyboard and DoubleAnimation:

using System.Windows.Media.Animation;

Now you can modify the constructor in FlyingBees.xaml.cs to start up the bee animation. Let’s also create a
DoubleAnimation to animate the Canvas.Left property. Compare the code for creating a storyboard and animation to the XAML
code with <DoubleAnimation> earlier in the chapter.

Run your program. Now you can see three bees flapping their wings. You gave them different intervals, so they flap at different
rates because their timers are waiting for different timespans before changing frames. The top bee has its Canvas. Left property
animated from 50 to 450 and back, which causes it to move around the page. Take a close look at the properties that are set on
the DoubleAnimation object and compare them with the XAML properties you used earlier in the chapter.

Something’s not right about this project. Can you spot it?

Something’s not right: there’s nothing in your Model or ViewModel folder, and you’re creating
dummy data in the View. That’s not MVVM!
If we wanted to add more bees, we’d have to create more controls in the View and then initialize
them individually. What if we want different sizes or kinds of bees? Or other things to be animated? If
we had a Model that was optimized for data, it would be a lot easier. How can we make this project
follow the MVVM pattern?

That won’t work. Data binding doesn’t work with container controls’ Children property — and
for good reason.
Data binding is built to work with attached properties, which are the properties that show up in the
XAML code. The Canvas object does have a public Children property, but if you try to set it using
XAML (Children="{Binding ...}") your code won’t compile.
However, you already know how to bind a collection of objects to a XAML control, because you did
that with ListView and GridView controls using the ItemsSource property. We can take advantage of
that data binding to add child controls to a Canvas.

Use ItemsPanelTemplate to bind controls to a Canvas
When you used the ItemsSource property to bind items to a ListView, GridView, or ListBox, it
didn’t matter which one you were binding to, because the ItemsSource property always worked the
same way. If you were going to build three classes that had exactly the same behavior, you would put
that behavior in a base class and have the three classes extend it, right? Well, the Microsoft team did
exactly the same thing when they built the selector controls. The ListView, GridView, and ListBox all
extend a class called Selector, which is a subclass of the ItemsControl class that displays a
collection of items.

➊ We’re going to use its ItemsPanel property to set up a template for the panel that controls
the layout of the items. Start by adding the ViewModel namespace to FlyingBees.xaml:

➋ Next, add an empty class called BeeViewModel to your ViewModel folder, and then add an
instance of that class as a static resource to FlyingBees.xaml:

<viewmodel:BeeViewModel x:Key="viewModel"/>

Edit FlyingBees.xaml.cs and delete all the additional code that you added to the
FlyingBees() constructor in the FlyingBees control. Make sure that you don’t delete the
InitializeComponent() method!
➌ Here’s the XAML for the ItemsControl. Open FlyingBees.xaml, delete the <Canvas> tag you
added, and replace it with this ItemsControl:

➍ Create a new class in the View folder called BeeHelper. Make sure it’s a static class, because
it’ll have only static methods to help your ViewModel manage its bees.

THE FACTORY METHOD PATTERN

MVVM is just one of many design patterns. One of the most common — and most useful — patterns is the factory method
pattern, where you have a “factory” method that creates objects. The factory method is usually static, and the name often ends
with “Factory” so it’s obvious what’s going on.

➎ Here’s the code for the empty BeeViewModel class that you added to the ViewModel folder. By
moving the UI-specific code to the View, we can keep the code in the ViewModel simple and
specific to managing bee-related logic.

➏ Run your app. It should look exactly the same as before, but now the behavior is split across
the layers, with UI-specific code in the View and code that deals with bees and moving in the
ViewModel.

THE READONLY KEYWORD

An important reason that we use encapsulation is to prevent one class from accidentally overwriting another class’s data. But what’s
preventing a class from overwriting its own data? The readonly keyword can help with that. Any field that you mark readonly can be
modified only in its declaration or in the constructor.

LONG EXERCISE

This is the last exercise in the book. Your job is to build a program that animates bees and stars. There’s a lot of code to write, but
you’re up to the task...and once you have this working, you’ll have all the tools you need to build a complete video game. (Can you
guess what’s in Lab #3?)

➊ HERE’S THE APP YOU’LL CREATE.
Bees with flapping wings fly around a dark blue canvas, while behind them, stars fade in and out. You’ll build a View that contains
the bees, stars, and page to display them; a Model that keeps track of where they are and fires off events when bees move or
stars change; and a ViewModel to connect the two together.

➋ CREATE A NEW WPF APPLICATION PROJECT.
Create a new project called StarryNight. Next, add the Model, View, and ViewModel folders . Once that’s done, you’ll need to
add an empty class called BeeStarViewModel to the ViewModel folder.
➌ CREATE A NEW WINDOW IN THE VIEW FOLDER.
Delete MainWindow.xaml. Then add a window in the View folder called BeesOnAStarryNight. xaml. Add the namespace to
the top-level tag in the BeesOnAStarryNight.xaml (it should match your project’s name, StarryNight):

xmlns:viewmodel="clr-namespace:StarryNight.ViewModel"

Add the ViewModel as a static resource and change the page name:

<Window.Resources>
 <viewmodel:BeeStarViewModel x:Key="viewModel"/>
</Window.Resources>

The XAML for the page is exactly the same as FlyingBees.xaml in the last project, except the Canvas control’s background is
Blue and it has a SizeChanged event handler:

Then modify the <Application> tag in App.xaml so the application starts with the new window:

StartupUri="View\BeesOnAStarryNight.xaml"

Visual Studio comes with a fantastic tool to help you experiment with shapes! Fire up Blend for Visual Studio 2013
and use the pen, pencil, and toolbox to create XAML shapes that you can copy and paste into your C# projects.

NOTE

The code in step 4 won’t compile until you add the PlayAreaSize property to the ViewModel in
step 9. You can use the IDE to generate a property stub for it for now.

➍ ADD CODE-BEHIND FOR THE PAGE AND THE APP.
Add the SizeChanged event handler to BeesOnAStarryNight.xaml.cs in the View folder:

ViewModel.BeeStarViewModel viewModel;

public BeesOnAStarryNight() {
 InitializeComponent();

 viewModel = FindResource("viewModel") as ViewModel.BeeStarViewModel;
}

private void SizeChangedHandler(object sender, SizeChangedEventArgs e) {
 viewModel.PlayAreaSize = new Size(e.NewSize.Width, e.NewSize.Height);
}

➎ ADD THE ANIMATEDIMAGE CONTROL TO THE VIEW FOLDER.
Go back to the View folder and add the AnimatedImage control. This is exactly the same control from earlier in the chapter.
Make sure you add the image files for the animation frames to the project and update each file’s Build Action to Content and
its Copy to Output Directory to Copy always.
➏ ADD A USER CONTROL CALLED STARCONTROL TO THE VIEW FOLDER.
This control draws a star. It also has two storyboards, one to fade in and one to fade out. Add methods called FadeIn() and
FadeOut() to the code-behind to trigger the storyboards.

NOTE

A Polygon control uses a set of points to draw a polygon. This UserControl uses it to
draw a star.

There are even more shapes beyond ellipses, rectangles, and polygons: http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/hh465055.aspx

➐ ADD THE BEESTARHELPER CLASS TO THE VIEW.
Here’s a useful helper class. It’s got some familiar tools and a couple of new ones. Put it in the View folder.

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465055.aspx

➑ ADD THE BEE, STAR, AND EVENTARGS CLASSES TO THE MODEL.
Your model needs to keep track of the bees’ positions and sizes, and the stars’ positions, and it will fire off events so the
ViewModel knows whenever there’s a change to a bee or a star.

THE POINT, SIZE, AND RECT STRUCTS

The System.Windows namespace has several very useful structs. Point uses X and Y double
properties to store a set of coordinates. Size has two double properties too, Width and Height, and
also a special Empty value. Rect stores two coordinates for the top-left and bottom-right corner
of a rectangle. It has a lot of useful methods to find its width, height, intersection with other
Rects, and more.

The Rect struct has several overloaded constructors, and methods that let you extract its
width, height, size, and location (either as a Point or individual X and Y double coordinates).
The Points property on the Polygon control is a collection of Point structs.

➒ ADD THE BEESTARMODEL CLASS TO THE MODEL.
We’ve filled in the private fields and a couple of useful methods. Your job is to finish building the BeeStarModel class.

You can debug your app with the simulator to make sure it works with different screen sizes and orientations.

➓ ADD THE BEESTARVIEWMODEL CLASS TO THE VIEWMODEL.
Fill in the commented methods. You’ll need to look closely at how the Model works and what the View expects. The helper

methods will also come in very handy.

LONG EXERCISE SOLUTION

Here are the filled-in methods in the BeeStarModel class.

LONG EXERCISE SOLUTION

The last few members of the BeeStarModel class.

Here are the filled-in methods of the BeeStarViewModel class.

LONG EXERCISE SOLUTION

Here are the methods for the StarControl code-behind:

using System.Windows.Media.Animation;

public partial class StarControl : UserControl {
 public StarControl()
 {
 InitializeComponent();
 }

 public void FadeIn() {
 Storyboard fadeInStoryboard = FindResource("fadeInStoryboard") as Storyboard;
 fadeInStoryboard.Begin();
 }

 public void FadeOut() {
 Storyboard fadeOutStoryboard = FindResource("fadeOutStoryboard") as Storyboard;
 fadeOutStoryboard.Begin();
 }
}

The ViewModel’s PlayAreaSize property just passes through to the property on the Model — but the Model’s PlayAreaSize
set accessor calls methods that fire BeeMoved and StarChanged events. So when the screen resolution changes: 1) the Canvas
fires its SizeChanged event, which 2) updates the ViewModel’s PlayAreaSize property, which 3) updates the Model’s property,
which 4) calls methods to update bees and stars, which 5) fire BeeMoved and StarChanged events, which 6) trigger the
ViewModel’s event handlers, which 7) update the Sprites collection, which 8) update the controls on the Canvas. This is
an example of loose coupling, where there’s no single, central object to coordinate things. This is a very stable way to
build software because each object doesn’t need to have explicit knowledge of how the other objects work. It just
needs to know one small job: handle an event, fire an event, call a method, set a property, etc.

NO TE

If you’ve done a good job with separation of concerns, your designs often tend to naturally end up being loosely
coupled.

You’ve got all the tools to do Lab #3 and build Invaders!
We saved the best for last. In the last lab in the book, you’ll build your own version of Space
Invaders, the grandfather of video games. And while the lab is aimed at Windows Store apps, if you
finished the Bees on a Starry Night project — and you understood it all — then you have the
knowledge and know-how to build a WPF version of the Invaders game. Almost everything in the lab
applies to WPF. The only thing that’s different is how the user controls the ship. Windows Store apps
have advanced gesture events that process touch and mouse input, but WPF windows don’t support
those events. You’ll need to use the WPF Window object’s KeyUp and KeyDown events. Luckily,
you’ve already got a good example. Flip back to the Key Game in Chapter 4 — your Invaders game
can handle keystrokes in exactly the same way.

Congratulations! (But you’re not done yet...)
Did you finish that last exercise? Did you understand everything that was going on? If so, then
congratulations — you’ve learned a whole lot of C#, and probably in less time than you’d expected!
The world of programming awaits you.
Still, there are a few things that you should do before you move on to the last lab, if you really want to
make sure all the information you put in your brain stays there.

Take one last look through Save the Humans.
If you did everything we asked you to do, you’ve built Save the Humans twice, once at the beginning
of the book and again before you started Chapter 10. Even the second time around, there were parts of
it that seemed like magic. But when it comes to programming, there is no magic. So take one last
pass through the code you built. You’ll be surprised at how much you understand! There’s almost
nothing that seals a lesson into your brain like positive reinforcement.

Talk about it with your friends.
Humans are social animals, and when you talk through things you’ve learned with your social circle
you do a better job of retaining them. And these days, “talking” means social networking, too! Plus,
you’ve really accomplished something here. Go ahead and claim your bragging rights!

Take a break. Even better, take a nap.

Your brain has absorbed a lot of information, and sometimes the best thing you can do to “lock in” all
that new knowledge is to sleep on it. There’s a lot of neuroscience research that shows that
information absorption is significantly improved after a good night’s sleep. So give your brain a
well-deserved rest!

When it comes to programming, there is no magic. Every program works because it was built to work, and all code can
be understood.

NOTE

...but it’s a lot easier to understand code if the programmer used good design patterns and object-oriented programming principles.

Index
A NOTE ON THE DIGITAL INDEX

A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index
markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place
in the text in which the marker appears.

Symbols

& (ampersand), Set up conditions and see if they’re true, Wait, wait! What did that say?, ...more
basics..., ...more basics...

& (logical AND) operator, ...more basics...
&& operator, Set up conditions and see if they’re true, Wait, wait! What did that say?, ...more
basics...

* (asterisk), A few useful types, Let’s create some instances!, When you cast a value that’s too big, C#
will adjust it automatically, When you call a method, the arguments must be compatible with the types
of the parameters, Combining = with an operator

*= (multiplication and assignment) operator, A few useful types, Let’s create some instances!,
When you call a method, the arguments must be compatible with the types of the parameters,
Combining = with an operator
multiplication operator, converting types, When you cast a value that’s too big, C# will adjust it
automatically

@ (at sign), preceding filenames, Write text to a file in three simple steps, Things you can do with
Directory:
~ (bitwise complement) operator, ...more basics...
: (colon), Use a colon to inherit from a base class, Now you can create an instance of NectarStinger
that does both jobs

implementing an interface, Now you can create an instance of NectarStinger that does both jobs
using to inherit from base class, Use a colon to inherit from a base class

?: (conditional) operator, Add the stopwatch ViewModel, ...more basics..., #6. Equality, IEquatable,
and Equals()
{ } (curly brackets), Let’s take a closer look at your code, Let’s take a closer look at your code,
Loops perform an action over and over, Make each button do something, Create a project for your
guys, Build the Part y Planner version 2.0, The Swindler launches another diabolical plan

code for classes or methods in, Make each button do something
grouping sttements into code blocks, Let’s take a closer look at your code, Let’s take a closer look
at your code
leaving out for code blocks, Build the Part y Planner version 2.0
matching up using the IDE, Loops perform an action over and over
using to pass variables to string in StreamWriter, The Swindler launches another diabolical plan

. (dot) operator, A few useful types
\\ (double backslash), escaping backslash in strings, Things you can do with Directory:
= (equals sign), You have to assign values to variables before you use them, if/else statements make
decisions, if/else statements make decisions, Set up conditions and see if they’re true, Use logical
operators to check conditions, ...more basics..., #3. Namespaces and assemblies, #6. Equality,
IEquatable, and Equals()

assignment operator, You have to assign values to variables before you use them, if/else statements
make decisions, ...more basics...
combining with logical operators, #3. Namespaces and assemblies
== (equality) operator, Set up conditions and see if they’re true, #6. Equality, IEquatable, and
Equals()
= versus == operator, if/else statements make decisions, Use logical operators to check conditions

! (exclamation mark), A few useful types, Set up conditions and see if they’re true, When you call a
method, the arguments must be compatible with the types of the parameters, Controls are objects, just
like any other object, How you’ll build the beehive management system

!= (inequality) operator, Set up conditions and see if they’re true, Controls are objects, just like any
other object
NOT operator, A few useful types, When you call a method, the arguments must be compatible with
the types of the parameters, How you’ll build the beehive management system

> (greater than) operator, Set up conditions and see if they’re true
<< (left shift) operator, #3. Namespaces and assemblies
< (less than) operator, Set up conditions and see if they’re true
- (minus sign), A few useful types, A few useful types, When you cast a value that’s too big, C# will
adjust it automatically, When you call a method, the arguments must be compatible with the types of
the parameters, Combining = with an operator

- - (decrement) operator, A few useful types
-= (subtraction and assignment) operator, When you call a method, the arguments must be
compatible with the types of the parameters, Combining = with an operator
subtraction operator, A few useful types, When you cast a value that’s too big, C# will adjust it
automatically

\n (line feed character), Make each button do something, So what did you just build?, The variable’s
type determines what kind of data it can store, Build a program that uses a dictionary, Write text to a
file in three simple steps, Things you can do with Directory:
?? (null coalescing) operator, ...more basics...
=> operator, #9. Anonymous types, anonymous methods, and lambda expressions

in lambda expressions, #9. Anonymous types, anonymous methods, and lambda expressions
| (pipe symbol), Set up conditions and see if they’re true, You can help Brian out by building a
program to manage his excuses, ...more basics..., ...more basics...

logical OR operator, ...more basics...
|| (OR) operator, Set up conditions and see if they’re true, You can help Brian out by building a
program to manage his excuses, ...more basics...

+ (plus sign), Add timers to manage the gameplay, A few useful types, A few useful types, A few
useful types, A few useful types, When you cast a value that’s too big, C# will adjust it automatically,
Use a standard name when you add a method to raise an event, ...more basics..., #3. Namespaces and
assemblies

+= (addition and assignment) operator, Add timers to manage the gameplay, A few useful types,
Use a standard name when you add a method to raise an event
addition operator, A few useful types
addition or string concatentation, conversion of types with, When you cast a value that’s too big,
C# will adjust it automatically
++ (increment) operator, A few useful types, ...more basics...
string concatenation operator, A few useful types, #3. Namespaces and assemblies

>> (right shift) operator, #3. Namespaces and assemblies
\r (return character), Build a program that uses a dictionary, Things you can do with Directory:
; (semicolon), ending statements, The IDE helps you code, Make each button do something
/ (slash), A few useful types, Use the debugger to see your variables change, Make each button do
something, Rebuild your app for Windows Desktop, Wait, wait! What did that say?, When you cast a
value that’s too big, C# will adjust it automatically, #2. The Basics, ...more basics..., Use the
debugger to see your variables change

/* and */ enclosing multiline comments, ...more basics...
comments beginning with //, Make each button do something
comments beginning with ///, Rebuild your app for Windows Desktop, Wait, wait! What did that
say?
comments surrounded with /* and */ or //, Use the debugger to see your variables change, Use the
debugger to see your variables change
division operator, A few useful types
division operator, converting types, When you cast a value that’s too big, C# will adjust it
automatically
/// (triple-slash), denoting XML comments, #2. The Basics

[] (square brackets), A special case: arrays, Welcome to Sloppy Joe’s Budget House o’ Discount
Sandwiches!, #7. Using yield return to create enumerable objects

using to access elements, Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!
using to retrieve object from list, array, or dictionary, #7. Using yield return to create enumerable
objects
usng to declare and initialize arrays, A special case: arrays

\t (tab character), The variable’s type determines what kind of data it can store, Write text to a file in
three simple steps, Things you can do with Directory:
 ̂(XOR) operator, ...more basics..., #6. Equality, IEquatable, and Equals()

A

About popup control, using Settings charm to open, Use the Settings charm to open a SettingsFlyout
abstract classes, An abstract class is like a cross between a class and an interface, An abstract class
is like a cross between a class and an interface, An abstract method doesn’t have a body

Fireside Chat, An abstract method doesn’t have a body
usefulness, An abstract class is like a cross between a class and an interface

abstraction, Build up your class model by starting general and getting more specific, An abstract
method doesn’t have a body

as principle of OOP, An abstract method doesn’t have a body
general versus specific, Build up your class model by starting general and getting more specific

abstract keyword, An abstract method doesn’t have a body
abstract methods, An abstract class is like a cross between a class and an interface, An abstract
method doesn’t have a body
access modifiers, There’s more than just public and private, There’s more than just public and

private, There’s more than just public and private, There’s more than just public and private, There’s
more than just public and private, There’s more than just public and private, Access modifiers change
visibility, Access modifiers change visibility, ...so what did I just do?

internal, There’s more than just public and private
private, There’s more than just public and private
protected, There’s more than just public and private
protected versus private or public, Access modifiers change visibility
public, There’s more than just public and private
scope, Access modifiers change visibility
sealed, There’s more than just public and private

addition and assignment operator (+=)., Add timers to manage the gameplay (see + (plus sign), under
Symbols; compound operators)
addition operator., Add timers to manage the gameplay (see + (plus sign), under Symbols)
Adventure Game program, C# Lab: A Day at the Races (see labs, #2 The Quest)
Albahari, Ben, Did you know that C# and the .NET Framework can...
Albahari, Joe, Add semantic zoom to Jimmy’s app, #8. Refactoring, Did you know that C# and the
.NET Framework can...
aliens, , Aliens attack!, Aliens attack!, Your game is now playable, It’s all Just Code: Under the
hood, C# Lab Invaders

gastronomy, Aliens attack!
saving Earth from, C# Lab Invaders

allocate, defined, IDisposable makes sure your objects are disposed of properly
allocated resources, IDisposable makes sure your objects are disposed of properly
ambiguity, avoiding, An abstract method doesn’t have a body
AND operator., ...more basics... (see & (ampersand), under Symbols)
AngleConverter class, Build an analog stopwatch using the same ViewModel, Build an analog
stopwatch using the same ViewModel
animal inheritance program, How would you design a zoo simulator?
animations, Add a method that does something, Use the IDE to create your own method, Fill in the
code for your method, Finish the method and run your program, Wait, wait! What did that say?,
Controls are objects, just like any other object, Visual states make controls respond to changes, Use
DoubleAnimation to animate double values, Use object animations to animate object values, C# can
build “real” animations, too, Make your bees fly around a page, Use ItemsPanelTemplate to bind
controls to a Canvas, Make your bees fly around a page, Use ItemsPanelTemplate to bind controls to a
Canvas

bouncing Label controls, Controls are objects, just like any other object
building program that animates bees and stars, Use ItemsPanelTemplate to bind controls to a
Canvas, Use ItemsPanelTemplate to bind controls to a Canvas
building with C#, C# can build “real” animations, too, Make your bees fly around a page, Make
your bees fly around a page

making bees fly around a page, Make your bees fly around a page, Make your bees fly around a
page

code creating enemy bouncing animation (example), Use the IDE to create your own method, Finish
the method and run your program
desktop apps, Wait, wait! What did that say?
generating method stub for AnimateEnemy() method (example), Add a method that does something,
Fill in the code for your method
key frame, Use object animations to animate object values
using DoubleAnimation to animate double values, Use DoubleAnimation to animate double values
visual state changes for buttons, Visual states make controls respond to changes

anonymous, defined, Use the new keyword to create anonymous types
anonymous methods, #9. Anonymous types, anonymous methods, and lambda expressions
anonymous types, Use the new keyword to create anonymous types, Use the new keyword to create
anonymous types, Jimmy saved a bunch of dough, #9. Anonymous types, anonymous methods, and
lambda expressions

creating using new keyword, Use the new keyword to create anonymous types, Use the new
keyword to create anonymous types

APIs, defined, The .NET Framework gives you the right tools for the job
AppBar controls, Build a slightly less simple text editor
AppendAllText() method, Use the built-in File and Directory classes to work with files and
directories
Append(), AppendFormat() and AppendLine(), StringBuilder, #3. Namespaces and assemblies
Appliance project, A CoffeeMaker is also an Appliance, A CoffeeMaker is also an Appliance,
Upcasting works with both objects and interfaces, Downcasting lets you turn your appliance back into
a coffee maker, Upcasting and downcasting work with interfaces, too, Upcasting and downcasting
work with interfaces, too

Appliance class, A CoffeeMaker is also an Appliance
downcasting, Downcasting lets you turn your appliance back into a coffee maker, Upcasting and
downcasting work with interfaces, too

interfaces, Upcasting and downcasting work with interfaces, too
upcasting, Upcasting works with both objects and interfaces, Upcasting and downcasting work with
interfaces, too

interfaces, Upcasting and downcasting work with interfaces, too
ApplicationData.Current.LocalFolder, Use async methods to find and open files
application life cycle, Windows Store apps, Use static resources to declare your objects in XAML
Application object, Use the IDE to explore app page navigation
application programming interfaces., The .NET Framework gives you the right tools for the job (see
APIs)
AppName, changing for Windows Store app, Use properties to change how the controls look
apps., , if/else statements make decisions, Build an app from the ground up

(see also Windows Store apps)
building from ground up, if/else statements make decisions, Build an app from the ground up

App.xaml.cs file, What you do in Visual Studio..., Use the IDE to explore app page navigation,
Windows Store apps use events for process lifetime management
App.xaml file, Use the IDE to explore app page navigation, Add semantic zoom to Jimmy’s app, The
IDE’s Split App template helps you build apps for navigating data
ArgumentException, Brian’s code did something unexpected, Bees need an OutOfHoney exception
arguments, C# does some casting automatically, When you call a method, the arguments must be
compatible with the types of the parameters

compatibility with types of parameters, When you call a method, the arguments must be compatible
with the types of the parameters

arithmetic operators, A few useful types, When you cast a value that’s too big, C# will adjust it
automatically, C# does some casting automatically

automatic casting with, When you cast a value that’s too big, C# will adjust it automatically, C#
does some casting automatically

arrays, A special case: arrays, Arrays can contain a bunch of reference variables, too, Arrays can
contain a bunch of reference variables, too, Controls are objects, just like any other object, You can
find out if a class implements a certain interface with “is”, We could use an array to create a deck of
cards..., Arrays are hard to work with, Lists are more flexible than arrays, #7. Using yield return to
create enumerable objects

containing reference variables, Arrays can contain a bunch of reference variables, too
difficulty in working with, Arrays are hard to work with
finding length, Arrays can contain a bunch of reference variables, too
of objects, Controls are objects, just like any other object
using to create deck of cards, We could use an array to create a deck of cards...
using [] to return object from, #7. Using yield return to create enumerable objects
versus Lists, Lists are more flexible than arrays

as keyword, is tells you what an object implements; as tells the compiler how to treat your object,
Downcasting lets you turn your appliance back into a coffee maker, Upcasting and downcasting work
with interfaces, too, Polymorphism means that one object can take many different forms, The stack vs.
the heap: more on memory, “Captain” Amazing...not so much

illegal downcasting, Upcasting and downcasting work with interfaces, too
use with objects, “Captain” Amazing...not so much
using in downcasting, Downcasting lets you turn your appliance back into a coffee maker,
Polymorphism means that one object can take many different forms
value types and, The stack vs. the heap: more on memory

assemblies, There’s more than just public and private, #3. Namespaces and assemblies
Assets folder, Use the new keyword to create anonymous types

adding image files to, Use the new keyword to create anonymous types
assignment, Start with a blank application, You have to assign values to variables before you use
them, Use logical operators to check conditions, Use logical operators to check conditions, ...more
basics...

= operator, ...more basics...
values to variables, You have to assign values to variables before you use them

assignment operator (=), if/else statements make decisions

(see also = (equals sign), under Symbols)
asynchronous methods, Windows Store apps use await to be more responsive, Use async methods to
find and open files, Use a Task to call one async method from another, C# programs can use await to
be more responsive

using Task to call one from another, Use a Task to call one async method from another
using to find and open files, Use async methods to find and open files

async modifier, Windows Store apps use await to be more responsive, Build a slightly less simple
text editor, Build a slightly less simple text editor, C# programs can use await to be more responsive

in OpenFile() and SaveFile() methods, Build a slightly less simple text editor
with await operator in method’s delcaration, Build a slightly less simple text editor

attributes, If you want your class to be serializable, mark it with the [Serializable] attribute
automatic properties, You can find out if a class implements a certain interface with “is”
await operator, Windows Store apps use await to be more responsive, Build a slightly less simple
text editor, Build a slightly less simple text editor, Use a Task to call one async method from another,
Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse Manager, Handle
exceptions with try and catch, Add process lifetime management to Jimmy’s comics, C# programs can
use await to be more responsive

inability to use in body of catch clause, Handle exceptions with try and catch
in OpenFile() and SaveFile() methods, Build a slightly less simple text editor
with async keyword in method declaration, Build a slightly less simple text editor

B

BackgroundWorker, using to make WinForms responsive, #4. Use BackgroundWorker to make your
WinForms responsive
backing fields, Properties make encapsulation easier, Use a constructor to initialize private fields,
Keep your eyes open for polymorphism in the next exercise!
Baseball Simulator project, Ever wish your objects could think for themselves?, The IDE generates
event handlers for you automatically, The IDE generates event handlers for you automatically, An
object can subscribe to an event..., Use a callback to control who’s listening, Chapter 15, Chapter 15

callbacks, Use a callback to control who’s listening
Fan class, The IDE generates event handlers for you automatically, Chapter 15
Pitcher class, The IDE generates event handlers for you automatically, Chapter 15
subscription and public events, An object can subscribe to an event...

base classes, When your classes use inheritance, you only need to write your code once, How would
you design a zoo simulator?, Create the class hierarchy, Use a colon to inherit from a base class, Any
place where you can use a base class, you can use one of its subclasses instead, A subclass can
access its base class using the base keyword, When a base class has a constructor, your subclass
needs one, too, Upcasting works with both objects and interfaces

building Animal base class for zoo simulator, How would you design a zoo simulator?
colon (:), Use a colon to inherit from a base class
constructors, When a base class has a constructor, your subclass needs one, too
extending, Create the class hierarchy
subclasses accessing with base keyword, A subclass can access its base class using the base
keyword
upcasting, Upcasting works with both objects and interfaces
using subclasses instead, Any place where you can use a base class, you can use one of its
subclasses instead

base keyword, A subclass can access its base class using the base keyword, Access modifiers change
visibility
Basic Page template, Page layout starts with controls
Beehive Management System project, Build a beehive management system, How you’ll build the
beehive management system, How you’ll build the beehive management system, Use inheritance to
extend the bee management system, Use inheritance to extend the bee management system, Use
inheritance to extend the bee management system, Let’s get back to bee-sics, We can use inheritance to
create classes for different types of bees, An interface tells a class that it must implement certain
methods and properties, You can’t instantiate an interface, but you can reference an interface,
Interfaces can inherit from other interfaces, Bees need an OutOfHoney exception

building form, How you’ll build the beehive management system
building Worker and Queen classes, How you’ll build the beehive management system
class hierarchy with Worker and Queen classes, We can use inheritance to create classes for
different types of bees
extending through inheritance, Use inheritance to extend the bee management system
interfaces, An interface tells a class that it must implement certain methods and properties, You
can’t instantiate an interface, but you can reference an interface, Interfaces can inherit from other
interfaces

inheritance, Interfaces can inherit from other interfaces
references, You can’t instantiate an interface, but you can reference an interface

making Worker class inherit from Bee class, Use inheritance to extend the bee management system
OutOfHoneyException, Bees need an OutOfHoney exception
updating form to instantiate bees, Use inheritance to extend the bee management system

bees, Build a beehive management system, Build a beehive management system, Use inheritance to
extend the bee management system, Use more than one catch block to handle multiple types of
exceptions, Exception avoidance: implement IDisposable to do your own cleanup, C# can build

“real” animations, too, Use ItemsPanelTemplate to bind controls to a Canvas, Use
ItemsPanelTemplate to bind controls to a Canvas

accounting systems, Build a beehive management system, Use inheritance to extend the bee
management system
animating, C# can build “real” animations, too
animating bees and stars, Use ItemsPanelTemplate to bind controls to a Canvas, Use
ItemsPanelTemplate to bind controls to a Canvas

binary and decimal, converting between, The variable’s type determines what kind of data it can store
binary files, Let’s serialize and deserialize a deck of cards, Use a BinaryWriter to write binary data,
You can read and write serialized files manually, too, Working with binary files can be tricky,
Working with binary files can be tricky

comparing, You can read and write serialized files manually, too
hex dump, Working with binary files can be tricky
working with, Working with binary files can be tricky
writing, Use a BinaryWriter to write binary data

BinaryFormatter, Serialization lets you read or write a whole object graph all at once, Serialization
lets you read or write a whole object graph all at once, Serialization lets you read or write a whole
object graph all at once, If you want your class to be serializable, mark it with the [Serializable]
attribute, Let’s serialize and deserialize a deck of cards, Let’s serialize and deserialize a deck of
cards, Uh oh — the code’s still got problems..., Uh-oh — the code’s still got problems...

Deserialize() method, Serialization lets you read or write a whole object graph all at once, Let’s
serialize and deserialize a deck of cards
Serializable attribute, If you want your class to be serializable, mark it with the [Serializable]
attribute, Let’s serialize and deserialize a deck of cards
SerializationException, Uh oh — the code’s still got problems..., Uh-oh — the code’s still got
problems...
Serialize() method, Serialization lets you read or write a whole object graph all at once

BinaryReader, Use BinaryReader to read the data back in
binary serialization versus data contract serialization, Build a slightly less simple text editor
BinaryWriter, Use a BinaryWriter to write binary data
binding., Make your bees fly around a page (see data binding)
Binding object, Data binding connects your XAML pages to your classes, Two-way binding can get or
set the source property
binding path, Data binding connects your XAML pages to your classes, Use a data template to display
objects, Use a data template to display objects

property type, Use a data template to display objects, Use a data template to display objects
Birthday Party project, Kathleen does birthday parties, too, We need a BirthdayParty class, Build the
Part y Planner version 2.0, Build the Part y Planner version 2.0, Build the Part y Planner version 2.0,
One more thing...can you add a $100 fee for parties over 12?, One more thing...can you add a $100
fee for parties over 12?, Now you’re ready to finish the job for Kathleen!

adding controls to form, Build the Part y Planner version 2.0
adding fee for parties over 12 people, One more thing...can you add a $100 fee for parties over 12?
BirthdayParty.CalculateCost(), One more thing...can you add a $100 fee for parties over 12?
BirthdayParty class, We need a BirthdayParty class
inheriting from Party class, Now you’re ready to finish the job for Kathleen!
testing the program, Build the Part y Planner version 2.0
writing code to make controls work, Build the Part y Planner version 2.0

bitwise complement operator (~), ...more basics...
Blank App template, What you do in Visual Studio..., Start with a blank application, The IDE helps
you code
Blend for Visual Studio 2012, Use ItemsPanelTemplate to bind controls to a Canvas, Use
ItemsPanelTemplate to bind controls to a Canvas
blocks (of code), Add a method that does something, Let’s take a closer look at your code, Use
logical operators to check conditions, Build the Part y Planner version 2.0

leaving out curly brackets, Build the Part y Planner version 2.0
Boolean values, converters for, Converters can work with many different types, Converters can work
with many different types
bool type, You have to assign values to variables before you use them, A few useful types, The
variable’s type determines what kind of data it can store, A variable is like a data to-go cup

true or false values, A few useful types
Border controls, XAML controls can contain text...and more
BottomAppBar property, Build a slightly less simple text editor
boxed objects and structs, The stack vs. the heap: more on memory, Nullable types help you make
your programs more robust, “Captain” Amazing...not so much

boxed struct, “Captain” Amazing...not so much
break keyword in case statements, Use a switch statement to choose the right option, Use a switch
statement to let your deck of cards read from a file or write itself out to one
breakpoints, Use the debugger to see your variables change, Use the IDE’s debugger to ferret out
exactly what went wrong in the Excuse Manager, Use the debugger to see your variables change, Use

the IDE’s debugger to ferret out exactly what went wrong in the Excuse Manager

inserting into code, Use the debugger to see your variables change, Use the debugger to see your
variables change
knowing where to put, Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse
Manager, Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse Manager

break statements, ...more basics...
Build menu (IDE), Where programs come from
Bullet Points, Where no object has gone before, Where no object has gone before, Generics can store
any type, Bees need an OutOfHoney exception, Bees need an OutOfHoney exception, A callback is
just a way to use delegates, A callback is just a way to use delegates

delegates, A callback is just a way to use delegates
event handlers, A callback is just a way to use delegates
exception handling, Bees need an OutOfHoney exception
Lists, Generics can store any type
reference variables, Where no object has gone before
try/catch blocks, Bees need an OutOfHoney exception
types, Where no object has gone before

Button controls, When you’re doing this..., if/else statements make decisions, if/else statements make
decisions, Make each button do something, Rebuild your app for Windows Desktop, Rebuild your
app for Windows Desktop, Wait, wait! What did that say?, When you create a new object from a
class, it’s called an instance of that class, Build a form to interact with the guys, Build a form to
interact with the guys, A few ideas for designing intuitive classes, Use data binding to build Sloppy
Joe a better menu, Visual states make controls respond to changes, Build an app from the ground up,
Build an app from the ground up, Use data binding to build Sloppy Joe a better menu

adding code to interact with objects, Build a form to interact with the guys
adding to form, Build a form to interact with the guys, A few ideas for designing intuitive classes
adding to page, When you’re doing this...
adding to Windows Desktop app, Rebuild your app for Windows Desktop
Button class, When you create a new object from a class, it’s called an instance of that class
changing properties for Windows Desktop app, Wait, wait! What did that say?
changing Text property in Properties window, Rebuild your app for Windows Desktop
Content property, if/else statements make decisions, Build an app from the ground up
making them do something, Make each button do something
MenuMaker project, Use data binding to build Sloppy Joe a better menu, Use data binding to build
Sloppy Joe a better menu
naming using x:Name property, if/else statements make decisions, Build an app from the ground up
visual states, Visual states make controls respond to changes

buttons., Build a form to interact with the guys (see Button controls)
by keyword, Jimmy saved a bunch of dough
byte arrays, Things you can do with Directory:, C# can use byte arrays to move data around

moving text around in, C# can use byte arrays to move data around
byte order mark, Use Stream.Read() to read bytes from a stream
byte type, The variable’s type determines what kind of data it can store, A variable is like a data to-
go cup, When you cast a value that’s too big, C# will adjust it automatically

casting int variable too large for, When you cast a value that’s too big, C# will adjust it
automatically

C

C#, Why you should learn C#, C# and the Visual Studio IDE make lots of things easy, What you do in
Visual Studio..., What Visual Studio does for you..., Here’s what you’re going to build, Use the IDE to
create your own method, Use a constructor to initialize private fields, #3. Namespaces and
assemblies, Did you know that C# and the .NET Framework can...

and .NET Framework, capabilities of, Did you know that C# and the .NET Framework can...
application code, Here’s what you’re going to build
benefits of, Why you should learn C#
case in, Use a constructor to initialize private fields
code for AnimateEnemy() method (example), Use the IDE to create your own method
combining with XAML, What Visual Studio does for you...
files created by Visual Studio when creating new project, What you do in Visual Studio...
Microsoft reference for, #3. Namespaces and assemblies
using with Visual Studio IDE, capabilities of, C# and the Visual Studio IDE make lots of things
easy

C# 5.0 in a Nutshell, Did you know that C# and the .NET Framework can...
Calculator program, The worst catch block EVER: catch-all plus comments, Temporary solutions are
OK (temporarily)

temporary solution, Temporary solutions are OK (temporarily)
callbacks, Use a callback to control who’s listening, MessageDialog uses the callback pattern

versus events, MessageDialog uses the callback pattern
camelCase, Use a constructor to initialize private fields
Candy Control System, You can use class and method names to make your code intuitive
Canvas control, Set up the grid for your page, Add controls to your grid, Use properties to change
how the controls look, Controls make the game work, Controls make the game work, Controls make
the game work, Make your bees fly around a page, Make your bees fly around a page, Use
ItemsPanelTemplate to bind controls to a Canvas, Make your bees fly around a page, Make your bees
fly around a page, Use ItemsPanelTemplate to bind controls to a Canvas

adding Ellipse control, Controls make the game work
adding to Windows Store app, Set up the grid for your page, Add controls to your grid
animating Canvas.Left property, Make your bees fly around a page, Make your bees fly around a
page
binding controls to, using ItemsPanelTemplate, Use ItemsPanelTemplate to bind controls to a
Canvas, Use ItemsPanelTemplate to bind controls to a Canvas
child controls, data binding and, Make your bees fly around a page, Make your bees fly around a
page
dragging, changes to Left and Top properties, Controls make the game work
turning into gameplay area, Use properties to change how the controls look, Controls make the
game work

Canvas controls, Controls make the game work, Controls make the game work

adding Ellipse control, Controls make the game work
dragging control around, changes to Left and Top properties, Controls make the game work

capitalization, Use a constructor to initialize private fields
Captain Amazing, ...and things are looking up back home!, Make an object serialize itself in its
Dispose(), Make an object serialize itself in its Dispose(), “Captain” Amazing...not so much,
Extending a fundamental type: string
case in C#, Use a constructor to initialize private fields
case sensitivity in C# and XAML, Start with a blank application, Set up the grid for your page
case statements, Use a switch statement to choose the right option
case statements, Use a switch statement to let your deck of cards read from a file or write itself out to
one

(see also switch statements)
casting, Even when a number is the right size, you can’t just assign it to any variable, Even when a
number is the right size, you can’t just assign it to any variable, When you cast a value that’s too big,
C# will adjust it automatically, When you cast a value that’s too big, C# will adjust it automatically,
When you cast a value that’s too big, C# will adjust it automatically, C# does some casting
automatically

arithmetic operators, automatic conversions with, When you cast a value that’s too big, C# will
adjust it automatically
automatic casting in C#, C# does some casting automatically
decimal value to int type, Even when a number is the right size, you can’t just assign it to any
variable
too-large value, automatic adjustment in C#, When you cast a value that’s too big, C# will adjust it
automatically
wrapping numbers, When you cast a value that’s too big, C# will adjust it automatically

catch blocks, Handle exceptions with try and catch, What happens when a method you want to call is
risky?, Use the debugger to follow the try/catch flow, If you have code that ALWAYS should run, use
a finally block, Use more than one catch block to handle multiple types of exceptions, Bees need an
OutOfHoney exception, The worst catch block EVER: catch-all plus comments, Handle exceptions
with try and catch, What happens when a method you want to call is risky?, Use the debugger to
follow the try/catch flow

following in debugger, Use the debugger to follow the try/catch flow, Use the debugger to follow
the try/catch flow
letting your program keep running, The worst catch block EVER: catch-all plus comments
multiple, to handle multiple types of exceptions, Use more than one catch block to handle multiple
types of exceptions
with no specified exceptions, If you have code that ALWAYS should run, use a finally block

chaining events, Use a standard name when you add a method to raise an event, One event, multiple
handlers
Character Map (Charmap.exe), Let’s serialize and deserialize a deck of cards, .NET uses Unicode to
store characters and text
Charms, Use delegates to use the Windows settings charm
char type, The variable’s type determines what kind of data it can store, A variable is like a data to-
go cup, .NET uses Unicode to store characters and text
CheckBox controls, Make each button do something, Use logical operators to check conditions,
Rebuild your app for Windows Desktop, Rebuild your app for Windows Desktop, Build the Part y
Planner version 2.0

adding to Windows Desktop app, Rebuild your app for Windows Desktop
Birthday Party project, Build the Part y Planner version 2.0
changing Text and Checked properties in Properties window, Rebuild your app for Windows
Desktop

CheckFileExists property, OpenFileDialog, Use built-in objects to pop up standard dialog boxes
CheckPathExists property, OpenFileDialog, Use built-in objects to pop up standard dialog boxes
child, How would you design a zoo simulator?
Children collection, XAML controls, XAML controls can contain text...and more
class diagrams, Mike gets an idea, Give your classes a natural structure, Class diagrams help you
organize your classes so they make sense, You’re going to build a program for Kathleen, Any place
where you can use a base class, you can use one of its subclasses instead, How you’ll build the
beehive management system

DinnerParty class (example), You’re going to build a program for Kathleen
moving up, not down, Any place where you can use a base class, you can use one of its subclasses
instead
organizing classes to make sense, Class diagrams help you organize your classes so they make
sense
private fields and types, How you’ll build the beehive management system
using to plan classes, Give your classes a natural structure

classes, Anatomy of a program, Let’s take a closer look at your code, Two classes can be in the same
namespace, Two classes can be in the same namespace, Make each button do something, Use logical
operators to check conditions, Use logical operators to check conditions, Use logical operators to
check conditions, Rebuild your app for Windows Desktop, Rebuild your app for Windows Desktop,
You can change your program’s entry point, How Mike thinks about his problems, How Mike’s car
navigation system thinks about his problems, Mike gets an idea, You use a class to build an object, A
little advice for the code exercises, Let’s create some instances!, You can use class and method names
to make your code intuitive, Give your classes a natural structure, Class diagrams help you organize
your classes so they make sense, Class diagrams help you organize your classes so they make sense,
Build a class to work with some guys, Create a project for your guys, A few ideas for designing
intuitive classes, A few ideas for designing intuitive classes, Use encapsulation to control access to
your class’s methods and fields, Think of an object as a black box, We need a BirthdayParty class,
One more thing...can you add a $100 fee for parties over 12?, Think about how to group the animals,
Now you’re ready to finish the job for Kathleen!, An interface tells a class that it must implement
certain methods and properties, You can find out if a class implements a certain interface with “is”,
There’s more than just public and private, There’s more than just public and private, There’s more
than just public and private, There’s more than just public and private, There’s more than just public
and private, There’s more than just public and private, Some classes should never be instantiated, An
abstract class is like a cross between a class and an interface, An abstract class is like a cross
between a class and an interface, Like we said, some classes should never be instantiated, Lists make
it easy to store collections of...anything, If you want your class to be serializable, mark it with the
[Serializable] attribute, Nullable types help you make your programs more robust, Extension methods
add new behavior to EXISTING classes, Connecting the dots

abstract, An abstract class is like a cross between a class and an interface (see abstract classes)
adding new class to desktop app, You can change your program’s entry point
code between { } (curly braces), Make each button do something
collection, Lists make it easy to store collections of...anything
concrete, An abstract class is like a cross between a class and an interface
copying, Mike gets an idea
creating (example), Create a project for your guys
creating instances of, Let’s create some instances!
creating using code snippets, Use logical operators to check conditions
designing, How Mike’s car navigation system thinks about his problems, Class diagrams help you
organize your classes so they make sense, Build a class to work with some guys, A few ideas for
designing intuitive classes, We need a BirthdayParty class, Now you’re ready to finish the job for
Kathleen!

separation of concerns, Now you’re ready to finish the job for Kathleen!
encapsulation, Use encapsulation to control access to your class’s methods and fields, Think of an
object as a black box

finding out if class implements specific interface, You can find out if a class implements a certain
interface with “is”
inheritance., One more thing...can you add a $100 fee for parties over 12? (see inheritance)
internal, There’s more than just public and private
looking for common, Think about how to group the animals
members, There’s more than just public and private
methods, Let’s take a closer look at your code
namespaces, Two classes can be in the same namespace
naming, You can use class and method names to make your code intuitive
natural structure, Give your classes a natural structure
never instantiated, Some classes should never be instantiated
organizing, Class diagrams help you organize your classes so they make sense
partial, Use logical operators to check conditions
private, There’s more than just public and private
protected, There’s more than just public and private
public, There’s more than just public and private
required by interface to implement certain methods and properties, An interface tells a class that it
must implement certain methods and properties
sealed, There’s more than just public and private, Extension methods add new behavior to
EXISTING classes
serializable, If you want your class to be serializable, mark it with the [Serializable] attribute
similarities between, A few ideas for designing intuitive classes
statements in, Use logical operators to check conditions
static, A little advice for the code exercises
subscribing, Connecting the dots
using lines for adding methods from other namespaces, Rebuild your app for Windows Desktop
using to build objects, You use a class to build an object
versus structs, Nullable types help you make your programs more robust
why some should never be instantiated, Like we said, some classes should never be instantiated

class hierarchy, Build up your class model by starting general and getting more specific, Create the
class hierarchy, We can use inheritance to create classes for different types of bees

Hive Simulator, We can use inheritance to create classes for different types of bees

class libraries, creating, #3. Namespaces and assemblies
clauses in LINQ queries, LINQ makes queries easy
Clone class, implementing IDisposable, Dispose() works with using; finalizers work with garbage
collection, Dispose() works with using; finalizers work with garbage collection
Close buttons, Windows Store apps and, Use static resources to declare your objects in XAML
clowns, Let’s create some instances!, Upcasting and downcasting work with interfaces, too,
Upcasting and downcasting work with interfaces, too, Upcasting and downcasting work with
interfaces, too, Delegates in action, User controls let you create your own controls

Fingers the Clown, Upcasting and downcasting work with interfaces, too, Delegates in action, User
controls let you create your own controls
scary clown, Upcasting and downcasting work with interfaces, too

CLR (Common Language Runtime), The .NET Framework gives you the right tools for the job, Where
no object has gone before
code, What Visual Studio does for you..., Use logical operators to check conditions, Mike gets an
idea, A better solution...brought to you by objects!, One more thing...can you add a $100 fee for
parties over 12?, When your classes use inheritance, you only need to write your code once, How
would you design a zoo simulator?

advice for code exercises, A better solution...brought to you by objects!
automatically generated by IDE, What Visual Studio does for you..., Use logical operators to check
conditions
avoiding duplication, How would you design a zoo simulator?
copying, Mike gets an idea
repeating, One more thing...can you add a $100 fee for parties over 12?
similar, When your classes use inheritance, you only need to write your code once

code blocks, Add a method that does something, Let’s take a closer look at your code, Use logical
operators to check conditions, Build the Part y Planner version 2.0

leaving out curly brackets, Build the Part y Planner version 2.0
code snippets, Loops perform an action over and over, Use logical operators to check conditions, Use
logical operators to check conditions, Class diagrams help you organize your classes so they make
sense, A few ideas for designing intuitive classes

rearranging to make working C# program, Use logical operators to check conditions
using to create classes, Use logical operators to check conditions, Class diagrams help you
organize your classes so they make sense, A few ideas for designing intuitive classes
using to write for loops, Loops perform an action over and over

collection initializers, Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!, Collection
initializers are similar to object initializers
collections, Arrays are hard to work with, Lists make it easy to store collections of...anything,
Generics can store any type, Use a dictionary to store keys and values, And yet MORE collection
types..., Two-way binding can get or set the source property, XAML controls can contain text...and
more, Brian’s code did something unexpected, .NET collections are already set up for LINQ, LINQ is
versatile, Use join to combine two collections into one sequence, Jimmy saved a bunch of dough, #7.
Using yield return to create enumerable objects, Brian’s code did something unexpected

(see also listings of individual collection types)
binding to, with ObservableCollection, Two-way binding can get or set the source property
controls contained in another control, XAML controls can contain text...and more
dictionaries, Use a dictionary to store keys and values
exception from trying to access nonexistent element, Brian’s code did something unexpected,
Brian’s code did something unexpected
generic, Generics can store any type
implementing IEnumerator<T> GetEnumerator(), .NET collections are already set up for LINQ
indexers, #7. Using yield return to create enumerable objects
lists, Lists make it easy to store collections of...anything
performing calculations on, LINQ is versatile
queues and stacks, And yet MORE collection types...
using join to combine two collections into one query, Use join to combine two collections into one
sequence, Jimmy saved a bunch of dough

Collection<T> interface, #7. Using yield return to create enumerable objects
colon operator, Now you can create an instance of NectarStinger that does both jobs
Color.FromArgb() method, Wait, wait! What did that say?
color gradient, adding to XAML control, Controls make the game work
color gradients, Use properties to change how the controls look

adding to Canvas control, Use properties to change how the controls look
colors, What Visual Studio does for you..., Wait, wait! What did that say?, Wait, wait! What did that
say?

cycling through form’s background colors in animation, Wait, wait! What did that say?
predefined, or making your own, Wait, wait! What did that say?
selecting color theme in Visual Studio, What Visual Studio does for you...

ComboBoxItem object, Use a data template to display objects, Use a data template to display objects
command-line arguments, Use Stream.Read() to read bytes from a stream
CommandsRequested event, Use delegates to use the Windows settings charm
comments, Use the debugger to see your variables change, Make each button do something, Rebuild
your app for Windows Desktop, Wait, wait! What did that say?, #2. The Basics, ...more basics..., Use
the debugger to see your variables change

adding to code, starting with //, Make each button do something
/* and */ enclosing multiline comments, ...more basics...
beginning with ///, Rebuild your app for Windows Desktop, Wait, wait! What did that say?
starting with /* or //, Use the debugger to see your variables change, Use the debugger to see your
variables change
XML, #2. The Basics

Common Intermediate Language (IL), ...so what did I just do?
Common Language Runtime (CLR), The .NET Framework gives you the right tools for the job, Where
no object has gone before
CommonStates group, Visual states make controls respond to changes
CompareTo() method, IComparable<Duck> helps your list sort its ducks
compiler errors, classes implementing interfaces, An interface tells a class that it must implement
certain methods and properties
compiling programs, using Build menu in IDE, Where programs come from
compound operators, A few useful types, When you call a method, the arguments must be compatible
with the types of the parameters, Combining = with an operator
concatenation operator (+), A few useful types, C# does some casting automatically

automatic type conversions with, C# does some casting automatically
concrete classes, An abstract class is like a cross between a class and an interface
conditional expressions., Set up conditions and see if they’re true, Rename a variable

(see also conditional tests)
consolidating, Rename a variable

conditional operator (?:), Add the stopwatch ViewModel, ...more basics..., #6. Equality, IEquatable,
and Equals()
conditional operators, Set up conditions and see if they’re true
conditional tests, Set up conditions and see if they’re true, Use logical operators to check conditions,
Use logical operators to check conditions

resulting in infinite loops, Use logical operators to check conditions
console applications, Any place where you can use a base class, you can use one of its subclasses
instead
Console.Error.WriteLine(), Use Stream.Read() to read bytes from a stream
Console.WriteLine() method, Build an application to test the Farmer class
constants, You’re going to build a program for Kathleen
constructors, Use a constructor to initialize private fields, Use a constructor to initialize private
fields, Use a constructor to initialize private fields, Use a constructor to initialize private fields,
When a base class has a constructor, your subclass needs one, too, Add an overloaded Deck()
constructor that reads a deck of cards in from a file, Use static resources to declare your objects in
XAML, Modify MenuMaker to notify you when the GeneratedDate property changes, Use the
debugger to follow the try/catch flow, Create a user control to animate a picture, Use static resources
to declare your objects in XAML, Modify MenuMaker to notify you when the GeneratedDate property
changes, Use the debugger to follow the try/catch flow, Create a user control to animate a picture

base class and subclass, When a base class has a constructor, your subclass needs one, too
building new with switch statement, Add an overloaded Deck() constructor that reads a deck of
cards in from a file
closer examination of, Use a constructor to initialize private fields
exceptions in, Use the debugger to follow the try/catch flow, Use the debugger to follow the
try/catch flow
parameterless, Use static resources to declare your objects in XAML, Modify MenuMaker to notify
you when the GeneratedDate property changes, Create a user control to animate a picture, Use
static resources to declare your objects in XAML, Modify MenuMaker to notify you when the
GeneratedDate property changes, Create a user control to animate a picture
without parameters, Use a constructor to initialize private fields

container tags, What Visual Studio does for you...
ContentControl, Set up the grid for your page, Add controls to your grid, Add controls to your grid,
Use properties to change how the controls look, Use properties to change how the controls look,
Controls make the game work, What you’ll do next, Use the IDE to create your own method

adding to Windows Store app, Set up the grid for your page, Add controls to your grid
creating new ContentControl object and adding method, What you’ll do next, Use the IDE to create
your own method
Edit Template, Create Empty..., Use properties to change how the controls look, Controls make the
game work
grouping, using StackPanel, Add controls to your grid, Use properties to change how the controls
look

content controls, XAML controls can contain text...and more
Content property, Use properties to change how the controls look, XAML controls can contain
text...and more, XAML controls can contain text...and more

Button controls, Use properties to change how the controls look
XAML controls, XAML controls can contain text...and more, XAML controls can contain text...and
more

Content property, Button controls, Add controls to your grid
continue statements, ...more basics...
ControlCollection object, Windows Forms use an object graph set up by the IDE
controls, Here’s what you’re going to build, Here’s what you’re going to build, Set up the grid for
your page, Add controls to your grid, Add controls to your grid, Use properties to change how the
controls look, Use properties to change how the controls look, Controls make the game work,
Controls make the game work, Controls make the game work, Make the Start button work, Make the
Start button work, Add code to make your controls interact with the player, Add code to make your
controls interact with the player, When you’re doing this..., The .NET Framework gives you the right
tools for the job, Controls are objects, just like any other object, Use a constructor to initialize private
fields, Windows Forms use an object graph set up by the IDE, Redesign the Go Fish! form as a
Windows Store app page, Page layout starts with controls, Data binding connects your XAML pages
to your classes, Two-way binding can get or set the source property, XAML controls can contain
text...and more, XAML controls can contain text...and more, Finish the stopwatch app, Styles set
properties on multiple controls, Use a resource dictionary to share resources between pages, Visual
states make controls respond to changes, Use DoubleAnimation to animate double values, UI controls
can be instantiated with C# code, too, Use ItemsPanelTemplate to bind controls to a Canvas, Page
layout starts with controls, UI controls can be instantiated with C# code, too, Use ItemsPanelTemplate
to bind controls to a Canvas

adding code to make controls interact with player, Make the Start button work, Add code to make
your controls interact with the player
adding code to make them interact with player, Make the Start button work, Add code to make your
controls interact with the player
adding to page, When you’re doing this...
altering appearance of a type, using styles, Styles set properties on multiple controls
altering appearance of every control of a specific type, Use a resource dictionary to share
resources between pages
binding to canvas using ItemsPanelTemplate, Use ItemsPanelTemplate to bind controls to a Canvas,
Use ItemsPanelTemplate to bind controls to a Canvas
C# code for, Here’s what you’re going to build
creating UI controls with C# code, UI controls can be instantiated with C# code, too, UI controls
can be instantiated with C# code, too

data binding, connecting XAML pages to classes, Data binding connects your XAML pages to your
classes
displaying collections, data binding to collection, Two-way binding can get or set the source
property
double properties, animation for, Use DoubleAnimation to animate double values
dragged from Toolbox onto page, XAML generated for, Set up the grid for your page, Add controls
to your grid
dragging around Canvas, Controls make the game work, Controls make the game work
initialization on forms with InitializeComponent(), Use a constructor to initialize private fields
in MVVM applications, Finish the stopwatch app
in .NET for Windows Store apps, The .NET Framework gives you the right tools for the job
making game work in Windows Store app, Use properties to change how the controls look,
Controls make the game work
nesting inside other controls, XAML controls can contain text...and more
page layout starting with, Page layout starts with controls, Page layout starts with controls
program animating Label controls, Controls are objects, just like any other object
using properties to change look of, Add controls to your grid, Use properties to change how the
controls look
visual states causing response to changes, Visual states make controls respond to changes
Windows Store app, on a page, Redesign the Go Fish! form as a Windows Store app page
WinForms apps, Windows Forms use an object graph set up by the IDE
XAML, containing text and more, XAML controls can contain text...and more

Controls property, Windows Forms use an object graph set up by the IDE, Use the IDE to explore the
object graph

controls containing other controls, Windows Forms use an object graph set up by the IDE
Form class and, Use the IDE to explore the object graph

ControlTemplate, Controls make the game work
ControlTemplate, Add a splash screen and a tile

(see also templates)
Convert() and ConvertBack() methods, value converter, Converters automatically convert values for
binding, Converters automatically convert values for binding
converters, Converters automatically convert values for binding, Converters automatically convert
values for binding, Converters can work with many different types, Build an analog stopwatch using
the same ViewModel, ...more basics..., Converters automatically convert values for binding,

Converters automatically convert values for binding, Converters can work with many different types,
Build an analog stopwatch using the same ViewModel

automatically converting values for binding, Converters automatically convert values for binding,
Converters automatically convert values for binding
converting minutes and seconds to angles, Build an analog stopwatch using the same ViewModel,
Build an analog stopwatch using the same ViewModel
Convert.ToString() and Convert.ToInt32(), ...more basics...
working with many different types, Converters can work with many different types, Converters can
work with many different types

covariance, You can upcast an entire list using IEnumerable
CreateDirectory() method, Use the built-in File and Directory classes to work with files and
directories
CreateFileAsync() method, Use async methods to find and open files
Create() method, Use the built-in File and Directory classes to work with files and directories
CryptoStream, Data can go through more than one stream
.csproj (project) files, Where programs come from
curly brackets., Create a project for your guys (see { }, under Symbols)
CurrentQueryResults property, Use the new keyword to create anonymous types

D

data, Strings don’t always work for storing categories of data, LINQ can pull data from multiple
sources

pulling data from multiple sources, LINQ can pull data from multiple sources
storing categories of, Strings don’t always work for storing categories of data

data binding, Data binding connects your XAML pages to your classes, Two-way binding can get or
set the source property, Two-way binding can get or set the source property, Use data binding to build
Sloppy Joe a better menu, Use a data template to display objects, Use a data template to display
objects, INotifyPropertyChanged lets bound objects send updates, Modify MenuMaker to notify you
when the GeneratedDate property changes, Do you design for binding or for working with data?,
MVVM lets you design for binding and data, User controls let you create your own controls,
Converters automatically convert values for binding, Make your bees fly around a page, Use
ItemsPanelTemplate to bind controls to a Canvas, Use data binding to build Sloppy Joe a better menu,
INotifyPropertyChanged lets bound objects send updates, Modify MenuMaker to notify you when the
GeneratedDate property changes, User controls let you create your own controls, Converters
automatically convert values for binding, Make your bees fly around a page, Use ItemsPanelTemplate
to bind controls to a Canvas

Canvas child controls and, Make your bees fly around a page, Make your bees fly around a page
connecting XAML pages to classes, Data binding connects your XAML pages to your classes
converters automatically convering values for, Converters automatically convert values for
binding, Converters automatically convert values for binding
designing for, Do you design for binding or for working with data?
designing for binding and data handling with MVVM pattern, MVVM lets you design for binding
and data
INotifyPropertyChanged, bound objects sending updates, INotifyPropertyChanged lets bound
objects send updates, INotifyPropertyChanged lets bound objects send updates
public properties for Go Fish game conversion, Modify MenuMaker to notify you when the
GeneratedDate property changes, Modify MenuMaker to notify you when the GeneratedDate
property changes
RosterControl XAML control (example), User controls let you create your own controls, User
controls let you create your own controls
to collections, with ObservableCollection, Two-way binding can get or set the source property
two way binding, getting or setting source property, Two-way binding can get or set the source
property
using data template to display objects, Use a data template to display objects, Use a data template
to display objects
using ItemsPanelTemplate to bind controls to a canvas, Use ItemsPanelTemplate to bind controls to
a Canvas, Use ItemsPanelTemplate to bind controls to a Canvas
using to build Sloppy Joe’s menu, Use data binding to build Sloppy Joe a better menu, Use data
binding to build Sloppy Joe a better menu

data context, Data binding connects your XAML pages to your classes, Use data binding to build
Sloppy Joe a better menu, Use static resources to declare your objects in XAML, User controls let
you create your own controls, User controls let you create your own controls, Build the view for a
simple stopwatch, Use ItemsPanelTemplate to bind controls to a Canvas, Use data binding to build
Sloppy Joe a better menu, Use static resources to declare your objects in XAML, User controls let
you create your own controls, User controls let you create your own controls, Build the view for a
simple stopwatch, Use ItemsPanelTemplate to bind controls to a Canvas

RosterControl (example), User controls let you create your own controls, User controls let you
create your own controls
setting for menu maker (example), Use data binding to build Sloppy Joe a better menu, Use data
binding to build Sloppy Joe a better menu
setting for StackPanel and its children, Use static resources to declare your objects in XAML, Use
static resources to declare your objects in XAML

DataContract attribute, A data contract is an abstract definition of your object’s data, The whole

object graph is serialized to XML
data contract serialization, Build a slightly less simple text editor, A data contract is an abstract
definition of your object’s data, A data contract is an abstract definition of your object’s data, The
whole object graph is serialized to XML, Stream some Guy objects to XML files, Take your Guy
Serializer for a test drive, Stream some Guy objects to a file, Take your Guy Serializer for a test drive

data contract, defined, A data contract is an abstract definition of your object’s data
disambiguation in, Take your Guy Serializer for a test drive, Take your Guy Serializer for a test
drive
sending some objects to app’s local folder, Stream some Guy objects to XML files, Stream some
Guy objects to a file
using XML files, A data contract is an abstract definition of your object’s data
whole object graph serialized to XML, The whole object graph is serialized to XML

DataMember attribute, A data contract is an abstract definition of your object’s data, The whole
object graph is serialized to XML
DataModel folder, adding data classes to, The IDE’s Split App template helps you build apps for
navigating data
data template, using to display objects, Use a data template to display objects, Use a data template to
display objects
Deadly Diamond of Death, An abstract method doesn’t have a body
debugger, When your program throws an exception, .NET generates an Exception object
debugger, Use the debugger to see your variables change, Use the debugger to see your variables
change, The debugger helps you track down and prevent exceptions in your code, Use the IDE’s
debugger to ferret out exactly what went wrong in the Excuse Manager, Use the IDE’s debugger to
ferret out exactly what went wrong in the Excuse Manager, Use the IDE’s debugger to ferret out
exactly what went wrong in the Excuse Manager, What happens when a method you want to call is
risky?, What happens when a method you want to call is risky?, Use the debugger to follow the
try/catch flow, Use the debugger to follow the try/catch flow, If you have code that ALWAYS should
run, use a finally block, If you have code that ALWAYS should run, use a finally block, Use more than
one catch block to handle multiple types of exceptions, Bees need an OutOfHoney exception,
Delegates in action, Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse
Manager, Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse Manager, What
happens when a method you want to call is risky?, What happens when a method you want to call is
risky?, Use the debugger to follow the try/catch flow, Use the debugger to follow the try/catch flow, If
you have code that should ALWAYS run, use a finally block

(see also exception handling)
Bullet Points, Bees need an OutOfHoney exception
catch blocks, Use the debugger to follow the try/catch flow, If you have code that ALWAYS should
run, use a finally block, Use more than one catch block to handle multiple types of exceptions, Use
the debugger to follow the try/catch flow

following flow, Use the debugger to follow the try/catch flow, Use the debugger to follow the
try/catch flow
multiple, Use more than one catch block to handle multiple types of exceptions
with no specified exceptions, If you have code that ALWAYS should run, use a finally block

exploring delegates, Delegates in action
finally block, If you have code that ALWAYS should run, use a finally block, If you have code that
should ALWAYS run, use a finally block
following try/catch flow, Use the debugger to follow the try/catch flow, Use the debugger to follow
the try/catch flow
knowing where to put breakpoints, Use the IDE’s debugger to ferret out exactly what went wrong in
the Excuse Manager, Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse
Manager
Step Into command, Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse
Manager
uses for, What happens when a method you want to call is risky?, What happens when a method you
want to call is risky?
using to, Use the debugger to see your variables change
using to, Use the debugger to see your variables change (see changes in variables)
Watch window, Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse
Manager, What happens when a method you want to call is risky?, Use the IDE’s debugger to ferret
out exactly what went wrong in the Excuse Manager, What happens when a method you want to call
is risky?

running methods in, Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse
Manager, Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse Manager

debugging, Rebuild your app for Windows Desktop, Windows Forms use an object graph set up by
the IDE, The debugger helps you track down and prevent exceptions in your code, Use the IDE’s
debugger to ferret out exactly what went wrong in the Excuse Manager, Use the IDE’s debugger to
ferret out exactly what went wrong in the Excuse Manager

Excuse Management program, Use the IDE’s debugger to ferret out exactly what went wrong in the
Excuse Manager, Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse
Manager
System.Diagnostics.Debug.WriteLine(), Windows Forms use an object graph set up by the IDE
Windows Desktop app in IDE, Rebuild your app for Windows Desktop

Debug menu, Where programs come from, Use the debugger to see your variables change, Use the
debugger to see your variables change, Use the debugger to see your variables change, Wait, wait!
What did that say?

Continue, Use the debugger to see your variables change
Start Debugging, Where programs come from, Use the debugger to see your variables change
Step Over, Use the debugger to see your variables change
Stop Debugging, Wait, wait! What did that say?

decimal and binary numbers, converting between, The variable’s type determines what kind of data it
can store
decimal type, The variable’s type determines what kind of data it can store, A variable is like a data
to-go cup, Even when a number is the right size, you can’t just assign it to any variable, You’re going
to build a program for Kathleen

attempting to assign decimal value to int variable, Even when a number is the right size, you can’t
just assign it to any variable
using for monetry values, You’re going to build a program for Kathleen

decrement operator (- -), A few useful types
default property of controls, XAML controls can contain text...and more
deferred evaluation, LINQ is versatile
delegate, defined, Connecting event senders with event listeners
delegates, One event, multiple handlers, A delegate STANDS IN for an actual method, A delegate
STANDS IN for an actual method, Delegates in action, Delegates in action, Use a callback to control
who’s listening, A callback is just a way to use delegates, A callback is just a way to use delegates,
MessageDialog uses the callback pattern, Use delegates to use the Windows settings charm

callbacks and, A callback is just a way to use delegates
defined, A delegate STANDS IN for an actual method
delegate type, A delegate STANDS IN for an actual method
events, callbacks, and, MessageDialog uses the callback pattern
exploring in debugger, Delegates in action
hooking up to one event, Use a callback to control who’s listening
in action, Delegates in action
multiple events, One event, multiple handlers
using the Windows settings charm, Use delegates to use the Windows settings charm

Delete() method, Use the built-in File and Directory classes to work with files and directories
DependencyProperty class, Two-way binding can get or set the source property
deployment package, Here’s what you’re going to build
deselecting controls for editing, Add controls to your grid, Use properties to change how the controls
look
design, You can use class and method names to make your code intuitive, A few ideas for designing
intuitive classes, Now you’re ready to finish the job for Kathleen!

intuitive classes, A few ideas for designing intuitive classes
making code intuitive with class and method names, You can use class and method names to make
your code intuitive
separation of concerns, Now you’re ready to finish the job for Kathleen!

design patterns, MessageDialog uses the callback pattern, MessageDialog uses the callback pattern,
MessageDialog uses the callback pattern, Do you design for binding or for working with data?, User
controls let you create your own controls, User controls let you create your own controls, Finish the
stopwatch app, Use ItemsPanelTemplate to bind controls to a Canvas, Use ItemsPanelTemplate to
bind controls to a Canvas

(see also MVVM pattern)
Callback pattern, MessageDialog uses the callback pattern
Factory Method pattern, Use ItemsPanelTemplate to bind controls to a Canvas, Use
ItemsPanelTemplate to bind controls to a Canvas
Model-View-Controller (MVC) pattern, User controls let you create your own controls
Model-View-ViewModel (MVVM) pattern, Do you design for binding or for working with data?,
User controls let you create your own controls, Finish the stopwatch app
Observer pattern, MessageDialog uses the callback pattern

desktop applications, The .NET Framework gives you the right tools for the job

destructor, Your last chance to DO something... your object’s finalizer
developer license, Start remote debugging
device-independent units, Use the grid system to lay out app pages
dialog boxes, Use built-in objects to pop up standard dialog boxes, Dialog boxes are just another
WinForms control, Dialog boxes are objects, too, Things you can do with Directory:, Use file dialogs
to open and save files (all with just a few lines of code)

as objects, Dialog boxes are objects, too
customized, Things you can do with Directory:
file dialogs, Use file dialogs to open and save files (all with just a few lines of code)
popping up, Use built-in objects to pop up standard dialog boxes

DialogResult, Use built-in objects to pop up standard dialog boxes, You can help Brian out by
building a program to manage his excuses

excuse management program, You can help Brian out by building a program to manage his excuses
dictionaries, Use a dictionary to store keys and values, Use a dictionary to store keys and values, Use
a dictionary to store keys and values, Use a dictionary to store keys and values, The dictionary
functionality rundown, The dictionary functionality rundown, Build a program that uses a dictionary,
#7. Using yield return to create enumerable objects

Add() method, Use a dictionary to store keys and values
building program that uses, Build a program that uses a dictionary
ContainsKey() method, Use a dictionary to store keys and values
functionality rundown, The dictionary functionality rundown
keys, Use a dictionary to store keys and values
keys and values, The dictionary functionality rundown
using [] to return object from, #7. Using yield return to create enumerable objects

Dinner Party Planning project, Kathleen is an event planner, What does the estimator do?, You’re
going to build a program for Kathleen, You’re going to build a program for Kathleen, Kathleen’s test
drive, Each option should be calculated individually, Each option should be calculated individually,
Each option should be calculated individually, It’s easy to accidentally misuse your objects,
Encapsulation means keeping some of the data in a class private, Use a constructor to initialize
private fields, When your classes use inheritance, you only need to write your code once, Now you’re
ready to finish the job for Kathleen!

CalculateCostOfDecorations() method, It’s easy to accidentally misuse your objects
cost estimate, What does the estimator do?
DinnerParty class, You’re going to build a program for Kathleen, You’re going to build a program
for Kathleen
encapsulating fields in DinnerParty class, Encapsulation means keeping some of the data in a class
private
fixing calculator, Use a constructor to initialize private fields
inheriting from Party class, Now you’re ready to finish the job for Kathleen!
numericUpDown control, Each option should be calculated individually
options, caluclating individually, Each option should be calculated individually
recalculating new individual costs, Each option should be calculated individually
similarities between DinnerParty and BirthdayParty classes, When your classes use inheritance,
you only need to write your code once
test drive, Kathleen’s test drive

directories, Use the built-in File and Directory classes to work with files and directories, Use the
built-in File and Directory classes to work with files and directories, Use the built-in File and
Directory classes to work with files and directories

creating new, Use the built-in File and Directory classes to work with files and directories
deleting, Use the built-in File and Directory classes to work with files and directories
getting list of files, Use the built-in File and Directory classes to work with files and directories

Directory.GetFiles() method, You can help Brian out by building a program to manage his excuses
Disabled state (controls), Visual states make controls respond to changes
disambiguation, Take your Guy Serializer for a test drive, Take your Guy Serializer for a test drive
Dispose() method, IDisposable makes sure your objects are disposed of properly, Avoid filesystem
errors with using statements, Exception avoidance: implement IDisposable to do your own cleanup,
Exception avoidance: implement IDisposable to do your own cleanup, Dispose() works with using;
finalizers work with garbage collection, Finalizers can’t depend on stability, Make an object serialize
itself in its Dispose(), Make an object serialize itself in its Dispose()

calling outside of using statement, Exception avoidance: implement IDisposable to do your own
cleanup
finalizers, Finalizers can’t depend on stability, Make an object serialize itself in its Dispose()
making object serialize in, Make an object serialize itself in its Dispose()
using statement, Dispose() works with using; finalizers work with garbage collection

DivideByZeroException, But the program isn’t working!, All exception objects inherit from

Exception
division operator (/), A few useful types
DLL file extension, #3. Namespaces and assemblies
Document Outline window, Use properties to change how the controls look

modifying StackPanel and TextBlock controls, Use properties to change how the controls look
Document Outline window, modifying controls, Controls make the game work
documents library, accessing with Windows Store apps, KnownFolders helps you access high-profile
folders, Take your Guy Serializer for a test drive
dot (.) operator, A few useful types
DoubleAnimation, Use DoubleAnimation to animate double values, Make your bees fly around a
page, Make your bees fly around a page

animating Canvas.Left property, Make your bees fly around a page, Make your bees fly around a
page

double type, The variable’s type determines what kind of data it can store, The variable’s type
determines what kind of data it can store, A variable is like a data to-go cup

defined, The variable’s type determines what kind of data it can store
downcasting, Downcasting lets you turn your appliance back into a coffee maker, Upcasting and
downcasting work with interfaces, too, Upcasting and downcasting work with interfaces, too,
Polymorphism means that one object can take many different forms

failure of, Upcasting and downcasting work with interfaces, too
interfaces, Upcasting and downcasting work with interfaces, too
using as keyword, Polymorphism means that one object can take many different forms

E

editors, Let’s take a closer look at your code, Build a slightly less simple text editor

building less simple text editor, Build a slightly less simple text editor
evolution of code editors, Let’s take a closer look at your code

Edit Style right-mouse menu, Use properties to change how the controls look, if/else statements make
decisions, Build an app from the ground up

changing text style for TextBlock, Use properties to change how the controls look
Edit Text right-mouse menu, Add controls to your grid, Add controls to your grid, Use properties to
change how the controls look, Use properties to change how the controls look

changing text for TextBlock control, Add controls to your grid, Use properties to change how the
controls look
editing text for button in Windows Store app, Add controls to your grid, Use properties to change
how the controls look

Ellipse controls, Controls make the game work, Controls make the game work, Dragging humans onto
enemies ends the game, Make your enemies look like aliens

adding to Canvas, Controls make the game work, Controls make the game work
editing to make enemies look like aliens (example), Dragging humans onto enemies ends the game,
Make your enemies look like aliens

ellipses, Use properties to change how the controls look, Controls make the game work
encapsulation, , C# Lab: A Day at the Races, Encapsulation means keeping some of the data in a
class private, Use encapsulation to control access to your class’s methods and fields, Private fields
and methods can only be accessed from inside the class, Mike’s navigator program could use better
encapsulation, Think of an object as a black box, A few ideas for encapsulating classes,
Encapsulation keeps your data pristine, Use automatic properties to finish the class, Build the Part y
Planner version 2.0, Access modifiers change visibility, An abstract method doesn’t have a body, Use
Stream.Read() to read bytes from a stream

as principle of OOP, An abstract method doesn’t have a body
automatic properties, Use automatic properties to finish the class
benefits for classes, Private fields and methods can only be accessed from inside the class
better, using protected modifier, Access modifiers change visibility
BirthdayParty class (example), Build the Part y Planner version 2.0
defined, Encapsulation means keeping some of the data in a class private
example, Encapsulation keeps your data pristine
ideas for, A few ideas for encapsulating classes
Navigator program (example), Mike’s navigator program could use better encapsulation
using to control access to class methods. fields, or properties, Use encapsulation to control access
to your class’s methods and fields
well encapsulated versus poorly encapsulated classes, Think of an object as a black box

encodings, A FileStream reads and writes bytes to a file, Things you can do with Directory:, Let’s
serialize and deserialize a deck of cards, .NET uses Unicode to store characters and text

Unicode, Let’s serialize and deserialize a deck of cards, .NET uses Unicode to store characters
and text

end tags, What Visual Studio does for you...
entry point for a program, Rebuild your app for Windows Desktop, You can change your program’s

entry point, Any place where you can use a base class, you can use one of its subclasses instead

changing, You can change your program’s entry point
enumerable objects, creating with yield return, #7. Using yield return to create enumerable objects
enumeration, Strings don’t always work for storing categories of data
enums, Enums let you work with a set of valid values, Enums let you represent numbers with names,
Enums let you represent numbers with names, Enums let you represent numbers with names, Enums let
you represent numbers with names, Generics can store any type

big numbers, Enums let you represent numbers with names
building class that holds playing card, Enums let you represent numbers with names, Enums let you
represent numbers with names
representing numbers with names, Enums let you represent numbers with names
versus Lists, Generics can store any type

equality, #6. Equality, IEquatable, and Equals()

== operator, IEquatable, and Equals(), #6. Equality, IEquatable, and Equals()
equality operator (==), if/else statements make decisions, Set up conditions and see if they’re true
Equals() method, #6. Equality, IEquatable, and Equals()
error handling, If you have code that ALWAYS should run, use a finally block
Error List window, What Visual Studio does for you..., Use the IDE to create your own method,
Finish the method and run your program, The IDE helps you code, Let’s take a closer look at your
code

examining errors in, Use the IDE to create your own method, Finish the method and run your
program
troubleshooting compiler errors, The IDE helps you code, Let’s take a closer look at your code

errors, When you call a method, the arguments must be compatible with the types of the parameters,
An interface tells a class that it must implement certain methods and properties, Avoid filesystem
errors with using statements, But the program isn’t working!

avoiding file system errors with using statements, Avoid filesystem errors with using statements
compiler errors and interfaces, An interface tells a class that it must implement certain methods and
properties
DivideByZero, But the program isn’t working!
invalid arguments, When you call a method, the arguments must be compatible with the types of the
parameters

escape sequences, Make each button do something
EventHandler, Connecting the dots, Use a standard name when you add a method to raise an event, A

callback is just a way to use delegates

as type of delegate, A callback is just a way to use delegates
event handlers, Make the Start button work, Add code to make your controls interact with the player,
Rebuild your app for Windows Desktop, Private fields and methods can only be accessed from inside
the class, Private fields and methods can only be accessed from inside the class, Build the Part y
Planner version 2.0, You can help Brian out by building a program to manage his excuses, Build a
slightly less simple text editor, When an EVENT occurs...objects listen, One object raises its event,
others listen for it..., Use a standard name when you add a method to raise an event, Use a standard
name when you add a method to raise an event, Use a standard name when you add a method to raise
an event, The IDE generates event handlers for you automatically, One event, multiple handlers, A
callback is just a way to use delegates, Finish the stopwatch app, Respond to swipe and keyboard
input, Respond to swipe and keyboard input, Handling user input, Finish the stopwatch app

adding, Use a standard name when you add a method to raise an event
adding for button in Windows Desktop app, Rebuild your app for Windows Desktop
adding to controls to interact with player, Make the Start button work, Add code to make your
controls interact with the player
automatic, The IDE generates event handlers for you automatically
Bullet Points, A callback is just a way to use delegates
excuse management program, You can help Brian out by building a program to manage his excuses
for Birthday Party project controls, Build the Part y Planner version 2.0
for key presses, swipes, and taps in Invaders lab, Handling user input
hooking up, One event, multiple handlers
how they work, One object raises its event, others listen for it...
keyboard, for Invaders game, Respond to swipe and keyboard input
page root, for swipes and taps, Respond to swipe and keyboard input
private or public keyword with, Private fields and methods can only be accessed from inside the
class
returning something other than void, Use a standard name when you add a method to raise an event
stopwatch app user control, Finish the stopwatch app, Finish the stopwatch app
TextChanged event handler for TextBox, Build a slightly less simple text editor
types of, Use a standard name when you add a method to raise an event

event keyword, Connecting the dots
events, INotifyPropertyChanged lets bound objects send updates, Modify MenuMaker to notify you
when the GeneratedDate property changes, When an EVENT occurs...objects listen, When an EVENT
occurs...objects listen, One object raises its event, others listen for it..., One object raises its event,

others listen for it..., Connecting the dots, Connecting the dots, Connecting the dots, Connecting the
dots, Windows Forms use many different events, One event, multiple handlers, XAML controls use
routed events, Create an app to explore routed events, Connecting event senders with event listeners,
Connecting event senders with event listeners, An object can subscribe to an event..., An object can
subscribe to an event..., A callback is just a way to use delegates, MessageDialog uses the callback
pattern, User controls let you create your own controls, Events alert the rest of the app to state
changes, Finish the stopwatch app, INotifyPropertyChanged lets bound objects send updates, Modify
MenuMaker to notify you when the GeneratedDate property changes, XAML controls use routed
events

(see also event handlers)
callbacks versus, MessageDialog uses the callback pattern
connecting senders with receivers, Connecting event senders with event listeners
creating app to explore routed events, Create an app to explore routed events
defined, When an EVENT occurs...objects listen
delegates, One event, multiple handlers, A callback is just a way to use delegates
forms, Windows Forms use many different events
how they work, One object raises its event, others listen for it...
Model communicating in MVVM apps, User controls let you create your own controls
naming methods when raising events, Connecting the dots
notifying bound controls of changes in Ovservable-Collection, INotifyPropertyChanged lets bound
objects send updates, INotifyPropertyChanged lets bound objects send updates
objects subscribing to, An object can subscribe to an event...
raising, Modify MenuMaker to notify you when the GeneratedDate property changes, Connecting
the dots, Modify MenuMaker to notify you when the GeneratedDate property changes
raising events with no handlers, Connecting the dots
reference variables, Connecting event senders with event listeners
routed events, use by XAML controls, XAML controls use routed events, XAML controls use
routed events
stopwatch app Model, alerting rest of app to state changes, Events alert the rest of the app to state
changes
subscription to, One object raises its event, others listen for it..., Connecting the dots, An object
can subscribe to an event...

how it works, One object raises its event, others listen for it...
possible probelms with, An object can subscribe to an event...
subscribing classes, Connecting the dots

ViewModel, passing to View in MVVM apps, Finish the stopwatch app
exception, defined, When your program throws an exception, .NET generates an Exception object
exception handling, , But the program isn’t working!, But the program isn’t working!, But the program
isn’t working!, When your program throws an exception, .NET generates an Exception object, When
your program throws an exception, .NET generates an Exception object, When your program throws
an exception, .NET generates an Exception object, Brian’s code did something unexpected, All
exception objects inherit from Exception, All exception objects inherit from Exception, All exception
objects inherit from Exception, All exception objects inherit from Exception, Use the IDE’s debugger

to ferret out exactly what went wrong in the Excuse Manager, Handle exceptions with try and catch,
Handle exceptions with try and catch, Handle exceptions with try and catch, Handle exceptions with
try and catch, What happens when a method you want to call is risky?, What happens when a method
you want to call is risky?, What happens when a method you want to call is risky?, What happens
when a method you want to call is risky?, What happens when a method you want to call is risky?,
Use the debugger to follow the try/catch flow, If you have code that ALWAYS should run, use a finally
block, If you have code that ALWAYS should run, use a finally block, If you have code that ALWAYS
should run, use a finally block, If you have code that ALWAYS should run, use a finally block, One
class throws an exception that a method in another class can catch, Bees need an OutOfHoney
exception, Bees need an OutOfHoney exception, Exception avoidance: implement IDisposable to do
your own cleanup, Exception avoidance: implement IDisposable to do your own cleanup, The worst
catch block EVER: catch-all plus comments, Temporary solutions are OK (temporarily), Temporary
solutions are OK (temporarily), Brian finally gets his vacation..., Make an object serialize itself in its
Dispose(), Brian’s code did something unexpected, What happens when a method you want to call is
risky?, Use the debugger to follow the try/catch flow, If you have code that should ALWAYS run, use
a finally block

(see also debugger)
Bullet Points, Bees need an OutOfHoney exception
catch block, Handle exceptions with try and catch, Handle exceptions with try and catch, What
happens when a method you want to call is risky?, What happens when a method you want to call is
risky?
catching specific exception types, If you have code that ALWAYS should run, use a finally block,
Exception avoidance: implement IDisposable to do your own cleanup
DivideByZeroException, But the program isn’t working!, All exception objects inherit from
Exception
dividing any number by zero, But the program isn’t working!
Exception object generated when program throws exception, When your program throws an
exception, .NET generates an Exception object
exceptions in constructors, Use the debugger to follow the try/catch flow, Use the debugger to
follow the try/catch flow
finalizers, Make an object serialize itself in its Dispose()
finally block, If you have code that ALWAYS should run, use a finally block, If you have code that
should ALWAYS run, use a finally block
FormatException, All exception objects inherit from Exception
handled versus unhandled exceptions, If you have code that ALWAYS should run, use a finally
block
handling, not burying, The worst catch block EVER: catch-all plus comments
handling versus fixing, Temporary solutions are OK (temporarily)

IDisposable interface, implementing to do cleanup, Exception avoidance: implement IDisposable
to do your own cleanup
IndexOutOfRangeException, All exception objects inherit from Exception
invisible to users, Brian finally gets his vacation...
NullReferenceException, But the program isn’t working!
OverFlowException, All exception objects inherit from Exception
program stopping with exceptions, If you have code that ALWAYS should run, use a finally block
simple ideas for, Temporary solutions are OK (temporarily)
spotting exceptions, When your program throws an exception, .NET generates an Exception object
throwing and catching exceptions, One class throws an exception that a method in another class can
catch
try block, Handle exceptions with try and catch, Handle exceptions with try and catch, What
happens when a method you want to call is risky?, What happens when a method you want to call is
risky?
unexpected input, What happens when a method you want to call is risky?, What happens when a
method you want to call is risky?
unhandled exceptions, Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse
Manager
using exceptions to find bugs, Brian’s code did something unexpected, Brian’s code did something
unexpected
using statement, Bees need an OutOfHoney exception
why there are so many exceptions, When your program throws an exception, .NET generates an
Exception object

Exception objects, When your program throws an exception, .NET generates an Exception object,
When your program throws an exception, .NET generates an Exception object, All exception objects
inherit from Exception, Use the Exception object to get information about the problem, Use more than
one catch block to handle multiple types of exceptions, Bees need an OutOfHoney exception

inheriting from Exception class, All exception objects inherit from Exception
Message property, Use more than one catch block to handle multiple types of exceptions
using to get information about the problem, Use the Exception object to get information about the
problem

Excuse Manager project, Trouble at work, You can help Brian out by building a program to manage
his excuses, You can help Brian out by building a program to manage his excuses, You can help Brian
out by building a program to manage his excuses, You can help Brian out by building a program to
manage his excuses, You can help Brian out by building a program to manage his excuses, You can
help Brian out by building a program to manage his excuses, Use Stream.Read() to read bytes from a

stream, Brian’s running Windows 8, Build Brian a new Excuse Manager app, Brian’s code did
something unexpected, Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse
Manager, Uh oh — the code’s still got problems..., Brian’s code did something unexpected, Use the
IDE’s debugger to ferret out exactly what went wrong in the Excuse Manager, Uh-oh — the code’s
still got problems...

building the form, You can help Brian out by building a program to manage his excuses
changing to use binary files with serialized Excuse objects, Use Stream.Read() to read bytes from a
stream
code problems, Uh oh — the code’s still got problems..., Uh-oh — the code’s still got problems...
debugging, Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse Manager,
Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse Manager
DialogResult, You can help Brian out by building a program to manage his excuses
event handlers, You can help Brian out by building a program to manage his excuses
Folder button, You can help Brian out by building a program to manage his excuses
Random Excuse button, You can help Brian out by building a program to manage his excuses
rebuilding as Windows Store app, Build Brian a new Excuse Manager app
solution, You can help Brian out by building a program to manage his excuses
turning into Windows Store app, Brian’s running Windows 8
unexpected user behavior, Brian’s code did something unexpected, Brian’s code did something
unexpected

executables, Where programs come from
executables, #3. Namespaces and assemblies
Exists() method, Use the built-in File and Directory classes to work with files and directories
extend, How would you design a zoo simulator?
Extensible Application Markup Language., Brian’s running Windows 8 (see XAML)
extension methods, Extension methods add new behavior to EXISTING classes, Extension methods
add new behavior to EXISTING classes, Extending a fundamental type: string, .NET collections are
already set up for LINQ

LINQ, .NET collections are already set up for LINQ
strings, Extending a fundamental type: string

F

Factory Method pattern, Use ItemsPanelTemplate to bind controls to a Canvas, Use
ItemsPanelTemplate to bind controls to a Canvas
Farmer class (example), Encapsulation keeps your data pristine, Build an application to test the

Farmer class, Use automatic properties to finish the class, Use a constructor to initialize private
fields

constructor, using to initialize private fields, Use a constructor to initialize private fields
fully encapsulating, Use automatic properties to finish the class
testing, Build an application to test the Farmer class

fields, Add a method that does something, Fill in the code for your method, An instance uses fields to
keep track of things, An instance uses fields to keep track of things, Build a form to interact with the
guys, Build a form to interact with the guys, Each option should be calculated individually,
Encapsulation means keeping some of the data in a class private, Private fields and methods can only
be accessed from inside the class, A few ideas for encapsulating classes, Properties make
encapsulation easier, What if we want to change the feed multiplier?, Use a constructor to initialize
private fields, Use a constructor to initialize private fields, Use a constructor to initialize private
fields, Use a constructor to initialize private fields, Use the interface keyword to define an interface,
Access modifiers change visibility

adding to form, Build a form to interact with the guys, Build a form to interact with the guys
backing fields, set by properties, Properties make encapsulation easier
initializing public fields, What if we want to change the feed multiplier?
interfaces, Use the interface keyword to define an interface
masking, Use a constructor to initialize private fields, Use a constructor to initialize private fields
objects using each other’s fields, problems from, Each option should be calculated individually
private, Encapsulation means keeping some of the data in a class private, Use a constructor to
initialize private fields, Use a constructor to initialize private fields
public, A few ideas for encapsulating classes
versus methods, An instance uses fields to keep track of things
versus properties, Access modifiers change visibility
with no access, Private fields and methods can only be accessed from inside the class

FIFO (First In, First Out), queues, A queue is FIFO — First In, First Out
File class, Use the built-in File and Directory classes to work with files and directories, Use file
dialogs to open and save files (all with just a few lines of code), Use file dialogs to open and save
files (all with just a few lines of code), .NET uses Unicode to store characters and text, .NET uses
Unicode to store characters and text, .NET uses Unicode to store characters and text, C# can use byte
arrays to move data around, C# can use byte arrays to move data around, You can read and write
serialized files manually, too, You can read and write serialized files manually, too, Use
Stream.Read() to read bytes from a stream, Use Stream.Read() to read bytes from a stream, Use
Stream.Read() to read bytes from a stream, Use Stream.Read() to read bytes from a stream, Use
Stream.Read() to read bytes from a stream, Use Stream.Read() to read bytes from a stream, Use
Stream.Read() to read bytes from a stream, Use Stream.Read() to read bytes from a stream, Use

Stream.Read() to read bytes from a stream

Close() method, Use Stream.Read() to read bytes from a stream
Create() method, You can read and write serialized files manually, too
OpenWrite() method, You can read and write serialized files manually, too
ReadAllBytes() method, .NET uses Unicode to store characters and text, C# can use byte arrays to
move data around, Use Stream.Read() to read bytes from a stream
ReadAllLines() method, Use Stream.Read() to read bytes from a stream
ReadAllText() method, Use file dialogs to open and save files (all with just a few lines of code),
Use Stream.Read() to read bytes from a stream
static methods, Use Stream.Read() to read bytes from a stream
versus FileInfo class, Use Stream.Read() to read bytes from a stream
WriteAllBytes() method, .NET uses Unicode to store characters and text, C# can use byte arrays to
move data around, Use Stream.Read() to read bytes from a stream
WriteAllLines() method, Use Stream.Read() to read bytes from a stream
WriteAllText() method, Use file dialogs to open and save files (all with just a few lines of code),
.NET uses Unicode to store characters and text, Use Stream.Read() to read bytes from a stream

file dialogs, Use file dialogs to open and save files (all with just a few lines of code), Use the FileIO
class to read and write files

causing WinForms apps to become unresponsive, Use the FileIO class to read and write files
FileInfo class, Use the built-in File and Directory classes to work with files and directories, Use
Stream.Read() to read bytes from a stream

versus File class, Use Stream.Read() to read bytes from a stream
file I/O, Brian runs into file trouble, Use the FileIO class to read and write files

FileIO class, Use the FileIO class to read and write files
Windows Store apps, Brian runs into file trouble

filenames, @ in front of, Write text to a file in three simple steps
FileNotFoundException, Exception avoidance: implement IDisposable to do your own cleanup
FileOpenPicker object, Use the FileIO class to read and write files
files, The IDE helps you code, .NET uses streams to read and write data, Use the built-in File and
Directory classes to work with files and directories, Use the built-in File and Directory classes to
work with files and directories, Use the built-in File and Directory classes to work with files and
directories, Use the built-in File and Directory classes to work with files and directories, Writing
files usually involves making a lot of decisions

(see also streams)
appending text to, Use the built-in File and Directory classes to work with files and directories
finding out if exists, Use the built-in File and Directory classes to work with files and directories
getting information about, Use the built-in File and Directory classes to work with files and
directories
reading from or writing to, Use the built-in File and Directory classes to work with files and
directories
unsaved files denoted by * (asterisk) in IDE, The IDE helps you code
writing, Writing files usually involves making a lot of decisions

FileSavePicker object, Use the file pickers to locate file paths
FileStreams, Different streams read and write different things, A FileStream reads and writes bytes to
a file, Write text to a file in three simple steps, Things you can do with Directory:, Use a
BinaryWriter to write binary data, Use BinaryReader to read the data back in, Use Stream.Read() to
read bytes from a stream

BinaryReader, Use BinaryReader to read the data back in
BinaryWriter, Use a BinaryWriter to write binary data
created and managed by StreamWriter, Write text to a file in three simple steps, Things you can do
with Directory:
reading and writing bytes to file, A FileStream reads and writes bytes to a file
versus StreamReader and StreamWriter, Use Stream.Read() to read bytes from a stream

Filter property, Dialog boxes are just another WinForms control, Dialog boxes are objects, too, Use
file dialogs to open and save files (all with just a few lines of code)

OpenFileDialog object, Dialog boxes are just another WinForms control, Use file dialogs to open
and save files (all with just a few lines of code)
SaveFileDialog object, Dialog boxes are objects, too

finalizers, Your last chance to DO something... your object’s finalizer, When EXACTLY does a
finalizer run?, Finalizers can’t depend on stability, Finalizers can’t depend on stability, Make an
object serialize itself in its Dispose(), Make an object serialize itself in its Dispose(), Make an object
serialize itself in its Dispose()

depending on references being valid, Finalizers can’t depend on stability
Dispose() method, Finalizers can’t depend on stability, Make an object serialize itself in its
Dispose()
exceptions thrown in, Make an object serialize itself in its Dispose()
fields and methods, Make an object serialize itself in its Dispose()
garbage collection, When EXACTLY does a finalizer run?

finally block, If you have code that ALWAYS should run, use a finally block, If you have code that
ALWAYS should run, use a finally block, Bees need an OutOfHoney exception, Exception avoidance:
implement IDisposable to do your own cleanup, If you have code that should ALWAYS run, use a
finally block

getting with using statements, Bees need an OutOfHoney exception
try/finally, Exception avoidance: implement IDisposable to do your own cleanup

float type, The variable’s type determines what kind of data it can store, A variable is like a data to-
go cup, When you cast a value that’s too big, C# will adjust it automatically

adding int type to, conversion with + operatotr, When you cast a value that’s too big, C# will adjust
it automatically

FlowLayoutPanel, Use file dialogs to open and save files (all with just a few lines of code),
Windows Forms use an object graph set up by the IDE

Controls property, Windows Forms use an object graph set up by the IDE
focused state, animating, Use DoubleAnimation to animate double values
folders., Use the built-in File and Directory classes to work with files and directories, KnownFolders
helps you access high-profile folders

(see also directories; files)
high-profile, accessing with KnownFolders, KnownFolders helps you access high-profile folders

foreach loops, Lists shrink and grow dynamically, Generics can store any type, Add a ToString()
method to your Card object, too, A stack is LIFO — Last In, First Out, Add the new queries to
Jimmy’s app

accessing all members in stack of queue, A stack is LIFO — Last In, First Out
from clause in LINQ queries compared to, Add the new queries to Jimmy’s app
lists, Lists shrink and grow dynamically, Generics can store any type
using IEnumerable<T>, Add a ToString() method to your Card object, too

for loops, Loops perform an action over and over, Use logical operators to check conditions, Wait,
wait! What did that say?
Form1 form, programs without, Any place where you can use a base class, you can use one of its

subclasses instead
FormatException, All exception objects inherit from Exception
Form object, Windows Forms use an object graph set up by the IDE, Use the IDE to explore the
object graph
forms, Build a form to interact with the guys, Build a form to interact with the guys, Build a form to
interact with the guys, A few ideas for designing intuitive classes, Objects use references to talk to
each other, Windows Forms use many different events

adding buttons, Build a form to interact with the guys, A few ideas for designing intuitive classes
adding method, Build a form to interact with the guys
adding variables, Build a form to interact with the guys
as objects, Objects use references to talk to each other
events, Windows Forms use many different events

Frame object, Use the IDE to explore app page navigation
Frame property, XAML Pages, Use the IDE to explore app page navigation
from clause, LINQ is simple, but your queries don’t have to be, Add the new queries to Jimmy’s app,
LINQ can combine your results into groups
fully qualified names, Anatomy of a program
functions, An abstract method doesn’t have a body

G

Game Over text, adding to Windows Store game, Controls make the game work, Controls make the
game work
garbage collection, If there aren’t any more references, your object gets garbage-collected, Where no
object has gone before, Your last chance to DO something... your object’s finalizer, When EXACTLY
does a finalizer run?, Make an object serialize itself in its Dispose()

code that automatically triggers, caution with, Your last chance to DO something... your object’s
finalizer
finalizers, When EXACTLY does a finalizer run?

GC.Collect() method, When EXACTLY does a finalizer run?, Make an object serialize itself in its
Dispose()
GDI+ graphics, Brian’s running Windows 8
generic collections, Generics can store any type, Generics can store any type, And yet MORE
collection types...
generic data types, Generics can store any type
get accessor, Properties make encapsulation easier, Use a constructor to initialize private fields, Get

a little practice using interfaces, You can find out if a class implements a certain interface with “is”

interface properties, You can find out if a class implements a certain interface with “is”
interfaces with get accessor without set accssor, Get a little practice using interfaces

GetFiles() method, Use the built-in File and Directory classes to work with files and directories
GetLastAccessTime() method, Use the built-in File and Directory classes to work with files and
directories
GetLastWriteTime() method, Use the built-in File and Directory classes to work with files and
directories
GetType() method, Type class, #5. The Type class and GetType()
Go Fish! card game, Build a program that uses a dictionary
Go To Definition, IDisposable makes sure your objects are disposed of properly, Use async methods
to find and open files

finding information about class not in your project, Use async methods to find and open files
goto statements, ...more basics...
GPS navigation system, How Mike’s car navigation system thinks about his problems
gradients, Use properties to change how the controls look

adding to Canvas control, Use properties to change how the controls look
gradients, adding to XAML control, Controls make the game work
graphical user interface, A better solution...brought to you by objects! (see GUI)
greater than operator (>), Set up conditions and see if they’re true
grids for Windows Store app page, Start with a blank application, Set up the grid for your page, Set
up the grid for your page, Add controls to your grid, Use the grid system to lay out app pages, XAML
controls can contain text...and more

adding controls to, Set up the grid for your page, Add controls to your grid
setting up, Start with a blank application, Set up the grid for your page
StackPanel versus, XAML controls can contain text...and more

GridView controls, Use semantic zoom to navigate your data, Use ItemsPanelTemplate to bind
controls to a Canvas, Use ItemsPanelTemplate to bind controls to a Canvas

implementing semantic zoom, Use semantic zoom to navigate your data
GroupBox control, We need a BirthdayParty class
group by clause, Combine Jimmy’s values into groups, Jimmy saved a bunch of dough
group clause, Jimmy saved a bunch of dough
group keyword, LINQ can combine your results into groups, Combine Jimmy’s values into groups

GUI (Graphical User Interface), A better solution...brought to you by objects!, Here’s what your GUI
should look like

labs, #1 A Day at the Races, Here’s what your GUI should look like
guys (Two Guys project), Build a class to work with some guys, A few ideas for designing intuitive
classes
GZipStream object, Different streams read and write different things

H

Handled property, RoutedEventArgs object, XAML controls use routed events, XAML controls use
routed events
Head First Labs website, downloading solutions from, A better solution...brought to you by objects!
heap, Thanks for the memory, What’s on your program’s mind, The stack vs. the heap: more on
memory

versus stack, The stack vs. the heap: more on memory
Hebrew letters, .NET uses Unicode to store characters and text
heights and widths, Windows Store app page, Rows and columns can resize to match the page size,
Rows and columns can resize to match the page size
“Hello World” program, building from command line, ...so what did I just do?
hexadecimal, Let’s serialize and deserialize a deck of cards, Working with binary files can be tricky,
Use file streams to build a hex dumper

working with, Use file streams to build a hex dumper
hex dump, Working with binary files can be tricky, Use file streams to build a hex dumper,
StreamReader and StreamWriter will do just fine (for now)

StreamReader and StreamWriter, StreamReader and StreamWriter will do just fine (for now)
using file streams to build hex dumper, Use file streams to build a hex dumper

Hide and Seek game, Keep your eyes open for polymorphism in the next exercise!
hiding methods, A subclass can hide methods in the superclass, Use different references to call hidden
methods, Use different references to call hidden methods, Use the override and virtual keywords to
inherit behavior

overriding versus, A subclass can hide methods in the superclass
using different reference to call hidden methods, Use different references to call hidden methods
using new keyword, Use different references to call hidden methods

hierarchy, Build up your class model by starting general and getting more specific, Create the class
hierarchy, Create the class hierarchy

creating class hierarchy, Create the class hierarchy
defined, Create the class hierarchy

HitTestVisible property, Add code to make your controls interact with the player
HorizontalAlignment property, controls, Add controls to your grid, Use properties to change how the
controls look
house model exercise, Keep your eyes open for polymorphism in the next exercise!, Keep your eyes
open for polymorphism in the next exercise!

playing hide-and-seek, Keep your eyes open for polymorphism in the next exercise!
hovering over a variable during debugging, Use the debugger to see your variables change

I

IClown interface, Get a little practice using interfaces, Upcasting and downcasting work with
interfaces, too, Access modifiers change visibility

access modifiers, Access modifiers change visibility
extending, Upcasting and downcasting work with interfaces, too

ICollection<T> interface, LINQ is versatile
IComparable interface, IComparable<Duck> helps your list sort its ducks
IComparer interface, Use IComparer to tell your List how to sort, Create an instance of your
comparer object, Create an instance of your comparer object, IComparer can do complex
comparisons, IComparer can do complex comparisons

complex comparisons, IComparer can do complex comparisons
creating instance, Create an instance of your comparer object
multiple classes, Create an instance of your comparer object
SortBy field, IComparer can do complex comparisons

IDE (Integrated Development Environment), Why you should learn C#, When you’re doing this...,
...the IDE does this, Where programs come from, Where programs come from

(see also Visual Studio IDE)
creating solutions (.sln files), Where programs come from
editing program files, Where programs come from
making changes in, and IDE changes to default files, ...the IDE does this
what it does in application development, When you’re doing this...

IDisposable interface, IDisposable makes sure your objects are disposed of properly, Avoid
filesystem errors with using statements, Exception avoidance: implement IDisposable to do your own
cleanup, Exception avoidance: implement IDisposable to do your own cleanup, Dispose() works with

using; finalizers work with garbage collection, Finalizers can’t depend on stability

avoiding exceptions, Exception avoidance: implement IDisposable to do your own cleanup
Dispose() as alternative to finalizers, Finalizers can’t depend on stability
streams implementing, Avoid filesystem errors with using statements

IEnumerable interface, Add a ToString() method to your Card object, too, You can upcast an entire
list using IEnumerable, LINQ can pull data from multiple sources, .NET collections are already set
up for LINQ, LINQ is versatile, #7. Using yield return to create enumerable objects

foreach loops using, Add a ToString() method to your Card object, too
ICollection<T> interface and, LINQ is versatile
upcasting entire list with, You can upcast an entire list using IEnumerable

IEnumerator interface, #7. Using yield return to create enumerable objects
IEnumerator<T> interface, #7. Using yield return to create enumerable objects
IEquatable<T> interface, #6. Equality, IEquatable, and Equals()
if/else statements, if/else statements make decisions, Make each button do something, Set up
conditions and see if they’re true, Set up conditions and see if they’re true, Use logical operators to
check conditions, Use logical operators to check conditions, Build the Part y Planner version 2.0,
Writing files usually involves making a lot of decisions

checking CakeWriting.Length (example), Build the Part y Planner version 2.0
practice with, Make each button do something, Set up conditions and see if they’re true, Use logical
operators to check conditions, Use logical operators to check conditions
seting up conditions and checking if they’re true, Set up conditions and see if they’re true

if statements, Give your classes a natural structure, When you call a method, the arguments must be
compatible with the types of the parameters, Writing files usually involves making a lot of decisions,
Rename a variable

consolidating conditional expressions, Rename a variable
in CandyController class method (example), Give your classes a natural structure

IL (Intermediate Language), ...so what did I just do?
increment operator (++), A few useful types, ...more basics...
index (arrays), A special case: arrays
indexers, #7. Using yield return to create enumerable objects
IndexOutOfRangeException, When your program throws an exception, .NET generates an Exception
object, All exception objects inherit from Exception
inequality operator (!=), Set up conditions and see if they’re true, Controls are objects, just like any
other object

infinite loops, Use logical operators to check conditions
inheritance, One more thing...can you add a $100 fee for parties over 12?, Build up your class model
by starting general and getting more specific, How would you design a zoo simulator?, How would
you design a zoo simulator?, How would you design a zoo simulator?, Think about how to group the
animals, Create the class hierarchy, Create the class hierarchy, Use a colon to inherit from a base
class, We know that inheritance adds the base class fields, properties, and methods to the subclass...,
We know that inheritance adds the base class fields, properties, and methods to the subclass..., Any
place where you can use a base class, you can use one of its subclasses instead, Any place where you
can use a base class, you can use one of its subclasses instead, Any place where you can use a base
class, you can use one of its subclasses instead, Use the override and virtual keywords to inherit
behavior, A subclass can access its base class using the base keyword, When a base class has a
constructor, your subclass needs one, too, Now you’re ready to finish the job for Kathleen!, Use
inheritance to extend the bee management system, We can use inheritance to create classes for
different types of bees, Interfaces can inherit from other interfaces, The RoboBee 4000 can do a
worker bee’s job without using valuable honey, An abstract method doesn’t have a body, An abstract
method doesn’t have a body, Extension methods add new behavior to EXISTING classes

(see also interfaces)
as principle of OOP, An abstract method doesn’t have a body
base class method subclass needs to modify, We know that inheritance adds the base class fields,
properties, and methods to the subclass...
building class model from general to more specific, Build up your class model by starting general
and getting more specific
classes you can’t inherit from, Extension methods add new behavior to EXISTING classes
class hierarchy, Hive Simulator, We can use inheritance to create classes for different types of bees
class that contains entry point, Any place where you can use a base class, you can use one of its
subclasses instead
constructors for base class and subclass, When a base class has a constructor, your subclass needs
one, too
creating class hierarchy, Create the class hierarchy
designing zoo simulator, How would you design a zoo simulator?
each subclass extending its base class, Create the class hierarchy
interface, Interfaces can inherit from other interfaces
interface, class implementing, The RoboBee 4000 can do a worker bee’s job without using
valuable honey
looking for classes with much in common, Think about how to group the animals
multiple, An abstract method doesn’t have a body
Party base class for DinnerParty and BirthdayParty classes, Now you’re ready to finish the job for

Kathleen!
passing instance of subclass, Any place where you can use a base class, you can use one of its
subclasses instead
subclass accessing base class using base keyword, A subclass can access its base class using the
base keyword
subclasses, We know that inheritance adds the base class fields, properties, and methods to the
subclass...
terminology, How would you design a zoo simulator?
using colon to inherit from a base class, Use a colon to inherit from a base class
using override and virtual keywords to inherit behavior, Use the override and virtual keywords to
inherit behavior
using subclass in place of base class, Any place where you can use a base class, you can use one of
its subclasses instead
using to avoid duplicate code in subclasses, How would you design a zoo simulator?
using to extend bee management system (example), Use inheritance to extend the bee management
system

inherit, defined, Build up your class model by starting general and getting more specific
InitialDirectory propery, OpenFileDialog, Dialog boxes are just another WinForms control, Use file
dialogs to open and save files (all with just a few lines of code)
initialization, There’s an easier way to initialize objects
InitializeComponent() method, Use a constructor to initialize private fields
INotifyPropertyChanged interface, INotifyPropertyChanged lets bound objects send updates, User
controls let you create your own controls, INotifyPropertyChanged lets bound objects send updates,
User controls let you create your own controls
instances, When you create a new object from a class, it’s called an instance of that class, When you
create a new object from a class, it’s called an instance of that class, A little advice for the code
exercises, An instance uses fields to keep track of things, An instance uses fields to keep track of
things, Let’s create some instances!, Create a project for your guys

creating, Let’s create some instances!, Create a project for your guys
defined, When you create a new object from a class, it’s called an instance of that class
fields, An instance uses fields to keep track of things
keeping track of things, An instance uses fields to keep track of things
requirement for, non-static versus static methods, A little advice for the code exercises

instantiation, interfaces, You can’t instantiate an interface, but you can reference an interface
integers, using in code, Objects use variables, too

Integrated Development Environment (IDE)., Why you should learn C# (see IDE; Visual Studio IDE)
IntelliSense (in Visual Studio), The IDE helps you code
interface keyword, Use the interface keyword to define an interface
interfaces, An interface tells a class that it must implement certain methods and properties, An
interface tells a class that it must implement certain methods and properties, An interface tells a class
that it must implement certain methods and properties, Use the interface keyword to define an
interface, Use the interface keyword to define an interface, Use the interface keyword to define an
interface, Use the interface keyword to define an interface, Now you can create an instance of
NectarStinger that does both jobs, Now you can create an instance of NectarStinger that does both
jobs, Classes that implement interfaces have to include ALL of the interface’s methods, Get a little
practice using interfaces, Get a little practice using interfaces, Get a little practice using interfaces,
You can’t instantiate an interface, but you can reference an interface, You can’t instantiate an
interface, but you can reference an interface, You can find out if a class implements a certain interface
with “is”, You can find out if a class implements a certain interface with “is”, Interfaces can inherit
from other interfaces, is tells you what an object implements; as tells the compiler how to treat your
object, Upcasting works with both objects and interfaces, Upcasting and downcasting work with
interfaces, too, Upcasting and downcasting work with interfaces, too, Upcasting and downcasting
work with interfaces, too, Upcasting and downcasting work with interfaces, too, Upcasting and
downcasting work with interfaces, too, Upcasting and downcasting work with interfaces, too, Access
modifiers change visibility, Access modifiers change visibility, Access modifiers change visibility,
An abstract class is like a cross between a class and an interface, An abstract method doesn’t have a
body, An abstract method doesn’t have a body, An abstract method doesn’t have a body, Keep your
eyes open for polymorphism in the next exercise!, Generics can store any type, Extension methods
add new behavior to EXISTING classes

abstract classes and, An abstract class is like a cross between a class and an interface, An abstract
method doesn’t have a body
abstract methods in, An abstract method doesn’t have a body
allowing use of class in more than one situation, Now you can create an instance of NectarStinger
that does both jobs
avoiding ambiguity with, An abstract method doesn’t have a body
colon operator, Now you can create an instance of NectarStinger that does both jobs
compiler errors, An interface tells a class that it must implement certain methods and properties
containing statements, Upcasting and downcasting work with interfaces, too
defining using interface keyword, Use the interface keyword to define an interface
downcasting, Upcasting and downcasting work with interfaces, too
easy way to implement, Upcasting and downcasting work with interfaces, too
extending, Extension methods add new behavior to EXISTING classes
fields, Use the interface keyword to define an interface

finding out if class implements specific interface, You can find out if a class implements a certain
interface with “is”
generic, for working with collections, Generics can store any type
get accessor without a set accssor, Get a little practice using interfaces
IHidingPlace (example), Keep your eyes open for polymorphism in the next exercise!
implementing, Classes that implement interfaces have to include ALL of the interface’s methods
inheriting from other interfaces, Interfaces can inherit from other interfaces
is keyword, You can find out if a class implements a certain interface with “is”, is tells you what an
object implements; as tells the compiler how to treat your object
naming, Use the interface keyword to define an interface
new keyword, You can’t instantiate an interface, but you can reference an interface
object references versus interface references, Access modifiers change visibility
public, Use the interface keyword to define an interface
public void method, Get a little practice using interfaces
references, You can’t instantiate an interface, but you can reference an interface, Access modifiers
change visibility

why use, Access modifiers change visibility
requiring class to implement methods and properties, An interface tells a class that it must
implement certain methods and properties
similarity to contracts, Upcasting and downcasting work with interfaces, too
upcasting, Upcasting works with both objects and interfaces, Upcasting and downcasting work with
interfaces, too
void method, Get a little practice using interfaces
why use, Upcasting and downcasting work with interfaces, too, Access modifiers change visibility

Intermediate Language (IL), ...so what did I just do?
internal access modifier, There’s more than just public and private, Handling user input, ...so what
did I just do?
Internet Explorer (IE), About option, Use delegates to use the Windows settings charm
int type, You have to assign values to variables before you use them, The variable’s type determines
what kind of data it can store, A variable is like a data to-go cup, 10 pounds of data in a 5-pound bag,
Even when a number is the right size, you can’t just assign it to any variable, When you cast a value
that’s too big, C# will adjust it automatically, When you cast a value that’s too big, C# will adjust it
automatically, When you call a method, the arguments must be compatible with the types of the
parameters, Objects use variables, too, Objects use variables, too

adding to float type, conversion with + operatotr, When you cast a value that’s too big, C# will
adjust it automatically
assigning value, Objects use variables, too
attempting to assign decimal value to int variable, Even when a number is the right size, you can’t
just assign it to any variable
casting int variable (too big) to byte, When you cast a value that’s too big, C# will adjust it
automatically
declaring, Objects use variables, too
no automatic conversion to string, When you call a method, the arguments must be compatible with
the types of the parameters

invalid arguments error, When you call a method, the arguments must be compatible with the types of
the parameters
IRandomAccessStream, Use async methods to find and open files
IsHitTestVisible property, Your game is now playable, XAML controls use routed events, XAML
controls use routed events, Create an app to explore routed events, Create an app to explore routed
events
is keyword, You can find out if a class implements a certain interface with “is”, The RoboBee 4000
can do a worker bee’s job without using valuable honey, is tells you what an object implements; as
tells the compiler how to treat your object, Downcasting lets you turn your appliance back into a
coffee maker

as keyword versus, is tells you what an object implements; as tells the compiler how to treat your
object
checking class or interface sublcassed or implemented, The RoboBee 4000 can do a worker bee’s
job without using valuable honey

IStorageFolder interface, Use async methods to find and open files, Use async methods to find and
open files

methods to work with its files, Use async methods to find and open files
IStorageItem interface, Use async methods to find and open files
IsVisible property, Converters can work with many different types, Converters can work with many
different types
items in a list, Use a data template to display objects, Use a data template to display objects
ItemsPanelTemplate, using to bind controls to a canvas, Use ItemsPanelTemplate to bind controls to a
Canvas, Use ItemsPanelTemplate to bind controls to a Canvas
ItemsSource property, Make your bees fly around a page, Use ItemsPanelTemplate to bind controls to
a Canvas, Make your bees fly around a page, Use ItemsPanelTemplate to bind controls to a Canvas

binding items to ListView, GridView, or ListBox controls, Use ItemsPanelTemplate to bind
controls to a Canvas, Use ItemsPanelTemplate to bind controls to a Canvas

IValueConverter interface, Converters automatically convert values for binding, Converters
automatically convert values for binding

J

join clause, Use join to combine two collections into one sequence, Jimmy saved a bunch of dough,
Jimmy saved a bunch of dough, Jimmy saved a bunch of dough
jump statements, ...more basics...

K

Kathleen’s Birthday Party Planner., Kathleen does birthday parties, too (see Birthday Party project)
Kathleen’s Party Planning program., Kathleen is an event planner (see Dinner Party Planning project)
keyboard event handlers, Respond to swipe and keyboard input, Handling user input
key frame animations, Use object animations to animate object values
key frames, defined, Use object animations to animate object values
keywords, When you call a method, the arguments must be compatible with the types of the
parameters, Controls are objects, just like any other object, #3. Namespaces and assemblies

reference for C# keywords, #3. Namespaces and assemblies
KnownFolders class, KnownFolders helps you access high-profile folders

L

Label controls, Make each button do something, Rebuild your app for Windows Desktop, Rebuild
your app for Windows Desktop, Controls are objects, just like any other object, Build the Part y
Planner version 2.0

adding to Windows Desktop app, Rebuild your app for Windows Desktop
animating, Controls are objects, just like any other object
Birtyday Party project, Build the Part y Planner version 2.0
button updating, Make each button do something
changing properties in Properties window, Rebuild your app for Windows Desktop

labels for objects, Refer to your objects with reference variables (see reference variables)
labels, loop using goto statement and, ...more basics...
labelToChange properties, Windows Store apps use XAML to create UI objects, WPF applications
use XAML to create UI objects
labs, C# Lab: A Day at the Races, You’ll need three classes and a form, You’ll need three classes and

a form, Initialize your arrays of Greyhound and Guy objects, Initialize your arrays of Greyhound and
Guy objects, Initialize your arrays of Greyhound and Guy objects, Here’s your application
architecture, Here’s your application architecture, Here’s your application architecture, Here’s your
application architecture, Here’s your application architecture, Here’s what your GUI should look like,
Here’s what your GUI should look like, Here’s what your GUI should look like, Here’s what your
GUI should look like, Placing bets, The Finished Product, C# Lab: The Quest, The design: building
the form, The architecture: using the objects, Gameplay concerns are separated into the Game object,
Building the Game class, Finding common behavior: movement, The Mover class source code, The
Player class keeps track of the player, Write the Move() method for the Player, Write the Move()
method for the Player, Bats, ghosts, and ghouls inherit from the Enemy class, Write the different
Enemy subclasses, Write the different Enemy subclasses, Write the different Enemy subclasses, Write
the different Enemy subclasses, Weapon inherits from Mover; each weapon inherits from Weapon,
Different weapons attack in different ways, Different weapons attack in different ways, Different
weapons attack in different ways, Potions implement the IPotion interface, Potions implement the
IPotion interface, Potions implement the IPotion interface, The form brings it all together, The form’s
UpdateCharacters() method moves the PictureBoxes into position, The fun’s just beginning!, C# Lab
Invaders, Your mission: defend the planet against wave after wave of invaders, Your mission: defend
the planet against wave after wave of invaders, The architecture of Invaders, Build out the object
model for the Model, Building the InvadersModel class, Building the InvadersModel class, The
InvadersModel methods, Filling out the InvadersModel class, Filling out the InvadersModel class,
LINQ makes collision detection much easier, Build the Invaders page for the View, Maintain the play
area’s aspect ratio, Respond to swipe and keyboard input, An AnimatedImage control displays the
ships, An AnimatedImage control displays the ships, Use the Settings charm to open a SettingsFlyout,
Build the ViewModel, Handling user input, Build the InvadersViewModel methods, The View’s
updated when the timer ticks, The player’s ship can move and die, “Shots fired!”, And yet there’s
more to do...

#1 A Day at the Races, C# Lab: A Day at the Races, You’ll need three classes and a form, You’ll
need three classes and a form, Initialize your arrays of Greyhound and Guy objects, Initialize your
arrays of Greyhound and Guy objects, Initialize your arrays of Greyhound and Guy objects, Here’s
your application architecture, Here’s your application architecture, Here’s your application
architecture, Here’s your application architecture, Here’s your application architecture, Here’s
what your GUI should look like, Here’s what your GUI should look like, Here’s what your GUI
should look like, Here’s what your GUI should look like, Placing bets, The Finished Product

application architecture, Here’s your application architecture
Bet class, Initialize your arrays of Greyhound and Guy objects
Bet object, Here’s what your GUI should look like
Betting Parlor groupbox, Placing bets
dogs array, Here’s your application architecture
finished executable, The Finished Product
Greyhound class, You’ll need three classes and a form
GUI, Here’s what your GUI should look like
Guy class, Initialize your arrays of Greyhound and Guy objects
Guy object, Here’s what your GUI should look like
guys array, Here’s your application architecture
PictureBox control, You’ll need three classes and a form, Here’s your application architecture,
Here’s what your GUI should look like
RadioButton controls, Here’s your application architecture
this keyword, Initialize your arrays of Greyhound and Guy objects

#2 The Quest, C# Lab: The Quest, The design: building the form, The architecture: using the
objects, Gameplay concerns are separated into the Game object, Building the Game class, Finding
common behavior: movement, The Mover class source code, The Player class keeps track of the
player, Write the Move() method for the Player, Write the Move() method for the Player, Bats,
ghosts, and ghouls inherit from the Enemy class, Write the different Enemy subclasses, Write the
different Enemy subclasses, Write the different Enemy subclasses, Write the different Enemy
subclasses, Weapon inherits from Mover; each weapon inherits from Weapon, Different weapons
attack in different ways, Different weapons attack in different ways, Different weapons attack in
different ways, Potions implement the IPotion interface, Potions implement the IPotion interface,
Potions implement the IPotion interface, The form brings it all together, The form’s
UpdateCharacters() method moves the PictureBoxes into position, The fun’s just beginning!

Bat subclass, Write the different Enemy subclasses
BluePotion class, Potions implement the IPotion interface
Enemy class, Bats, ghosts, and ghouls inherit from the Enemy class
Enemy subclasses, Write the different Enemy subclasses
form, bringing it all together, The form brings it all together
form, building, The design: building the form
form delegating activity to Game object, Gameplay concerns are separated into the Game object
form, UpdateCharacters() method, The form’s UpdateCharacters() method moves the
PictureBoxes into position
Game class, Building the Game class
Ghost subclass, Write the different Enemy subclasses
Ghoul subclass, Write the different Enemy subclasses
ideas for improving the game, The fun’s just beginning!
IPotion interface, Potions implement the IPotion interface
Mace subclass, Different weapons attack in different ways
Mover class, Finding common behavior: movement
Mover class source code, The Mover class source code
objects, Player, Enemy, Weapon, and Game, The architecture: using the objects
Player class, The Player class keeps track of the player
Player class Attack() method, Write the Move() method for the Player
Player class Move() method, Write the Move() method for the Player
RedPotion class, Potions implement the IPotion interface
Sword subclass, Different weapons attack in different ways
Weapon class, Weapon inherits from Mover; each weapon inherits from Weapon
Weapon subclasses, Different weapons attack in different ways

#3 Invaders, C# Lab Invaders, Your mission: defend the planet against wave after wave of
invaders, Your mission: defend the planet against wave after wave of invaders, The architecture of
Invaders, Build out the object model for the Model, Building the InvadersModel class, Building the
InvadersModel class, The InvadersModel methods, Filling out the InvadersModel class, Filling out
the InvadersModel class, LINQ makes collision detection much easier, Build the Invaders page for
the View, Maintain the play area’s aspect ratio, Respond to swipe and keyboard input, An
AnimatedImage control displays the ships, An AnimatedImage control displays the ships, Use the
Settings charm to open a SettingsFlyout, Build the ViewModel, Handling user input, Build the
InvadersViewModel methods, The View’s updated when the timer ticks, The player’s ship can

move and die, “Shots fired!”, And yet there’s more to do...

additions, And yet there’s more to do...
architecture, The architecture of Invaders
building ViewModel, Build the ViewModel
control for big stars, An AnimatedImage control displays the ships
Game class, Building the InvadersModel class
Game class, filling out, Filling out the InvadersModel class
handling user input, Handling user input
InvadersHelper class for ViewModel, An AnimatedImage control displays the ships
InvadersModel class, Building the InvadersModel class
InvadersModel class, filling out, Filling out the InvadersModel class
InvadersModel class methods, The InvadersModel methods
Invaders page, building for the View, Build the Invaders page for the View
InvadersViewModel class methods, Build the InvadersViewModel methods
LINQ, LINQ makes collision detection much easier
maintaining play area’s aspect ratio, Maintain the play area’s aspect ratio
movements, Your mission: defend the planet against wave after wave of invaders
object model for the Model, Build out the object model for the Model
player’s ship, moving and dying, The player’s ship can move and die
responding to swipe and keyboard input, Respond to swipe and keyboard input
shots fired, “Shots fired!”
types of invaders, Your mission: defend the planet against wave after wave of invaders
using Settings charm to open About popup, Use the Settings charm to open a SettingsFlyout
View, updating when timer ticks, The View’s updated when the timer ticks

lambda expressions, #9. Anonymous types, anonymous methods, and lambda expressions, #9.
Anonymous types, anonymous methods, and lambda expressions
Launched event handler, updating, Add process lifetime management to Jimmy’s comics
Length property, arrays, Arrays can contain a bunch of reference variables, too
less than operator (<), Set up conditions and see if they’re true
libraries, #3. Namespaces and assemblies

creating class libraries, #3. Namespaces and assemblies

LIFO (Last In, First Out), stacks, A stack is LIFO — Last In, First Out
line breaks., Make each button do something, XAML controls can contain text...and more

(see also \n; \r)
adding to XAML text controls, XAML controls can contain text...and more

LINQ (Language Integrated Query), , LINQ can pull data from multiple sources, .NET collections are
already set up for LINQ, .NET collections are already set up for LINQ, LINQ makes queries easy,
LINQ is simple, but your queries don’t have to be, LINQ is simple, but your queries don’t have to be,
LINQ is versatile, LINQ is versatile, LINQ is versatile, LINQ is versatile, Add the new queries to
Jimmy’s app, Add the new queries to Jimmy’s app, Add the new queries to Jimmy’s app, Add the new
queries to Jimmy’s app, Add the new queries to Jimmy’s app, Add the new queries to Jimmy’s app,
LINQ can combine your results into groups, LINQ can combine your results into groups, LINQ can
combine your results into groups, Combine Jimmy’s values into groups, Use join to combine two
collections into one sequence, Jimmy saved a bunch of dough, Jimmy saved a bunch of dough, Jimmy
saved a bunch of dough, LINQ makes collision detection much easier, #10. LINQ to XML

combining results into groups, LINQ can combine your results into groups, Combine Jimmy’s
values into groups
complex queries with, LINQ is simple, but your queries don’t have to be
deferred evaluation of queries, LINQ is versatile
difference from most of C# syntax, LINQ is versatile
extension methods, .NET collections are already set up for LINQ
from clause, Add the new queries to Jimmy’s app, LINQ can combine your results into groups
Invaders lab, LINQ makes collision detection much easier
join queries, Jimmy saved a bunch of dough
LINQ to XML, #10. LINQ to XML
modifying items, LINQ is versatile
.NET collections, .NET collections are already set up for LINQ
orderby clause, Add the new queries to Jimmy’s app, LINQ can combine your results into groups
performing calculations on collections, LINQ is versatile
pulling data from multiple sources, LINQ can pull data from multiple sources
queries, LINQ makes queries easy
queries, anatomy of, LINQ is simple, but your queries don’t have to be
query statements, Add the new queries to Jimmy’s app
select clause, Add the new queries to Jimmy’s app
Take statement, Add the new queries to Jimmy’s app
using join to combine two collections into one query, Use join to combine two collections into one
sequence, Jimmy saved a bunch of dough
var keyword and, Jimmy saved a bunch of dough
where clause, Add the new queries to Jimmy’s app

LINQPad, Add semantic zoom to Jimmy’s app
ListBox controls, Page layout starts with controls, Use ItemsPanelTemplate to bind controls to a
Canvas, Page layout starts with controls, Use ItemsPanelTemplate to bind controls to a Canvas

Windows Store Go Fish! app page, Page layout starts with controls, Page layout starts with
controls

ListBoxItem object, Use a data template to display objects, Use a data template to display objects
lists, #7. Using yield return to create enumerable objects

using [] to return object from, #7. Using yield return to create enumerable objects

List<T> class, Lists make it easy to store collections of...anything, Lists are more flexible than arrays,
Lists are more flexible than arrays, Lists shrink and grow dynamically, Lists shrink and grow
dynamically, Generics can store any type, Generics can store any type, Collection initializers are
similar to object initializers, Lists are easy, but SORTING can be tricky, Lists are easy, but
SORTING can be tricky, IComparable<Duck> helps your list sort its ducks, IComparable<Duck>
helps your list sort its ducks, Use IComparer to tell your List how to sort, Create an instance of your
comparer object, Create an instance of your comparer object, IComparer can do complex
comparisons, Update your foreach loops to let your Ducks and Cards print themselves, Add a
ToString() method to your Card object, too, You can upcast an entire list using IEnumerable, You can
build your own overloaded methods, A stack is LIFO — Last In, First Out

building class to store deck of cards and form using it, You can build your own overloaded
methods
CompareTo() method, IComparable<Duck> helps your list sort its ducks
converting from stacks or queues, A stack is LIFO — Last In, First Out
creating, using collection initializer, Collection initializers are similar to object initializers
dynamically shrinking and growing, Lists shrink and grow dynamically
foreach loop, Lists shrink and grow dynamically, Update your foreach loops to let your Ducks and
Cards print themselves
foreach loop using IEnumerable<T>, Add a ToString() method to your Card object, too
IComparable interface, IComparable<Duck> helps your list sort its ducks
IComparer interface, Use IComparer to tell your List how to sort
IComparer interface, complex comparisons with, IComparer can do complex comparisons
IComparer interface, creating an instance, Create an instance of your comparer object
IComparer interface, multiple implementations, Create an instance of your comparer object
sorting, Lists are easy, but SORTING can be tricky
Sort() method, Lists are easy, but SORTING can be tricky
storing any type, Generics can store any type
things you can do with, Lists are more flexible than arrays
upcasting, using IEnumerable<T>, You can upcast an entire list using IEnumerable
versus arrays, Lists are more flexible than arrays
versus enums, Generics can store any type

ListView controls, Use data binding to build Sloppy Joe a better menu, Use data binding to build
Sloppy Joe a better menu, Use the new keyword to create anonymous types, Use semantic zoom to
navigate your data, Use ItemsPanelTemplate to bind controls to a Canvas, Use data binding to build
Sloppy Joe a better menu, Use data binding to build Sloppy Joe a better menu, Use
ItemsPanelTemplate to bind controls to a Canvas

app managing Jimmy’s comic collection, Use the new keyword to create anonymous types
data binding to properties in MenuMaker (example), Use data binding to build Sloppy Joe a better
menu, Use data binding to build Sloppy Joe a better menu
implementing semantic zoom, Use semantic zoom to navigate your data
populating using one-way data binding, Use data binding to build Sloppy Joe a better menu, Use
data binding to build Sloppy Joe a better menu

ListViewItem object, Use a data template to display objects, Use a data template to display objects
literals, The variable’s type determines what kind of data it can store, Where no object has gone
before
logical operators, Set up conditions and see if they’re true, ...more basics..., ...more basics..., #3.
Namespaces and assemblies

&, |, and ,̂ ...more basics...
combining with =, #3. Namespaces and assemblies
using to check conditions, Set up conditions and see if they’re true

long type, The variable’s type determines what kind of data it can store, A variable is like a data to-
go cup, C# does some casting automatically

converting to a string, C# does some casting automatically
loops, Loops perform an action over and over, Use logical operators to check conditions, Use logical
operators to check conditions, Wait, wait! What did that say?, A stack is LIFO — Last In, First Out,
...more basics...

adding while and for loops to program, Use logical operators to check conditions, Use logical
operators to check conditions

infinite loops, Use logical operators to check conditions
continue and break keywords, ...more basics...
foreach., A stack is LIFO — Last In, First Out (see foreach loops)
using for Windows desktop app animation, Wait, wait! What did that say?

lowercasing, Use a constructor to initialize private fields

M

Main() method, Rebuild your app for Windows Desktop, Your desktop app knows where to start
MainPage class, Windows Store apps use XAML to create UI objects, WPF applications use XAML
to create UI objects
Margin property, Use properties to change how the controls look, Use the grid system to lay out app
pages

Button controls, Use properties to change how the controls look
Grid control, Use the grid system to lay out app pages

Margin property, Button controls, Add controls to your grid
masking fields, Use a constructor to initialize private fields, Use a constructor to initialize private
fields
math operators, A few useful types
members (class), There’s more than just public and private
memory, Thanks for the memory, The stack vs. the heap: more on memory

stack versus heap, The stack vs. the heap: more on memory
MemoryStreams, Different streams read and write different things
MessageBox.Show() method, You can change your program’s entry point, Even when a number is the
right size, you can’t just assign it to any variable, C# does some casting automatically, Build a
program that uses a dictionary

argument type not matching parameter type, C# does some casting automatically
conversion of \n character to line breaks, Build a program that uses a dictionary

MessageDialog object, Windows Store apps use await to be more responsive, C# programs can use
await to be more responsive
Message property, Exception object, All exception objects inherit from Exception, Use more than one
catch block to handle multiple types of exceptions
methods, You’ve set the stage for the game, You’ve set the stage for the game, What you’ll do next,
Add a method that does something, Add a method that does something, Use the IDE to create your
own method, Anatomy of a program, Let’s take a closer look at your code, Two classes can be in the
same namespace, Make each button do something, Rebuild your app for Windows Desktop, Your
desktop app knows where to start, Mike’s Navigator class has methods to set and modify routes,
Mike’s Navigator class has methods to set and modify routes, Some methods have a return value, You
use a class to build an object, A little advice for the code exercises, An instance uses fields to keep
track of things, You can use class and method names to make your code intuitive, Build a form to
interact with the guys, When you call a method, the arguments must be compatible with the types of
the parameters, Objects use references to talk to each other, But is the RealName field REALLY
protected?, Private fields and methods can only be accessed from inside the class, A few ideas for
encapsulating classes, Use a constructor to initialize private fields, Use a constructor to initialize
private fields, Use a constructor to initialize private fields, Use a constructor to initialize private
fields, Different animals make different noises, Create the class hierarchy, A subclass can override
methods to change or replace methods it inherited, A subclass can hide methods in the superclass, Use
different references to call hidden methods, Use the override and virtual keywords to inherit
behavior, An interface tells a class that it must implement certain methods and properties, Classes
that implement interfaces have to include ALL of the interface’s methods, An abstract class is like a
cross between a class and an interface, An abstract method doesn’t have a body, Enums let you

represent numbers with names, Use out parameters to make a method return more than one value, Pass
by reference using the ref modifier, Use optional parameters to set default values, Extension methods
add new behavior to EXISTING classes, A delegate STANDS IN for an actual method, #8.
Refactoring

abstract, An abstract class is like a cross between a class and an interface, An abstract method
doesn’t have a body
accessing private fields with public methods, Private fields and methods can only be accessed
from inside the class
adding for form, Build a form to interact with the guys
adding from other namespaces, Rebuild your app for Windows Desktop
arguments matching types of parameters, When you call a method, the arguments must be
compatible with the types of the parameters
calling most specific, Create the class hierarchy
calling on classes in same namespace, Two classes can be in the same namespace
code between { } (curly braces), Make each button do something
creating using IDE, You’ve set the stage for the game, Add a method that does something
defined, You’ve set the stage for the game, Add a method that does something, Let’s take a closer
look at your code
delegates standing in for, A delegate STANDS IN for an actual method
extension, Extension methods add new behavior to EXISTING classes (see extension methods)
extracting, #8. Refactoring
filling in code for, What you’ll do next, Use the IDE to create your own method
get and set accessors versus, Use a constructor to initialize private fields
hidden, using different references to call, Use different references to call hidden methods
hiding versus overriding, A subclass can hide methods in the superclass
implementing interfaces, Classes that implement interfaces have to include ALL of the interface’s
methods
in desktop app class, Your desktop app knows where to start
interface requiring class to implement, An interface tells a class that it must implement certain
methods and properties
naming, You can use class and method names to make your code intuitive
Navigator class (example), Mike’s Navigator class has methods to set and modify routes
object, You use a class to build an object
optional parameters, using to set default values, Use optional parameters to set default values

overloaded, Enums let you represent numbers with names (see overloaded methods)
overriding, Different animals make different noises, A subclass can override methods to change or
replace methods it inherited
passing arguments by reference, Pass by reference using the ref modifier
private, But is the RealName field REALLY protected?
public, A few ideas for encapsulating classes
public, capitalization in names, Use a constructor to initialize private fields
returning more than one value with out parameters, Use out parameters to make a method return
more than one value
return values, Mike’s Navigator class has methods to set and modify routes
signature, Use a constructor to initialize private fields
static., A little advice for the code exercises (see static methods)
this keyword with, Objects use references to talk to each other
using override and virtual keywords, Use the override and virtual keywords to inherit behavior
versus fields, An instance uses fields to keep track of things
with no return value, Use a constructor to initialize private fields

Microsoft Download Center, Use the Remote Debugger to sideload your app
Microsoft reference for C#, #3. Namespaces and assemblies
mileage and reimbursement calculator, When you call a method, the arguments must be compatible
with the types of the parameters
Model, MVVM lets you design for binding and data, User controls let you create your own controls,
Events alert the rest of the app to state changes, Finish the stopwatch app

(see also MVVM pattern)
rules for MVVM apps, Finish the stopwatch app
stopwatch app, events alerting app to state changes, Events alert the rest of the app to state changes
using Model statement at top of ViewModel classes, User controls let you create your own controls

Model-View-Controller (MVC) pattern, User controls let you create your own controls
Model-View-ViewModel pattern., (see MVVM pattern)
monetary values, decimal type for, You’re going to build a program for Kathleen
monitors, different, Windows Store apps on, Use the grid system to lay out app pages
multiple inheritance, An abstract method doesn’t have a body
multiplication operator., A few useful types (see * (asterisk), under Symbols)

MVC (Model-View-Controller) pattern, User controls let you create your own controls
MVVM (Model-View-ViewModel) pattern, , Do you design for binding or for working with data?,
MVVM lets you design for binding and data, Use the MVVM pattern to start building the basketball
roster app, User controls let you create your own controls, User controls let you create your own
controls, User controls let you create your own controls, User controls let you create your own
controls, User controls let you create your own controls, MVVM means thinking about the state of the
app, Start building the stopwatch app’s Model, Finish the stopwatch app, Finish the stopwatch app,
Build an analog stopwatch using the same ViewModel, Build an analog stopwatch using the same
ViewModel, Make your bees fly around a page, Use ItemsPanelTemplate to bind controls to a
Canvas, The architecture of Invaders, User controls let you create your own controls, Build an analog
stopwatch using the same ViewModel, Build an analog stopwatch using the same ViewModel, Make
your bees fly around a page, Use ItemsPanelTemplate to bind controls to a Canvas

animating bees and stars, program for, Use ItemsPanelTemplate to bind controls to a Canvas, Use
ItemsPanelTemplate to bind controls to a Canvas
debate between Model and ViewModel, User controls let you create your own controls
decisions about implementation, Finish the stopwatch app
decoupling of components, Build an analog stopwatch using the same ViewModel, Build an analog
stopwatch using the same ViewModel
designing for binding and data, MVVM lets you design for binding and data
designing for binding or working with data, Do you design for binding or for working with data?
dividing up concerns of the program, User controls let you create your own controls
enabling easier handling of code in future, User controls let you create your own controls
image animation and, Make your bees fly around a page, Make your bees fly around a page
Invaders game, The architecture of Invaders
Model communicating with rest of app, User controls let you create your own controls
rules for building apps, Finish the stopwatch app
state of the app, MVVM means thinking about the state of the app
stopwatch, analog, building with ViewModel, Build an analog stopwatch using the same
ViewModel, Build an analog stopwatch using the same ViewModel
stopwatch for BasketballRoster project, Start building the stopwatch app’s Model
user controls, User controls let you create your own controls, User controls let you create your own
controls
using to start building basketball roster app, Use the MVVM pattern to start building the basketball
roster app

N

\n (line feed character), Make each button do something, So what did you just build?, The variable’s
type determines what kind of data it can store, Build a program that uses a dictionary, Write text to a
file in three simple steps, Things you can do with Directory:
Name box, Properties window, Add controls to your grid, Use properties to change how the controls
look
namespaces, The .NET Framework gives you the right tools for the job, Anatomy of a program, Two
classes can be in the same namespace, Use logical operators to check conditions, Rebuild your app
for Windows Desktop, Your desktop app knows where to start, You can build your own overloaded
methods, Use static resources to declare your objects in XAML, Take your Guy Serializer for a test
drive, #3. Namespaces and assemblies, Use static resources to declare your objects in XAML, Take
your Guy Serializer for a test drive

and assemblies, #3. Namespaces and assemblies
classes in, Two classes can be in the same namespace
generated by IDE for Windows Desktop app, Rebuild your app for Windows Desktop, Your
desktop app knows where to start
in C# programs, Anatomy of a program, You can build your own overloaded methods
reasons for using, Take your Guy Serializer for a test drive, Take your Guy Serializer for a test
drive
Windows Runtime and .NET Framework tools, The .NET Framework gives you the right tools for
the job
XML, Use static resources to declare your objects in XAML, Use static resources to declare your
objects in XAML

NavigatedFrom event handler, Add process lifetime management to Jimmy’s comics
navigating data, building apps for, The IDE’s Split App template helps you build apps for navigating
data
navigation, page-based, in Windows Store apps, Jimmy could use some help
Navigation project, How Mike thinks about his problems, Mike’s Navigator class has methods to set
and modify routes, Mike’s navigator program could use better encapsulation

better encapsulation for Route class, Mike’s navigator program could use better encapsulation
Navigator class, methods to set and modify routes, Mike’s Navigator class has methods to set and
modify routes

.NET Framework, Why you should learn C#, Finish the method and run your program, The .NET
Framework gives you the right tools for the job, The .NET Framework gives you the right tools for
the job, The .NET Framework gives you the right tools for the job, Anatomy of a program, Anatomy
of a program, Use logical operators to check conditions, A little advice for the code exercises,
Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!, Controls are objects, just like any
other object, Use a constructor to initialize private fields, There’s more than just public and private,

Lists make it easy to store collections of...anything, Generics can store any type, You can build your
own overloaded methods, Build a program that uses a dictionary, And yet MORE collection types...,
.NET uses streams to read and write data, Brian’s running Windows 8, Two-way binding can get or
set the source property, Modify MenuMaker to notify you when the GeneratedDate property changes,
KnownFolders helps you access high-profile folders, Take your Guy Serializer for a test drive, When
EXACTLY does a finalizer run?, A struct looks like an object..., Extension methods add new behavior
to EXISTING classes, .NET collections are already set up for LINQ, Did you know that C# and the
.NET Framework can..., Modify MenuMaker to notify you when the GeneratedDate property changes,
Take your Guy Serializer for a test drive

built-in classes and assemblies, There’s more than just public and private
collections, Lists make it easy to store collections of...anything, .NET collections are already set
up for LINQ
events, raising, pattern for, Modify MenuMaker to notify you when the GeneratedDate property
changes, Modify MenuMaker to notify you when the GeneratedDate property changes
for Windows Store apps, Brian’s running Windows 8
garbage collection, When EXACTLY does a finalizer run?
generic collections, And yet MORE collection types...
generic interfaces for working with collections, Generics can store any type
KnownFolders class, KnownFolders helps you access high-profile folders, Take your Guy
Serializer for a test drive, Take your Guy Serializer for a test drive
line breaks, adding with Environment.NewLine, Build a program that uses a dictionary
Math.Min() method, A little advice for the code exercises
namespaces, The .NET Framework gives you the right tools for the job, Anatomy of a program,
Controls are objects, just like any other object
.NET for Windows Desktop, The .NET Framework gives you the right tools for the job
.NET for Windows Store apps, The .NET Framework gives you the right tools for the job
ObservableCollection<T> class, for data binding, Two-way binding can get or set the source
property
overloaded methods, in built-in classes and objects, You can build your own overloaded methods
pre-built structures, Why you should learn C#
Random class, Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!
sealed classes, Extension methods add new behavior to EXISTING classes
streams, readinga and writing data, .NET uses streams to read and write data
structs, A struct looks like an object...
System namespace, use of, Use logical operators to check conditions
System.Windows.Forms namespace, Use a constructor to initialize private fields
using statement, to use animation code, Finish the method and run your program
using tools in C# code, Anatomy of a program

NetworkStreams, Different streams read and write different things
new keyword, Mike can use objects to solve his problem, Use different references to call hidden
methods, You can’t instantiate an interface, but you can reference an interface, Use the new keyword
to create anonymous types, Use the new keyword to create anonymous types

interfaces, You can’t instantiate an interface, but you can reference an interface
using to create anonymous types, Use the new keyword to create anonymous types, Use the new
keyword to create anonymous types
using when hiding methods, Use different references to call hidden methods

new statements, Thanks for the memory, A special case: arrays, Use a constructor to initialize private
fields

creating array object, A special case: arrays
creating class instances, Thanks for the memory
using contructor with, Use a constructor to initialize private fields

Normal state (controls), Visual states make controls respond to changes
NOT operator (!), A few useful types
nullable types, Use nullable types when you need nonexistent values, Nullable types help you make
your programs more robust

helping to make programs more robust, Nullable types help you make your programs more robust
null coalescing operator (??), ...more basics...
null keyword, Where no object has gone before
NullReferenceException, But the program isn’t working!
numbers, The variable’s type determines what kind of data it can store, The variable’s type
determines what kind of data it can store, Enums let you represent numbers with names

converting between decimal and binary, The variable’s type determines what kind of data it can
store
data types for, The variable’s type determines what kind of data it can store
representing with names, using enums, Enums let you represent numbers with names

NumericUpDown controls, So what did you just build?, When you call a method, the arguments must
be compatible with the types of the parameters, Build the Part y Planner version 2.0

Birthday Party project, Build the Part y Planner version 2.0

O

ObjectAnimationUsingKeyFrames animation, Use object animations to animate object values
object graphs, Windows Forms use an object graph set up by the IDE, Use the IDE to explore the
object graph, The whole object graph is serialized to XML

using IDE to explore, Use the IDE to explore the object graph
whole graph serialized to XML with data contract serialization, The whole object graph is
serialized to XML

object initializers, There’s an easier way to initialize objects, A few ideas for designing intuitive
classes, What if we want to change the feed multiplier?, Use a constructor to initialize private fields

initializing public fields and properties in, What if we want to change the feed multiplier?
object-oriented programming (OOP), An abstract method doesn’t have a body, Use Stream.Read() to
read bytes from a stream
object references, versus interface references, Access modifiers change visibility
objects, , Mike can use objects to solve his problem, You use a class to build an object, A better
solution...brought to you by objects!, A little advice for the code exercises, An instance uses fields to
keep track of things, Thanks for the memory, Build a class to work with some guys, The variable’s
type determines what kind of data it can store, When you call a method, the arguments must be
compatible with the types of the parameters, Objects use variables, too, Objects use variables, too,
Objects use variables, too, Refer to your objects with reference variables, If there aren’t any more
references, your object gets garbage-collected, Objects use references to talk to each other, Where no
object has gone before, Where no object has gone before, Controls are objects, just like any other
object, Controls are objects, just like any other object, C# Lab: A Day at the Races, Each option
should be calculated individually, It’s easy to accidentally misuse your objects, Encapsulation means
keeping some of the data in a class private, Interface references work just like object references,
Upcasting works with both objects and interfaces, Downcasting lets you turn your appliance back into
a coffee maker, But what exactly IS an object’s state? What needs to be saved?, Serialization lets you
read or write a whole object graph all at once, Your last chance to DO something... your object’s
finalizer, Values get copied; references get assigned, Structs are value types; objects are reference
types, The stack vs. the heap: more on memory, “Captain” Amazing...not so much, Ever wish your
objects could think for themselves?, Connecting the dots, XAML controls use routed events, An
object can subscribe to an event..., Use object animations to animate object values, XAML controls
use routed events

accessing fields inside object, Encapsulation means keeping some of the data in a class private
accidentally misusing, It’s easy to accidentally misuse your objects
array of, iterating through, Controls are objects, just like any other object
assigning value, Objects use variables, too
as variables, Objects use variables, too
boxed, The stack vs. the heap: more on memory
building from classes, You use a class to build an object, Build a class to work with some guys

Guy objects (example), Build a class to work with some guys
controls as, Controls are objects, just like any other object

declaring, Objects use variables, too
downcasting, Downcasting lets you turn your appliance back into a coffee maker
encapsulation, C# Lab: A Day at the Races (see encapsulation)
event arguments, Connecting the dots
finalizers, Your last chance to DO something... your object’s finalizer (see finalizers)
garbage collection, If there aren’t any more references, your object gets garbage-collected
knowing when to respond, Ever wish your objects could think for themselves?
methods versus fields, An instance uses fields to keep track of things
null keyword, Where no object has gone before
object animations to animate object values, Use object animations to animate object values
object tree, XAML controls use routed events, XAML controls use routed events
object type, The variable’s type determines what kind of data it can store, When you call a method,
the arguments must be compatible with the types of the parameters

assignments to variables, parameters, or fields with, When you call a method, the arguments
must be compatible with the types of the parameters

reading entire with serialization, Serialization lets you read or write a whole object graph all at
once
references, Interface references work just like object references
reference variables, Refer to your objects with reference variables (see reference variables)
states, But what exactly IS an object’s state? What needs to be saved?
storage in heap memory, Thanks for the memory
subscribing to events, An object can subscribe to an event...
talking to other objects, Objects use references to talk to each other, Where no object has gone
before
upcasting, Upcasting works with both objects and interfaces
using each other’s fields, problem caused by, Each option should be calculated individually
using to program Navigator class (example), Mike can use objects to solve his problem, A better
solution...brought to you by objects!, A little advice for the code exercises
value types versus, Values get copied; references get assigned
versus structs, Structs are value types; objects are reference types, “Captain” Amazing...not so
much

ObservableCollection<T> collections, Two-way binding can get or set the source property, Use data
binding to build Sloppy Joe a better menu, INotifyPropertyChanged lets bound objects send updates,

Use the new keyword to create anonymous types, Create an app to explore routed events, Use
ItemsPanelTemplate to bind controls to a Canvas, Use data binding to build Sloppy Joe a better menu,
INotifyPropertyChanged lets bound objects send updates, Create an app to explore routed events, Use
ItemsPanelTemplate to bind controls to a Canvas

changes in, firing off event to tell bound controls, INotifyPropertyChanged lets bound objects send
updates, INotifyPropertyChanged lets bound objects send updates
changing properties and adding animations to controls, Use ItemsPanelTemplate to bind controls to
a Canvas, Use ItemsPanelTemplate to bind controls to a Canvas
using for MenuItems in MenuMaker project, Use data binding to build Sloppy Joe a better menu,
Use data binding to build Sloppy Joe a better menu

Observer pattern, MessageDialog uses the callback pattern
on ... equals clause, Jimmy saved a bunch of dough
OnSuspending() event handler, Add process lifetime management to Jimmy’s comics
OOP (object-oriented programming), An abstract method doesn’t have a body, Use Stream.Read() to
read bytes from a stream
OpenFileDialog control, Dialog boxes are just another WinForms control, Use file dialogs to open
and save files (all with just a few lines of code)
OpenRead() method, Use the built-in File and Directory classes to work with files and directories
OpenWrite() method, Use the built-in File and Directory classes to work with files and directories
operators, A few useful types, Combining = with an operator, #3. Namespaces and assemblies

compound, Combining = with an operator
reference for C# operators, #3. Namespaces and assemblies

optional parameters, using to set default values, Use optional parameters to set default values
orderby clause, LINQ is simple, but your queries don’t have to be, Add the new queries to Jimmy’s
app, LINQ can combine your results into groups
OriginalSource property, RoutedEventArgs object, XAML controls use routed events, XAML
controls use routed events
OR operator., ...more basics... (see | (pipe symbol), under Symbols)
OR operator (||), You can help Brian out by building a program to manage his excuses
out parameters, Use out parameters to make a method return more than one value, Pass by reference
using the ref modifier

making methods return multiple values, Use out parameters to make a method return more than one
value
use by built-in value types’ TryParse() method, Pass by reference using the ref modifier

Oven class, A CoffeeMaker is also an Appliance

OverFlowException, All exception objects inherit from Exception
overloaded constructors, The Swindler launches another diabolical plan, You can help Brian out by
building a program to manage his excuses, Create a user control to animate a picture, Create a user
control to animate a picture

excuse management program, You can help Brian out by building a program to manage his excuses
taking a Stream, The Swindler launches another diabolical plan

overloaded methods, Enums let you represent numbers with names, You can build your own
overloaded methods

building your own, You can build your own overloaded methods
overriding methods, A subclass can override methods to change or replace methods it inherited, Any
place where you can use a base class, you can use one of its subclasses instead, A subclass can hide
methods in the superclass, Use the override and virtual keywords to inherit behavior, Use the
override and virtual keywords to inherit behavior, An abstract method doesn’t have a body

abstract class methods, An abstract method doesn’t have a body
hiding versus, A subclass can hide methods in the superclass
override keyword, A subclass can override methods to change or replace methods it inherited, Any
place where you can use a base class, you can use one of its subclasses instead, Use the override
and virtual keywords to inherit behavior

using to inherit behavior, Use the override and virtual keywords to inherit behavior

P

page-based navigation, Windows Store apps, Jimmy could use some help
page header text, changing, Use properties to change how the controls look
Page object, Windows Store apps use XAML to create UI objects, Use data binding to build Sloppy
Joe a better menu, WPF applications use XAML to create UI objects, Use data binding to build
Sloppy Joe a better menu

creating instance of MenuMaker and using it for data context, Use data binding to build Sloppy Joe
a better menu, Use data binding to build Sloppy Joe a better menu

page root event handlers for swipes and taps, Respond to swipe and keyboard input
pages, XAML controls can contain text...and more, Use a data template to display objects, Finish the
stopwatch app, Use a data template to display objects

choices for design and creation of, Use a data template to display objects, Use a data template to
display objects
in MVVM applications, Finish the stopwatch app
laying out, using Graid versus StackPanel, XAML controls can contain text...and more

parameterless constructors, Use static resources to declare your objects in XAML, Modify
MenuMaker to notify you when the GeneratedDate property changes, Create a user control to animate
a picture, Use static resources to declare your objects in XAML, Modify MenuMaker to notify you
when the GeneratedDate property changes, Create a user control to animate a picture
parameters, Let’s take a closer look at your code, Mike’s Navigator class has methods to set and
modify routes, So what did you just build?, Use a constructor to initialize private fields, Use a
constructor to initialize private fields, Use a constructor to initialize private fields, Use a constructor
to initialize private fields

capitalization, Use a constructor to initialize private fields
masking fields, Use a constructor to initialize private fields, Use a constructor to initialize private
fields, Use a constructor to initialize private fields
method, Let’s take a closer look at your code

parent, How would you design a zoo simulator?
partial classes, Two classes can be in the same namespace, Use logical operators to check conditions
PascalCase, Use a constructor to initialize private fields
patterns., MessageDialog uses the callback pattern (see design patterns)
PictureBox controls, When you change things in the IDE, you’re also changing your code, You’ll need
three classes and a form, Here’s your application architecture, Here’s what your GUI should look
like, How would you design a zoo simulator?, Everything in the dungeon is a PictureBox, The form’s
UpdateCharacters() method moves the PictureBoxes into position

labs, #1 A Day at the Races, You’ll need three classes and a form, Here’s your application
architecture, Here’s what your GUI should look like
updating, The form’s UpdateCharacters() method moves the PictureBoxes into position

pictures, user control to animate, Create a user control to animate a picture, Create a user control to
animate a picture
pinch/zoom, Use semantic zoom to navigate your data
pixels, Page layout starts with controls, Use the grid system to lay out app pages, Use the grid system
to lay out app pages

in grid layout margins, Page layout starts with controls, Use the grid system to lay out app pages
use of term in XAML layout, Use the grid system to lay out app pages

PointerOver state (controls), Visual states make controls respond to changes
PointerPressed event handler, Create an app to explore routed events, Create an app to explore routed
events
polymorphism, An abstract method doesn’t have a body, Polymorphism means that one object can
take many different forms

as principle of OOP, An abstract method doesn’t have a body
popping up dialog boxes, Use built-in objects to pop up standard dialog boxes
Pressed state (controls), Visual states make controls respond to changes, Use object animations to
animate object values

animation of, Use object animations to animate object values
private access modifier, Get a little practice using interfaces, There’s more than just public and
private
private fields, Encapsulation means keeping some of the data in a class private, Use a constructor to
initialize private fields, Use a constructor to initialize private fields

declaring, Use a constructor to initialize private fields
initializing with constructors, Use a constructor to initialize private fields

private methods, But is the RealName field REALLY protected?, Use a constructor to initialize
private fields

calculating intermediate costs in Dinner Party calculator, Use a constructor to initialize private
fields

Program class, Rebuild your app for Windows Desktop, Your desktop app knows where to start

code for desktop app stored in, Your desktop app knows where to start
Main() method, Rebuild your app for Windows Desktop

Programmer Reference for C#, #3. Namespaces and assemblies
programming, C# and the Visual Studio IDE make lots of things easy, What Visual Studio does for
you..., What you’ll do next, Use the IDE to create your own method

benefits of using C# with Visual Studio IDE, C# and the Visual Studio IDE make lots of things easy
C# code, syntax for, What you’ll do next, Use the IDE to create your own method
code automatically generated by Visual Studio IDE, What Visual Studio does for you...

programs, Fill in the code for your method, Fill in the code for your method, Finish the method and
run your program, Finish the method and run your program, Where programs come from, The IDE
helps you code, Anatomy of a program, Your programs use variables to work with data, A few useful
types, Use the debugger to see your variables change, Use the debugger to see your variables change,
Loops perform an action over and over

anatomy of C# program, Anatomy of a program
breaking, restarting, and stopping in IDE, Fill in the code for your method, Finish the method and
run your program
IDE helping you code, The IDE helps you code
loops in, Loops perform an action over and over
operators in, A few useful types
origins of C# programs, Where programs come from
running, Fill in the code for your method, Finish the method and run your program
using debugger to, Use the debugger to see your variables change
using debugger to, Use the debugger to see your variables change (see variables change)
variables in, Your programs use variables to work with data

ProgressBar, Set up the grid for your page, Add controls to your grid, Use properties to change how
the controls look, Controls make the game work

adding to Windows Store app, Set up the grid for your page, Add controls to your grid
updating for Windows Store app game, Use properties to change how the controls look, Controls
make the game work

projects, When you’re doing this..., Where programs come from

creating Windows Store project, When you’re doing this...
project files (.csproj), Where programs come from

properties, Set up the grid for your page, Add controls to your grid, Some methods have a return
value, An instance uses fields to keep track of things, Properties make encapsulation easier, Use
automatic properties to finish the class, Use automatic properties to finish the class, What if we want
to change the feed multiplier?, What if we want to change the feed multiplier?, Use a constructor to
initialize private fields, Use a constructor to initialize private fields, Use a constructor to initialize
private fields, Use a constructor to initialize private fields, An interface tells a class that it must
implement certain methods and properties, You can find out if a class implements a certain interface
with “is”, Access modifiers change visibility, Keep your eyes open for polymorphism in the next
exercise!

automatic, Use automatic properties to finish the class, Keep your eyes open for polymorphism in
the next exercise!

using backing fields instead of, Keep your eyes open for polymorphism in the next exercise!
class, Some methods have a return value
get and set accessors as, Use a constructor to initialize private fields
in interfaces, You can find out if a class implements a certain interface with “is”
initializing public properties, What if we want to change the feed multiplier?
interface requiring class to implement, An interface tells a class that it must implement certain
methods and properties
making encapsulation easier, Properties make encapsulation easier
public, capitalization, Use a constructor to initialize private fields
read-only, Use automatic properties to finish the class, What if we want to change the feed
multiplier?
statements in, Use a constructor to initialize private fields
using to fix Dinner Party calculator (example), Use a constructor to initialize private fields
versus fields, Access modifiers change visibility
XAML controls, Set up the grid for your page, Add controls to your grid

Properties window, Add controls to your grid, Use properties to change how the controls look,
Controls make the game work, Controls make the game work, Make the Start button work, Make the
Start button work, Add code to make your controls interact with the player, Add code to make your
controls interact with the player, Dragging humans onto enemies ends the game, Dragging humans onto
enemies ends the game, Make your enemies look like aliens, Make your enemies look like aliens,
Rebuild your app for Windows Desktop

event handlers, Make the Start button work, Add code to make your controls interact with the
player
Search box using to find XAML properties, Controls make the game work
Search box, using to find XAML properties, Controls make the game work
switching between event handlers and properties in, Make the Start button work, Add code to make
your controls interact with the player
switching between events and properties in, Dragging humans onto enemies ends the game, Make
your enemies look like aliens
transforms, Dragging humans onto enemies ends the game, Make your enemies look like aliens
using to change controls in Windows Store apps, Add controls to your grid, Use properties to
change how the controls look
using to set up Windows Desktop app controls, Rebuild your app for Windows Desktop

PropertyChanged event, INotifyPropertyChanged lets bound objects send updates, Modify
MenuMaker to notify you when the GeneratedDate property changes, INotifyPropertyChanged lets
bound objects send updates, Modify MenuMaker to notify you when the GeneratedDate property
changes

raising, Modify MenuMaker to notify you when the GeneratedDate property changes, Modify
MenuMaker to notify you when the GeneratedDate property changes

protected access modifier, There’s more than just public and private
protected keyword, Access modifiers change visibility
public access modifier, Two classes can be in the same namespace, There’s more than just public and
private, ...so what did I just do?

classes, Two classes can be in the same namespace
public fields, A few ideas for encapsulating classes, What if we want to change the feed multiplier?

initializing, What if we want to change the feed multiplier?
public interfaces, Use the interface keyword to define an interface
public methods, Private fields and methods can only be accessed from inside the class, A few ideas
for encapsulating classes, Use a constructor to initialize private fields

accessing private fields, Private fields and methods can only be accessed from inside the class
capitalization, Use a constructor to initialize private fields

public properties, What if we want to change the feed multiplier?, Use a constructor to initialize
private fields

capitalization, Use a constructor to initialize private fields
initializing, What if we want to change the feed multiplier?

public void method, Get a little practice using interfaces
Publisher-Subscriber pattern, MessageDialog uses the callback pattern
publishing apps to Windows Store, Publish your app

Q

queries, LINQ makes queries easy, LINQ is simple, but your queries don’t have to be, Start building
Jimmy an app, LINQ is versatile, Use join to combine two collections into one sequence, Add
semantic zoom to Jimmy’s app

anatomy of, LINQ is simple, but your queries don’t have to be
editing with LINQPad, Add semantic zoom to Jimmy’s app
LINQ, LINQ makes queries easy, LINQ is versatile, Use join to combine two collections into one
sequence

using join to combine two collections into one query, Use join to combine two collections into
one sequence

query manager class, Start building Jimmy an app
query detail page, Use the new keyword to create anonymous types
queues, And yet MORE collection types..., A queue is FIFO — First In, First Out, A queue is FIFO —
First In, First Out, A stack is LIFO — Last In, First Out, A stack is LIFO — Last In, First Out

converting to lists, A stack is LIFO — Last In, First Out
enqueuing and dequeuing, A queue is FIFO — First In, First Out
FIFO (First In, First Out), A queue is FIFO — First In, First Out
foreach loop, A stack is LIFO — Last In, First Out

R

\r (return character), Build a program that uses a dictionary, Things you can do with Directory:
Racetrack Simulator project., Here’s what your GUI should look like (see labs, #1 A Day at the
Races)
Random class, Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!, Enums let you
represent numbers with names

Next() method, Enums let you represent numbers with names
randomizing results, Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!
random numbers, generation of, Private fields and methods can only be accessed from inside the class
readonly keyword, Use ItemsPanelTemplate to bind controls to a Canvas, Use ItemsPanelTemplate to
bind controls to a Canvas

read-only properties, Use automatic properties to finish the class, What if we want to change the feed
multiplier?, Use a constructor to initialize private fields

Cost property, Dinner Party calculator, Use a constructor to initialize private fields
ReadTextAsync() method, Use the FileIO class to read and write files
receivers of events, connecting with senders, Connecting event senders with event listeners
Rectangle controls, Controls make the game work, Controls make the game work, Controls make the
game work, Controls make the game work

adding to Canvas, Controls make the game work, Controls make the game work
turning into diamond by rotating, Controls make the game work, Controls make the game work

rectangles, The form brings it all together

using for Game boundaries, The form brings it all together
refactoring, #8. Refactoring
references., Refer to your objects with reference variables, You can’t instantiate an interface, but you
can reference an interface, Interface references work just like object references, Access modifiers
change visibility, Values get copied; references get assigned, Pass by reference using the ref modifier

(see also reference variables)
interface, You can’t instantiate an interface, but you can reference an interface
object, Interface references work just like object references
object versus interface, Access modifiers change visibility
passing by reference using ref modifier, Pass by reference using the ref modifier
versus values, Values get copied; references get assigned

reference variables, Refer to your objects with reference variables, References are like labels for
your object, If there aren’t any more references, your object gets garbage-collected, Multiple
references and their side effects, Two references means TWO ways to change an object’s data,
Arrays can contain a bunch of reference variables, too, Objects use references to talk to each other,
Where no object has gone before, Controls are objects, just like any other object, Any place where
you can use a base class, you can use one of its subclasses instead, Any place where you can use a
base class, you can use one of its subclasses instead, Upcasting and downcasting work with
interfaces, too, Polymorphism means that one object can take many different forms, Polymorphism
means that one object can take many different forms, Connecting event senders with event listeners

arrays of, Arrays can contain a bunch of reference variables, too
assigning to instance of subclasses, Any place where you can use a base class, you can use one of
its subclasses instead
for controls, Controls are objects, just like any other object
garbage collection, If there aren’t any more references, your object gets garbage-collected
how they work, Where no object has gone before
interface type, pointing to object implementing interface, Polymorphism means that one object can
take many different forms
multiple references to single object, References are like labels for your object, Multiple references
and their side effects, Two references means TWO ways to change an object’s data, Upcasting and
downcasting work with interfaces, too

accessing different methods and properties, Upcasting and downcasting work with interfaces,
too
side effects of, Multiple references and their side effects
unintentional changes, Two references means TWO ways to change an object’s data

objects talking to other objects, Objects use references to talk to each other
setting equal to instance of different class, Polymorphism means that one object can take many
different forms
substituting subclass reference in place of base class, Any place where you can use a base class,
you can use one of its subclasses instead

ref keyword, Pass by reference using the ref modifier
reimbursement calculator for mileage, When you call a method, the arguments must be compatible
with the types of the parameters
Remote Debugger, using to sideload your app, Use the Remote Debugger to sideload your app
remote debugging, starting, Start remote debugging
reserved words, When you call a method, the arguments must be compatible with the types of the
parameters, Where no object has gone before, Controls are objects, just like any other object
return statement, Let’s take a closer look at your code, Mike’s Navigator class has methods to set and
modify routes, Some methods have a return value
return type, Mike’s Navigator class has methods to set and modify routes, Some methods have a return
value
return value, Let’s take a closer look at your code, Mike’s Navigator class has methods to set and
modify routes
risky code, , What happens when a method you want to call is risky?
RoboBee class, The RoboBee 4000 can do a worker bee’s job without using valuable honey

robust, Uh oh — the code’s still got problems..., What happens when a method you want to call is
risky?, If you have code that ALWAYS should run, use a finally block, Nullable types help you make
your programs more robust, Uh-oh — the code’s still got problems..., What happens when a method
you want to call is risky?
rotations, Controls make the game work, Controls make the game work
RoutedEventArgs object, XAML controls use routed events, XAML controls use routed events
routed events, XAML controls use routed events, Create an app to explore routed events, User
controls let you create your own controls, XAML controls use routed events, Create an app to explore
routed events

creating Windows Store app to explore, Create an app to explore routed events, Create an app to
explore routed events
user controls, User controls let you create your own controls

rows and columns, resizing in Windows Store app page, Rows and columns can resize to match the
page size, Use the grid system to lay out app pages, Use the grid system to lay out app pages, Rows
and columns can resize to match the page size

Auto setting, Use the grid system to lay out app pages
using * for row height or column width, Use the grid system to lay out app pages

RSS feed, LINQ to XML, Save and load XML files

S

SaveFileDialog control, Dialog boxes are objects, too, Use file dialogs to open and save files (all
with just a few lines of code), Use file dialogs to open and save files (all with just a few lines of
code)

Title property, Use file dialogs to open and save files (all with just a few lines of code)
sbyte type, The variable’s type determines what kind of data it can store
scope, Access modifiers change visibility
ScrollViewer controls, Page layout starts with controls, XAML controls can contain text...and more,
Page layout starts with controls

nesting only single control in, XAML controls can contain text...and more
Windows Store Go Fish! app page, Page layout starts with controls, Page layout starts with
controls

sealed access modifier, There’s more than just public and private
sealed keyword, Extension methods add new behavior to EXISTING classes
select clause, Add the new queries to Jimmy’s app, Jimmy saved a bunch of dough
selecting and deselecting controls for editing, Add controls to your grid, Use properties to change

how the controls look
SelectionChanged event handler, Use the new keyword to create anonymous types
select new clause, Use join to combine two collections into one sequence, Jimmy saved a bunch of
dough
Selector class, Use ItemsPanelTemplate to bind controls to a Canvas, Use ItemsPanelTemplate to bind
controls to a Canvas
semantic zoom control, Use semantic zoom to navigate your data, Use semantic zoom to navigate your
data, Add semantic zoom to Jimmy’s app

adding to comic books management app, Add semantic zoom to Jimmy’s app
basic XAML pattern for, Use semantic zoom to navigate your data

senders of events, connecting with receivers, Connecting event senders with event listeners
separation of concerns, Use a constructor to initialize private fields, Now you’re ready to finish the
job for Kathleen!
sequences, LINQ is versatile, LINQ is versatile

defined, LINQ is versatile
Serializable attribute, If you want your class to be serializable, mark it with the [Serializable]
attribute
serialization, Add an overloaded Deck() constructor that reads a deck of cards in from a file, What
happens to an object when it’s serialized?, But what exactly IS an object’s state? What needs to be
saved?, When an object is serialized, all of the objects it refers to get serialized, too..., Serialization
lets you read or write a whole object graph all at once, If you want your class to be serializable, mark
it with the [Serializable] attribute, Let’s serialize and deserialize a deck of cards, Let’s serialize and
deserialize a deck of cards, You can read and write serialized files manually, too, Find where the
files differ, and use that information to alter them, Build a slightly less simple text editor, Finalizers
can’t depend on stability, Make an object serialize itself in its Dispose()

data contract, Build a slightly less simple text editor
finalizers and, Finalizers can’t depend on stability
finding where serialized files differ and altering them, Find where the files differ, and use that
information to alter them
making classes serializable, If you want your class to be serializable, mark it with the
[Serializable] attribute
making object serialize in Dispose() method, Make an object serialize itself in its Dispose()
object states, But what exactly IS an object’s state? What needs to be saved?
reading and writing serialized files manually, You can read and write serialized files manually, too
reading entire object, Serialization lets you read or write a whole object graph all at once
serializing and deserializing deck of cards, Let’s serialize and deserialize a deck of cards
serializing objects out to file, Let’s serialize and deserialize a deck of cards
what happens to objects, What happens to an object when it’s serialized?, When an object is
serialized, all of the objects it refers to get serialized, too...

SerializationException, Uh oh — the code’s still got problems..., Uh oh — the code’s still got
problems..., Use the debugger to follow the try/catch flow, Uh-oh — the code’s still got problems...,
Uh-oh — the code’s still got problems...

BinaryFormatter, Uh oh — the code’s still got problems..., Uh-oh — the code’s still got problems...
set accessor, Properties make encapsulation easier, Use a constructor to initialize private fields, Get
a little practice using interfaces, You can find out if a class implements a certain interface with “is”

interface properties, You can find out if a class implements a certain interface with “is”
interfaces with get accessor without set accssor, Get a little practice using interfaces

Settings charm, Use delegates to use the Windows settings charm, Use the Settings charm to open a
SettingsFlyout

using to open About popup, Use the Settings charm to open a SettingsFlyout
SettingsPane class, Use delegates to use the Windows settings charm
short-circuit operators, ...more basics...
short type, The variable’s type determines what kind of data it can store, A variable is like a data to-
go cup, 10 pounds of data in a 5-pound bag
ShowDialog() method, Use built-in objects to pop up standard dialog boxes, Dialog boxes are
objects, too
signature (method), Use a constructor to initialize private fields
similar behaviors, When your classes use inheritance, you only need to write your code once

similar code, When your classes use inheritance, you only need to write your code once
simulator in Visual Studio, running Windows Store apps, Build Brian a new Excuse Manager app
skew transforms, Dragging humans onto enemies ends the game, Make your enemies look like aliens
Sloppy Joe’s Random Menu Item project, Welcome to Sloppy Joe’s Budget House o’ Discount
Sandwiches!, Use data binding to build Sloppy Joe a better menu

building better menu with data binding, Use data binding to build Sloppy Joe a better menu
Solution Explorer, What Visual Studio does for you..., The IDE helps you code, The IDE helps you
code, When you change things in the IDE, you’re also changing your code

Form designer, When you change things in the IDE, you’re also changing your code
showing everything in a project, The IDE helps you code
switching between open project files, The IDE helps you code

solutions (.sln files), created by IDE, Where programs come from
SortBy field, IComparer can do complex comparisons
Sort() method, Lists are easy, but SORTING can be tricky
Source property, getting or setting with two way binding, Two-way binding can get or set the source
property
Source property, Image control, animating, Create a user control to animate a picture, Create a user
control to animate a picture
spec (specification), The Spec: Build a Racetrack Simulator, Build a program that uses a dictionary

building a racetrack simulator, The Spec: Build a Racetrack Simulator
splash screen, adding to a program, Add a splash screen and a tile
Split App template, creating project with, The IDE’s Split App template helps you build apps for
navigating data, The IDE’s Split App template helps you build apps for navigating data, The IDE’s
Split App template helps you build apps for navigating data, The IDE’s Split App template helps you
build apps for navigating data, The IDE’s Split App template helps you build apps for navigating data

adding images files to Assets folder, The IDE’s Split App template helps you build apps for
navigating data
modifying code-behind in ItemsPage.xaml.cs, The IDE’s Split App template helps you build apps
for navigating data
modifying code-behind in SplitPage.xaml.cs, The IDE’s Split App template helps you build apps
for navigating data
modifying SplitPage.xaml to show comic book details, The IDE’s Split App template helps you
build apps for navigating data

sprites, Use ItemsPanelTemplate to bind controls to a Canvas, Use ItemsPanelTemplate to bind

controls to a Canvas
Spy project, Use encapsulation to control access to your class’s methods and fields
stack, And yet MORE collection types..., A stack is LIFO — Last In, First Out, A stack is LIFO —
Last In, First Out, A stack is LIFO — Last In, First Out, A stack is LIFO — Last In, First Out, The
stack vs. the heap: more on memory, Nullable types help you make your programs more robust

converting to lists, A stack is LIFO — Last In, First Out
foreach loop, A stack is LIFO — Last In, First Out
LIFO (Last In, First Out), A stack is LIFO — Last In, First Out
popping items off, A stack is LIFO — Last In, First Out
versus heap, The stack vs. the heap: more on memory

StackPanel, Here’s what you’re going to build, Start with a blank application, Use properties to
change how the controls look, Controls make the game work, Controls make the game work, Add
code to make your controls interact with the player, Redesign the Go Fish! form as a Windows Store
app page, Page layout starts with controls, Rows and columns can resize to match the page size, Use
the grid system to lay out app pages, XAML controls can contain text...and more, XAML controls can
contain text...and more, Use data binding to build Sloppy Joe a better menu, Use data binding to build
Sloppy Joe a better menu, Use static resources to declare your objects in XAML, Use a data template
to display objects, Create the main page for the Excuse Manager, Rows and columns can resize to
match the page size, Use data binding to build Sloppy Joe a better menu, Use data binding to build
Sloppy Joe a better menu, Use static resources to declare your objects in XAML, Use a data template
to display objects

adding human to Windows Store app game, Controls make the game work
DataContext property, setting, Use data binding to build Sloppy Joe a better menu, Use static
resources to declare your objects in XAML, Use data binding to build Sloppy Joe a better menu,
Use static resources to declare your objects in XAML
Excuse Manager project, Create the main page for the Excuse Manager
Grid layout versus, XAML controls can contain text...and more
using Document Outline to modify, Controls make the game work
using to group TextBlock and ContentControl, Use properties to change how the controls look

StackPanel controls adding human to Windows Store app game, Controls make the game work
using Document Outline to modify, Use properties to change how the controls look
using to group TextBlock and ContentControl, Add controls to your grid
StackTrace property, Exception class, All exception objects inherit from Exception
stars and bees, program that animates, Use ItemsPanelTemplate to bind controls to a Canvas, Use
ItemsPanelTemplate to bind controls to a Canvas
Start button making it start the program, Add timers to manage the gameplay

Start button, making it start the program, Make the Start button work
Start Debugging button, Use the debugger to see your variables change
start tags, What Visual Studio does for you...
state, User controls let you create your own controls, MVVM means thinking about the state of the
app, Events alert the rest of the app to state changes, Finish the stopwatch app

changes in, stopwatch app, Events alert the rest of the app to state changes
code related to timing, Finish the stopwatch app
thinking about, in MVVM, MVVM means thinking about the state of the app

statements, Let’s take a closer look at your code, Loops perform an action over and over, Make each
button do something, Use logical operators to check conditions, Use logical operators to check
conditions

defined, Let’s take a closer look at your code
ending with ; (semicolon), Make each button do something
important points about, Use logical operators to check conditions
in loops, Loops perform an action over and over

static keyword, A little advice for the code exercises, Let’s create some instances!

instance creation and, Let’s create some instances!
static methods, A little advice for the code exercises, A little advice for the code exercises

when to use, A little advice for the code exercises
static resources in XAML, Use static resources to declare your objects in XAML, Use a data template
to display objects, Modify MenuMaker to notify you when the GeneratedDate property changes, Use
static resources to declare your objects in XAML, Use a data template to display objects, Modify
MenuMaker to notify you when the GeneratedDate property changes
Step Over (Debug), Use the debugger to see your variables change
stopwatch app, The ref needs a stopwatch, Events alert the rest of the app to state changes, Build the
view for a simple stopwatch, Add the stopwatch ViewModel, Finish the stopwatch app, Converters
automatically convert values for binding, Build an analog stopwatch using the same ViewModel,
Build the view for a simple stopwatch, Finish the stopwatch app, Converters automatically convert
values for binding, Build an analog stopwatch using the same ViewModel

building analog stopwatch using same ViewModel, Build an analog stopwatch using the same
ViewModel, Build an analog stopwatch using the same ViewModel
converters converting values for binding, Converters automatically convert values for binding,
Converters automatically convert values for binding
events in Model alerting app to state changes, Events alert the rest of the app to state changes
finishing touches, Finish the stopwatch app, Finish the stopwatch app
View, Build the view for a simple stopwatch, Build the view for a simple stopwatch
ViewModel, Add the stopwatch ViewModel

Storyboard object, Create a user control to animate a picture, Create a user control to animate a
picture, Make your bees fly around a page, Create a user control to animate a picture, Create a user
control to animate a picture, Make your bees fly around a page

Begin() method, Create a user control to animate a picture, Create a user control to animate a
picture
garbage collection for, Make your bees fly around a page, Make your bees fly around a page
SetTarget() and SetTargetProperty() methods, Create a user control to animate a picture, Create a
user control to animate a picture

Storyboard tags, Visual states make controls respond to changes, Use object animations to animate
object values

Pressed storyboard, adding animation to, Use object animations to animate object values
Stream object, .NET uses streams to read and write data, Use Stream.Read() to read bytes from a
stream

Read() method, Use Stream.Read() to read bytes from a stream
StreamReader, The Swindler launches another diabolical plan, Things you can do with Directory:,
StreamReader and StreamWriter will do just fine (for now), Use Stream.Read() to read bytes from a
stream

hex dump, StreamReader and StreamWriter will do just fine (for now)
versus FileStreams, Use Stream.Read() to read bytes from a stream

streams, .NET uses streams to read and write data, Different streams read and write different things,
Different streams read and write different things, A FileStream reads and writes bytes to a file, Write
text to a file in three simple steps, Data can go through more than one stream, Things you can do with
Directory:, Avoid filesystem errors with using statements, Avoid filesystem errors with using
statements, Let’s serialize and deserialize a deck of cards, Use file streams to build a hex dumper,
Use Stream.Read() to read bytes from a stream

chaining, Data can go through more than one stream
closing, Things you can do with Directory:
different types, Different streams read and write different things
Dispose() method, Avoid filesystem errors with using statements
forgetting to close, A FileStream reads and writes bytes to a file
reading bytes from, using Stream.Read(), Use Stream.Read() to read bytes from a stream
serializing objects to, Let’s serialize and deserialize a deck of cards
things you can do with, Different streams read and write different things
using file streams to build hex dumper, Use file streams to build a hex dumper
using statements, Avoid filesystem errors with using statements
writing text to files, Write text to a file in three simple steps

StreamWriter, Write text to a file in three simple steps, Write text to a file in three simple steps, Write
text to a file in three simple steps, The Swindler launches another diabolical plan, The Swindler
launches another diabolical plan, Things you can do with Directory:, Things you can do with
Directory:, StreamReader and StreamWriter will do just fine (for now), Use Stream.Read() to read
bytes from a stream

{0} and {1}, passing variables to strings, Things you can do with Directory:
Close() method, Write text to a file in three simple steps
hex dump, StreamReader and StreamWriter will do just fine (for now)
using with StreamReader, The Swindler launches another diabolical plan
versus FileStreams, Use Stream.Read() to read bytes from a stream
Write() and WriteLine() methods, Write text to a file in three simple steps, The Swindler launches
another diabolical plan

StringBuilder class, #3. Namespaces and assemblies
string concatenation operator (+), When you cast a value that’s too big, C# will adjust it
automatically, #3. Namespaces and assemblies

converting numbers or Booleans to strings, When you cast a value that’s too big, C# will adjust it
automatically

String.IsNullOrEmpty(), How you’ll build the beehive management system
string literals, Write text to a file in three simple steps, Things you can do with Directory:
String.PadLeft() method, ...more basics...
strings, A few useful types, C# does some casting automatically, You’re going to build a program for
Kathleen, Strings don’t always work for storing categories of data, Things you can do with
Directory:, Add an overloaded Deck() constructor that reads a deck of cards in from a file, .NET uses

Unicode to store characters and text, StreamReader and StreamWriter will do just fine (for now),
StreamReader and StreamWriter will do just fine (for now), Extending a fundamental type: string

concatenating, automatic type conversions with + operator, C# does some casting automatically
concatenation operator (+), A few useful types
converting numbers to, StreamReader and StreamWriter will do just fine (for now)
converting to byte array, Things you can do with Directory:
extension methods, Extending a fundamental type: string
formatting, You’re going to build a program for Kathleen
splitting, Add an overloaded Deck() constructor that reads a deck of cards in from a file
storage of data in memory as Unicode, .NET uses Unicode to store characters and text
storing categories of data, Strings don’t always work for storing categories of data
Substring() method, StreamReader and StreamWriter will do just fine (for now)

string type, You have to assign values to variables before you use them, The variable’s type
determines what kind of data it can store, A variable is like a data to-go cup, C# does some casting
automatically, When you call a method, the arguments must be compatible with the types of the
parameters

converting other types to, C# does some casting automatically
structs, A struct looks like an object..., Structs are value types; objects are reference types, Structs are
value types; objects are reference types, The stack vs. the heap: more on memory, Nullable types help
you make your programs more robust, Nullable types help you make your programs more robust,
“Captain” Amazing...not so much

boxed, The stack vs. the heap: more on memory, “Captain” Amazing...not so much
setting one equal to another, Structs are value types; objects are reference types, Nullable types
help you make your programs more robust
versus classes, Nullable types help you make your programs more robust
versus objects, Structs are value types; objects are reference types

styles, Styles set properties on multiple controls

altering appearance of a type of control, Styles set properties on multiple controls
subclasses, When your classes use inheritance, you only need to write your code once, How would
you design a zoo simulator?, How would you design a zoo simulator?, Create the class hierarchy, Use
a colon to inherit from a base class, We know that inheritance adds the base class fields, properties,
and methods to the subclass..., We know that inheritance adds the base class fields, properties, and
methods to the subclass..., A subclass can override methods to change or replace methods it inherited,
Any place where you can use a base class, you can use one of its subclasses instead, Any place where
you can use a base class, you can use one of its subclasses instead, Any place where you can use a

base class, you can use one of its subclasses instead, A subclass can hide methods in the superclass,
A subclass can access its base class using the base keyword, When a base class has a constructor,
your subclass needs one, too, Upcasting works with both objects and interfaces, Polymorphism means
that one object can take many different forms

avoiding duplicate code, using inheritance, How would you design a zoo simulator?
child and, How would you design a zoo simulator?
constructors, When a base class has a constructor, your subclass needs one, too
hiding superclass methods, A subclass can hide methods in the superclass
inheriting from base class, Use a colon to inherit from a base class
modifying, We know that inheritance adds the base class fields, properties, and methods to the
subclass...
overriding inherited methods, A subclass can override methods to change or replace methods it
inherited
passing instance of, Any place where you can use a base class, you can use one of its subclasses
instead
upcasting, Upcasting works with both objects and interfaces, Polymorphism means that one object
can take many different forms
using instead of base classes, Any place where you can use a base class, you can use one of its
subclasses instead

subtraction operator., How would you design a zoo simulator? (see - (minus sign), under Symbols
superclass)
Suspending event, Windows Store apps, Windows Store apps use events for process lifetime
management, Add process lifetime management to Jimmy’s comics

modifying OnSuspending() event handler, Add process lifetime management to Jimmy’s comics
SuspensionManager class, Add process lifetime management to Jimmy’s comics
swipes and taps, handling in Invaders game, Respond to swipe and keyboard input, Handling user
input
switch statements, Use a switch statement to choose the right option, Add an overloaded Deck()
constructor that reads a deck of cards in from a file

building new constructors with, Add an overloaded Deck() constructor that reads a deck of cards
in from a file

System.ComponentModel namespace, Modify MenuMaker to notify you when the GeneratedDate
property changes, Modify MenuMaker to notify you when the GeneratedDate property changes
System.Diagnostics.Debug.WriteLine(), Windows Forms use an object graph set up by the IDE
System.IO.File class, Use the FileIO class to read and write files

System namespace, Use logical operators to check conditions
System.Runtime.Serialization namespace, A data contract is an abstract definition of your object’s
data
System.Windows.Form class, Use the IDE to explore the object graph
System.Windows.Forms.Control class, Use the IDE to explore the object graph
System.Windows.Forms namespace, Your desktop app knows where to start, Some methods have a
return value, Create a project for your guys, Use a constructor to initialize private fields

T

\t (tab character), The variable’s type determines what kind of data it can store, Write text to a file in
three simple steps, Things you can do with Directory:
TabControl, We need a BirthdayParty class, Build the Part y Planner version 2.0
TableLayoutPanel, Use file dialogs to open and save files (all with just a few lines of code),
Everything in the dungeon is a PictureBox, Windows Forms use an object graph set up by the IDE

Controls property, Windows Forms use an object graph set up by the IDE
TabPages property, Build the Part y Planner version 2.0
tags, XAML, What Visual Studio does for you...
Take statement, Add the new queries to Jimmy’s app
taps, page root event handlers for, Respond to swipe and keyboard input
target portal player will drag human into (game example), Controls make the game work, Controls
make the game work
Task class (or Task<T>), Use a Task to call one async method from another
templates., Use properties to change how the controls look, Controls make the game work, Controls
make the game work, Dragging humans onto enemies ends the game, Make your enemies look like
aliens

(see also names of individual templates throughout)
creating enemy template for Windows Store app game, Use properties to change how the controls
look, Controls make the game work
editing for enemy aliens (example), Dragging humans onto enemies ends the game, Make your
enemies look like aliens

TextBlock controls, Add controls to your grid, Use properties to change how the controls look, Use
properties to change how the controls look, Controls make the game work, Controls make the game
work, Controls make the game work, if/else statements make decisions, Make each button do
something, Make each button do something, Use logical operators to check conditions, Page layout
starts with controls, Data binding connects your XAML pages to your classes, Data binding connects
your XAML pages to your classes, Use data binding to build Sloppy Joe a better menu, Build an app

from the ground up, Page layout starts with controls, Use data binding to build Sloppy Joe a better
menu

binding path, Data binding connects your XAML pages to your classes
changing text and style in Windows Store app, Add controls to your grid, Use properties to change
how the controls look
data binding to properties in MenuMaker (example), Use data binding to build Sloppy Joe a better
menu, Use data binding to build Sloppy Joe a better menu
data context, Data binding connects your XAML pages to your classes
Game Over text for Windows Store app, Controls make the game work, Controls make the game
work
Style property, if/else statements make decisions, Build an app from the ground up
updating by pressing buttons, Make each button do something
using Document Outline to modify, Use properties to change how the controls look, Controls make
the game work
Windows Store Go Fish! app page, Page layout starts with controls, Page layout starts with
controls

TextBox controls, So what did you just build?, Build the Part y Planner version 2.0, Build the Part y
Planner version 2.0, Use data binding to build Sloppy Joe a better menu, Use data binding to build
Sloppy Joe a better menu, Build a slightly less simple text editor, Use data binding to build Sloppy
Joe a better menu, Use data binding to build Sloppy Joe a better menu

Birthday Party project, Build the Part y Planner version 2.0, Build the Part y Planner version 2.0

adding TexChanged event handler, Build the Part y Planner version 2.0
Text property, using to modify text, Build a slightly less simple text editor
two-way data binding, Use data binding to build Sloppy Joe a better menu, Use data binding to
build Sloppy Joe a better menu, Use data binding to build Sloppy Joe a better menu, Use data
binding to build Sloppy Joe a better menu

TextChanged event handler, Build the Part y Planner version 2.0, Build a slightly less simple text
editor, Build a slightly less simple text editor
text editors, Build a slightly less simple text editor

building less simple editor, Build a slightly less simple text editor
Text property, XAML controls, XAML controls can contain text...and more, XAML controls can
contain text...and more
this keyword, Objects use references to talk to each other, Initialize your arrays of Greyhound and
Guy objects, Use a constructor to initialize private fields, Use a constructor to initialize private
fields, Access modifiers change visibility, Extension methods add new behavior to EXISTING
classes, Use a standard name when you add a method to raise an event

distinguishing fields from parameters with same name, Use a constructor to initialize private fields,
Use a constructor to initialize private fields
in extension method’s first parameter, Extension methods add new behavior to EXISTING classes
labs, #1 A Day at the Races, Initialize your arrays of Greyhound and Guy objects
using to raise event, Use a standard name when you add a method to raise an event

this variable, Where no object has gone before
threading, #4. Use BackgroundWorker to make your WinForms responsive
throw, using to rethrow exceptions, Use more than one catch block to handle multiple types of
exceptions, Bees need an OutOfHoney exception
tiles, Add a splash screen and a tile
TimeNumberFormatConverter class, Converters automatically convert values for binding, Converters
automatically convert values for binding
timers, Here’s what you’ve done so far, Add timers to manage the gameplay, Controls are objects,
just like any other object

adding to manage gameplay, Here’s what you’ve done so far, Add timers to manage the gameplay
LabelBouncer animation (example), Controls are objects, just like any other object

Title property, SaveFileDialog, Dialog boxes are objects, too, Use file dialogs to open and save files
(all with just a few lines of code)
ToggleSwitch controls, Create an app to explore routed events
Toolbox window, What Visual Studio does for you..., Set up the grid for your page, Set up the grid for
your page, Add controls to your grid, Add controls to your grid, Rebuild your app for Windows
Desktop

ALL XAML Controls section, Set up the grid for your page, Add controls to your grid
Common XAML Controls section, Set up the grid for your page, Add controls to your grid
expanding, Rebuild your app for Windows Desktop

ToString() method, C# does some casting automatically, You’re going to build a program for
Kathleen, Enums let you represent numbers with names, Overriding a ToString() method lets an object
describe itself, Update your foreach loops to let your Ducks and Cards print themselves

adding to Card object (example), Update your foreach loops to let your Ducks and Cards print
themselves
overriding and letting object describe itself, Overriding a ToString() method lets an object
describe itself

transforms, Controls make the game work, Controls make the game work, Dragging humans onto
enemies ends the game, Make your enemies look like aliens, Build an analog stopwatch using the
same ViewModel, Build an analog stopwatch using the same ViewModel

hands on analog stopwatch, Build an analog stopwatch using the same ViewModel, Build an analog
stopwatch using the same ViewModel
performing in Properties window, Dragging humans onto enemies ends the game, Make your
enemies look like aliens
rotating Rectangle 45 degrees, Controls make the game work, Controls make the game work

try blocks, Handle exceptions with try and catch, Handle exceptions with try and catch, What happens
when a method you want to call is risky?, Bees need an OutOfHoney exception
try blocks, What happens when a method you want to call is risky?, Use the debugger to follow the
try/catch flow, Bees need an OutOfHoney exception, Use the debugger to follow the try/catch flow

(see also exception handling)
following in debugger, Use the debugger to follow the try/catch flow, Use the debugger to follow
the try/catch flow
getting with using statements, Bees need an OutOfHoney exception

try/catch/finally sequence for error handling, If you have code that ALWAYS should run, use a finally
block

(see also exception handling)
try/finally block, Exception avoidance: implement IDisposable to do your own cleanup

(see also exception handling)
two-way data binding, Two-way binding can get or set the source property, Use data binding to build
Sloppy Joe a better menu, Use data binding to build Sloppy Joe a better menu

TextBox control in MenuMaker project, Use data binding to build Sloppy Joe a better menu, Use
data binding to build Sloppy Joe a better menu

type argument, Generics can store any type
Type class and GetType() method, #5. The Type class and GetType()
typeof keyword, Use the IDE to explore app page navigation
types, , Your programs use variables to work with data, You have to assign values to variables
before you use them, Mike’s Navigator class has methods to set and modify routes, The variable’s
type determines what kind of data it can store, The variable’s type determines what kind of data it can
store, The variable’s type determines what kind of data it can store, The variable’s type determines
what kind of data it can store, The variable’s type determines what kind of data it can store, The
variable’s type determines what kind of data it can store, A variable is like a data to-go cup, Even
when a number is the right size, you can’t just assign it to any variable, C# does some casting
automatically, When you call a method, the arguments must be compatible with the types of the
parameters, Refer to your objects with reference variables, Multiple references and their side effects,
A special case: arrays, Where no object has gone before, Generics can store any type, A delegate
STANDS IN for an actual method

arguments, compatibility with types of parameters, When you call a method, the arguments must be
compatible with the types of the parameters
arrays, A special case: arrays
automatic casting in C#, C# does some casting automatically
char, The variable’s type determines what kind of data it can store
common types in C#, The variable’s type determines what kind of data it can store
delegate, A delegate STANDS IN for an actual method
different types holding different-sized values, Where no object has gone before
for whole numbers, The variable’s type determines what kind of data it can store
generic, Generics can store any type
int, string, and bool types, You have to assign values to variables before you use them
literals, The variable’s type determines what kind of data it can store
multiple references and their side effects, Multiple references and their side effects
object, The variable’s type determines what kind of data it can store
referring to objects with reference variables, Refer to your objects with reference variables
return type, Mike’s Navigator class has methods to set and modify routes
storing really huge and really tiny numbers, The variable’s type determines what kind of data it can
store
value types, Even when a number is the right size, you can’t just assign it to any variable
variable, Your programs use variables to work with data, A variable is like a data to-go cup

typing game, building, Build a typing game

U

UICommandInvokedHandler, Use delegates to use the Windows settings charm
UICommand object, Windows Store apps use await to be more responsive
UIElement base class, Use ItemsPanelTemplate to bind controls to a Canvas, Use ItemsPanelTemplate
to bind controls to a Canvas
uint type, The variable’s type determines what kind of data it can store
UI (user interface), C# and the Visual Studio IDE make lots of things easy, UI controls can be
instantiated with C# code, too, UI controls can be instantiated with C# code, too

creating controls with C# code, UI controls can be instantiated with C# code, too, UI controls can
be instantiated with C# code, too
creating using Visual Designer, C# and the Visual Studio IDE make lots of things easy

ulong type, The variable’s type determines what kind of data it can store
Undo command undoing changes to controls, Add controls to your grid
Undo command (IDE), Use properties to change how the controls look, Use logical operators to
check conditions

undoing changes to controls, Use properties to change how the controls look
unexpected input, What happens when a method you want to call is risky?, What happens when a
method you want to call is risky?
unhandled exceptions, Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse
Manager, If you have code that ALWAYS should run, use a finally block

versus exceptions, If you have code that ALWAYS should run, use a finally block
Unicode, Build a program that uses a dictionary, Let’s serialize and deserialize a deck of cards, .NET
uses Unicode to store characters and text, Use Stream.Read() to read bytes from a stream, XAML
controls can contain text...and more

converting text to, .NET uses Unicode to store characters and text
units, device-independent, Use the grid system to lay out app pages
upcasting, Upcasting works with both objects and interfaces, Upcasting and downcasting work with
interfaces, too, Upcasting and downcasting work with interfaces, too, Polymorphism means that one
object can take many different forms, You can upcast an entire list using IEnumerable

but not downcasting, Upcasting and downcasting work with interfaces, too
entire list, using IEnumerable<T>, You can upcast an entire list using IEnumerable
interfaces, Upcasting and downcasting work with interfaces, too
using subclass instead of base class, Polymorphism means that one object can take many different
forms

Up Close, access modifiers, Access modifiers change visibility
user controls, User controls let you create your own controls, User controls let you create your own
controls, User controls let you create your own controls, Build the view for a simple stopwatch,
Finish the stopwatch app, Build an analog stopwatch using the same ViewModel, Create a user
control to animate a picture, Build the view for a simple stopwatch, Finish the stopwatch app, Build
an analog stopwatch using the same ViewModel, Create a user control to animate a picture

AnalogStopwatch, Build an analog stopwatch using the same ViewModel, Build an analog
stopwatch using the same ViewModel
AnimatedImage, Create a user control to animate a picture, Create a user control to animate a
picture
objects extending UserControl base class, User controls let you create your own controls
stopwatch app, Build the view for a simple stopwatch, Finish the stopwatch app, Build the view
for a simple stopwatch, Finish the stopwatch app

event handlers for, Finish the stopwatch app, Finish the stopwatch app
ushort type, The variable’s type determines what kind of data it can store
using statements, Use the IDE to create your own method, Finish the method and run your program,
Anatomy of a program, Rebuild your app for Windows Desktop, Your desktop app knows where to
start, You can change your program’s entry point, Avoid filesystem errors with using statements, Bees
need an OutOfHoney exception, Exception avoidance: implement IDisposable to do your own
cleanup, Dispose() works with using; finalizers work with garbage collection

Dispose(), Dispose() works with using; finalizers work with garbage collection
exception handling, Bees need an OutOfHoney exception
for desktop apps, Rebuild your app for Windows Desktop, Your desktop app knows where to start,
You can change your program’s entry point

using System.Windows.Forms, Your desktop app knows where to start
in C# programs, Anatomy of a program

V

value converters, Converters automatically convert values for binding, Converters automatically
convert values for binding, Converters can work with many different types, Converters automatically
convert values for binding, Converters automatically convert values for binding, Converters can work
with many different types

automatically converting values for binding, Converters automatically convert values for binding,
Converters automatically convert values for binding
working with many different types, Converters can work with many different types, Converters can
work with many different types

value parameter, set accessors, Use a constructor to initialize private fields
values versus references, Values get copied; references get assigned
value types, You have to assign values to variables before you use them, You have to assign values to
variables before you use them, The variable’s type determines what kind of data it can store, The
variable’s type determines what kind of data it can store, The variable’s type determines what kind of
data it can store, The variable’s type determines what kind of data it can store, The variable’s type

determines what kind of data it can store, The variable’s type determines what kind of data it can
store, The variable’s type determines what kind of data it can store, The variable’s type determines
what kind of data it can store, The variable’s type determines what kind of data it can store, The
variable’s type determines what kind of data it can store, The variable’s type determines what kind of
data it can store, Even when a number is the right size, you can’t just assign it to any variable, Even
when a number is the right size, you can’t just assign it to any variable, When you call a method, the
arguments must be compatible with the types of the parameters, Where no object has gone before,
Where no object has gone before, Values get copied; references get assigned, Structs are value types;
objects are reference types, Pass by reference using the ref modifier

bool, You have to assign values to variables before you use them (see bool type)
byte, The variable’s type determines what kind of data it can store (see byte type)
casting, Even when a number is the right size, you can’t just assign it to any variable
changing, Where no object has gone before
char, The variable’s type determines what kind of data it can store (see char type)
decimal, The variable’s type determines what kind of data it can store (see decimal type)
double, The variable’s type determines what kind of data it can store (see double type)
int, You have to assign values to variables before you use them (see int type)
long, The variable’s type determines what kind of data it can store (see long type)
more information on, Even when a number is the right size, you can’t just assign it to any variable
sbyte, The variable’s type determines what kind of data it can store
short, The variable’s type determines what kind of data it can store (see short type)
structs as, Structs are value types; objects are reference types
TryParse() method using out parameters, Pass by reference using the ref modifier
uint, The variable’s type determines what kind of data it can store
ulong, The variable’s type determines what kind of data it can store
ushort, The variable’s type determines what kind of data it can store
variables matching types of parameters, When you call a method, the arguments must be compatible
with the types of the parameters
versus objects, Values get copied; references get assigned

variables, Your programs use variables to work with data, Your programs use variables to work with
data, Your programs use variables to work with data, You have to assign values to variables before
you use them, Use the debugger to see your variables change, Use the debugger to see your variables
change, Make each button do something, Build a form to interact with the guys, Build a form to
interact with the guys, The variable’s type determines what kind of data it can store, A variable is like
a data to-go cup, Even when a number is the right size, you can’t just assign it to any variable, When
you call a method, the arguments must be compatible with the types of the parameters, Combining =

with an operator, Objects use variables, too, Refer to your objects with reference variables, Rename
a variable

adding to form, Build a form to interact with the guys, Build a form to interact with the guys
assigning values to, You have to assign values to variables before you use them, Even when a
number is the right size, you can’t just assign it to any variable

data type and, Even when a number is the right size, you can’t just assign it to any variable
data types, The variable’s type determines what kind of data it can store
declarations with name and type, Make each button do something
declaring, Your programs use variables to work with data
matching types of parameters, When you call a method, the arguments must be compatible with the
types of the parameters
naming, Combining = with an operator
objects as, Objects use variables, too
reference, Refer to your objects with reference variables (see reference variables)
renaming, Rename a variable
using debugger to, Use the debugger to see your variables change
using debugger to, Use the debugger to see your variables change (see changes in)
values of, Your programs use variables to work with data

var keyword, LINQ makes queries easy, Jimmy saved a bunch of dough
VerticalAlignment property, controls, Add controls to your grid, Use properties to change how the
controls look
vertical bars, You can help Brian out by building a program to manage his excuses
View, MVVM lets you design for binding and data, Build the view for a simple stopwatch, Finish the
stopwatch app, Finish the stopwatch app, Build the view for a simple stopwatch, Finish the
stopwatch app

(see also MVVM pattern)
building for simple stopwatch, Build the view for a simple stopwatch, Build the view for a simple
stopwatch
rules for MVVM apps, Finish the stopwatch app
stopwatch app, buttons calling methods in ViewModel, Finish the stopwatch app, Finish the
stopwatch app

ViewModel, MVVM lets you design for binding and data, User controls let you create your own
controls, User controls let you create your own controls, Add the stopwatch ViewModel, Finish the
stopwatch app, User controls let you create your own controls

(see also MVVM pattern)
BasketballRoster project, User controls let you create your own controls, User controls let you
create your own controls
rules for MVVM apps, Finish the stopwatch app
stopwatch app, Add the stopwatch ViewModel
using Model statement at top of classes, User controls let you create your own controls

virtual keyword, A subclass can override methods to change or replace methods it inherited, Any
place where you can use a base class, you can use one of its subclasses instead, Use the override and
virtual keywords to inherit behavior

using to inherit behavior, Use the override and virtual keywords to inherit behavior
virtual machines, Where no object has gone before
virtual methods, Any place where you can use a base class, you can use one of its subclasses instead
Visibility enum, Converters can work with many different types, Converters can work with many
different types
Visible property, forms or controls, Wait, wait! What did that say?
Visual Designer, C# and the Visual Studio IDE make lots of things easy, What Visual Studio does for
you...

editing user interface, What Visual Studio does for you...
visual states, making controls respond to changes, Visual states make controls respond to changes
Visual Studio 2008 Express, What version of Windows are you using?

setting up, What version of Windows are you using?
Visual Studio IDE, Why you should learn C#, C# and the Visual Studio IDE make lots of things easy,
What you do in Visual Studio..., What you do in Visual Studio..., What Visual Studio does for you...,
What Visual Studio does for you..., Fill in the code for your method, Finish the method and run your
program, Use the Remote Debugger to sideload your app, The IDE helps you code, Let’s take a closer
look at your code, Use logical operators to check conditions, Use logical operators to check
conditions, Rebuild your app for Windows Desktop, When you change things in the IDE, you’re also
changing your code, Windows Store apps use XAML to create UI objects, Take your Guy Serializer
for a test drive, Build Brian a new Excuse Manager app, Rename a variable, Take your Guy
Serializer for a test drive

code automatically generated by, handling of, Use logical operators to check conditions
creating new project, What you do in Visual Studio...
different editions, look of, What you do in Visual Studio...
editions and versions of, What Visual Studio does for you...
exploring different parts of, What Visual Studio does for you...
Extract Method feature, Refactor menu, Rename a variable
helping you code, The IDE helps you code, Let’s take a closer look at your code
making changes in, changes to code, When you change things in the IDE, you’re also changing your
code
Remote Debugger, Use the Remote Debugger to sideload your app
Reset Window Layout, from Window menu, Fill in the code for your method, Finish the method and
run your program
running Windows Store apps in simulator, Build Brian a new Excuse Manager app
Undo command, and automatically generated code, Use logical operators to check conditions
using with C#, capabilities of, C# and the Visual Studio IDE make lots of things easy
Visual Studio 2012 for Windows Desktop, Rebuild your app for Windows Desktop
Watch windows in Visual Studio 2012 for Windows 8, Windows Store apps use XAML to create
UI objects
XAML designer, giving message to rebuild code, Take your Guy Serializer for a test drive, Take
your Guy Serializer for a test drive

void keyword, preceding methods, Let’s take a closer look at your code
void method, Get a little practice using interfaces, Get a little practice using interfaces

interfaces, Get a little practice using interfaces
public, Get a little practice using interfaces

void return type, Mike’s Navigator class has methods to set and modify routes, Some methods have a
return value, You can use class and method names to make your code intuitive, Build a form to
interact with the guys

W

Watch window, Use the debugger to see your variables change
where clause, LINQ is simple, but your queries don’t have to be, Add the new queries to Jimmy’s app
while loops, Loops perform an action over and over, Use logical operators to check conditions, Wait,
wait! What did that say?, Wait, wait! What did that say?, ...more basics...

continue and break keywords in, ...more basics...
infinite loop, Wait, wait! What did that say?

whitespace, extra, in C# code, Make each button do something
Windows 8, Here’s what you’re going to build
Windows 8 Camp Training Kit, #1. There’s so much more to Windows Store
Windows App Certification Kit, Publish your app
Windows calculator, The variable’s type determines what kind of data it can store
Windows Desktop, Windows Desktop apps are easy to build, Rebuild your app for Windows
Desktop, Your desktop app knows where to start, You can change your program’s entry point, You can
change your program’s entry point, When you change things in the IDE, you’re also changing your
code, Wait, wait! What did that say?

building an app, Windows Desktop apps are easy to build, Rebuild your app for Windows
Desktop, Your desktop app knows where to start, You can change your program’s entry point, You
can change your program’s entry point, When you change things in the IDE, you’re also changing
your code, Wait, wait! What did that say?

animations, Wait, wait! What did that say?
changes made in IDE and code changes, When you change things in the IDE, you’re also
changing your code
changing program’s entry point, You can change your program’s entry point
entry point, Main() method, Rebuild your app for Windows Desktop
MessageBox.Show() method, You can change your program’s entry point
nuts and bolts of desktop apps, Your desktop app knows where to start

Windows Forms Application project, creating, Rebuild your app for Windows Desktop
Windows Presentation Foundation., Here’s what you’re going to build (see WPF)
Windows Runtime, namespaces for tools in, The .NET Framework gives you the right tools for the
job
Windows Settings charm, using, Use delegates to use the Windows settings charm
Windows.Storage.IStorageFolder, Use async methods to find and open files
Windows.Storage namespace, Use the FileIO class to read and write files, KnownFolders helps you
access high-profile folders

KnownFolders class, KnownFolders helps you access high-profile folders
Windows Store apps, , Here’s what you’re going to build, Publish your app, When you’re doing
this..., The .NET Framework gives you the right tools for the job, Windows Store apps use XAML to
create UI objects, Redesign the Go Fish! form as a Windows Store app page, Page layout starts with

controls, Rows and columns can resize to match the page size, Use the grid system to lay out app
pages, Use the grid system to lay out app pages, Use the grid system to lay out app pages, Data
binding connects your XAML pages to your classes, Use data binding to build Sloppy Joe a better
menu, Use static resources to declare your objects in XAML, Use a data template to display objects,
Use a data template to display objects, INotifyPropertyChanged lets bound objects send updates,
Modify MenuMaker to notify you when the GeneratedDate property changes, Brian runs into file
trouble, Windows Store apps use await to be more responsive, Build a slightly less simple text
editor, Use async methods to find and open files, Build Brian a new Excuse Manager app, Build
Brian a new Excuse Manager app, Jimmy could use some help, Use the IDE to explore app page
navigation, Start building Jimmy an app, Add the new queries to Jimmy’s app, Combine Jimmy’s
values into groups, Add semantic zoom to Jimmy’s app, The IDE’s Split App template helps you
build apps for navigating data, #1. There’s so much more to Windows Store, WPF applications use
XAML to create UI objects, Page layout starts with controls, Rows and columns can resize to match
the page size, Rows and columns can resize to match the page size, Use data binding to build Sloppy
Joe a better menu, Use static resources to declare your objects in XAML, INotifyPropertyChanged
lets bound objects send updates, C# programs can use await to be more responsive

building with WPF for operating systems before Windows 8, Here’s what you’re going to build
creating new project for, When you’re doing this...
data binding, connecting XAML pages to classes, Data binding connects your XAML pages to your
classes
exploring app page navigation using the IDE, Use the IDE to explore app page navigation
INotifyPropertyChanged, letting bound objects send updates, INotifyPropertyChanged lets bound
objects send updates, INotifyPropertyChanged lets bound objects send updates
learning more about programming, #1. There’s so much more to Windows Store
managing Jimmy’s comics collection, Jimmy could use some help, Start building Jimmy an app,
Add the new queries to Jimmy’s app, Combine Jimmy’s values into groups, Add semantic zoom to
Jimmy’s app, The IDE’s Split App template helps you build apps for navigating data

combining values into groups, Combine Jimmy’s values into groups
semantic zoom, Add semantic zoom to Jimmy’s app
Split App for navigating data, The IDE’s Split App template helps you build apps for navigating
data

.NET for, tools for building apps, The .NET Framework gives you the right tools for the job
protecting your filesystem, Use async methods to find and open files
publishing apps to Windows Store, Publish your app
rebuilding Excuse Manager as, Build Brian a new Excuse Manager app
redesigning GoFish! form as app page, Redesign the Go Fish! form as a Windows Store app page,
Page layout starts with controls, Rows and columns can resize to match the page size, Use the grid
system to lay out app pages, Modify MenuMaker to notify you when the GeneratedDate property

changes, Page layout starts with controls, Rows and columns can resize to match the page size

finishing conversion, Modify MenuMaker to notify you when the GeneratedDate property
changes
page layout starting with controls, Page layout starts with controls, Page layout starts with
controls
rows and columns resizing to match screen size, Rows and columns can resize to match the page
size, Rows and columns can resize to match the page size
using grid system to lay out pages, Use the grid system to lay out app pages

redesigning Windows Desktop forms as, Use the grid system to lay out app pages, Use the grid
system to lay out app pages, Rows and columns can resize to match the page size
running in Visual Studio simulator, Build Brian a new Excuse Manager app
superior IO tools, Brian runs into file trouble
text editor, Build a slightly less simple text editor
using awit to be more responsive, Windows Store apps use await to be more responsive, C#
programs can use await to be more responsive
using data binding to build better menu, Use data binding to build Sloppy Joe a better menu, Use
data binding to build Sloppy Joe a better menu
using data template to display objects, Use a data template to display objects, Use a data template
to display objects
using static resources to declare objects in XAML, Use static resources to declare your objects in
XAML, Use static resources to declare your objects in XAML
using XAML to create UI objects, Windows Store apps use XAML to create UI objects, WPF
applications use XAML to create UI objects

Windows UI controls., Here’s what you’re going to build (see controls)
Windows.UI namespace, UI controls can be instantiated with C# code, too, UI controls can be
instantiated with C# code, too
Windows.UI.Xaml.Conrols namespace, The .NET Framework gives you the right tools for the job
Windows.UI.Xaml namespace, Use ItemsPanelTemplate to bind controls to a Canvas, Use
ItemsPanelTemplate to bind controls to a Canvas
WinForms apps, Brian’s running Windows 8, Brian’s running Windows 8, Windows Forms use an
object graph set up by the IDE, XAML controls can contain text...and more, Use the FileIO class to
read and write files, #4. Use BackgroundWorker to make your WinForms responsive

GDI+ grpahics, Brian’s running Windows 8
reasons for learning, XAML controls can contain text...and more
using BackgroundWorker to make apps responsive, #4. Use BackgroundWorker to make your
WinForms responsive
using object graph set up by IDE, Windows Forms use an object graph set up by the IDE
using System.IO.File to read/write files, Use the FileIO class to read and write files
versus Windows Store apps, Brian’s running Windows 8

WPF (Windows Presentation Foundation), Here’s what you’re going to build, Start with a blank
application

X

XAML, C# and the Visual Studio IDE make lots of things easy, What you do in Visual Studio..., What
Visual Studio does for you..., Here’s what you’re going to build, Set up the grid for your page, Set up
the grid for your page, Add controls to your grid, Add controls to your grid, Add controls to your
grid, Use properties to change how the controls look, Controls make the game work, Controls make
the game work, Finish the method and run your program, Here’s what you’ve done so far, Dragging
humans onto enemies ends the game, Make your enemies look like aliens, ...the IDE does this, Brian’s
running Windows 8, Windows Store apps use XAML to create UI objects, Use the grid system to lay
out app pages, Use the grid system to lay out app pages, Use the grid system to lay out app pages,
Data binding connects your XAML pages to your classes, XAML controls can contain text...and more,
XAML controls can contain text...and more, Use static resources to declare your objects in XAML,
WPF applications use XAML to create UI objects, Rows and columns can resize to match the page
size, Use static resources to declare your objects in XAML

application code, Here’s what you’re going to build
changes to code from changes made in IDE, ...the IDE does this
combining with C#, creating wisual programs, C# and the Visual Studio IDE make lots of things
easy
controls, containing text and other controls, XAML controls can contain text...and more
data binding in, Data binding connects your XAML pages to your classes
defined, What Visual Studio does for you...
editing templates, Dragging humans onto enemies ends the game, Make your enemies look like
aliens
file created by Solution Explorer on creating new project in Visual Studio, What you do in Visual
Studio...
flexibility with tag order, Use the grid system to lay out app pages
generated for controls dragged from Toolbox onto page, Set up the grid for your page, Add controls
to your grid
page design with, WinForms versus, XAML controls can contain text...and more
properties, Set up the grid for your page, Add controls to your grid, Add controls to your grid, Use
properties to change how the controls look, Controls make the game work, Controls make the game
work, Finish the method and run your program, Here’s what you’ve done so far

using to change controls, Add controls to your grid, Use properties to change how the controls
look

redesigning Windows Desktop forms, Use the grid system to lay out app pages, Use the grid system
to lay out app pages, Rows and columns can resize to match the page size
using static resources to declare objects in, Use static resources to declare your objects in XAML,
Use static resources to declare your objects in XAML
using to create UI for Windows Store apps, Windows Store apps use XAML to create UI objects,
WPF applications use XAML to create UI objects

XML, Wait, wait! What did that say?, Use static resources to declare your objects in XAML, A data
contract is an abstract definition of your object’s data, The whole object graph is serialized to XML,
User controls let you create your own controls, #2. The Basics, #10. LINQ to XML, Use static
resources to declare your objects in XAML, User controls let you create your own controls

comments, Wait, wait! What did that say?, #2. The Basics
LINQ to XML, #10. LINQ to XML
namespace, Use static resources to declare your objects in XAML, A data contract is an abstract
definition of your object’s data, User controls let you create your own controls, Use static
resources to declare your objects in XAML, User controls let you create your own controls

xmlns, Use static resources to declare your objects in XAML, User controls let you create your
own controls, Use static resources to declare your objects in XAML, User controls let you
create your own controls

output of data contract serializer, The whole object graph is serialized to XML
x:Name and x:Key properties, static resources, Use a data template to display objects, Use a data
template to display objects
x:Name property, if/else statements make decisions, Build an app from the ground up
XOR operator ()̂, #6. Equality, IEquatable, and Equals()
XOR operator (~), ...more basics...

Y

yield return, using to create enumerable objects, #7. Using yield return to create enumerable objects

Z

zoom, semantic zoom control, Use semantic zoom to navigate your data
Zoo Simulator project, How would you design a zoo simulator?, Create the class hierarchy, Create
the class hierarchy, Create the class hierarchy

class hierarchy, Create the class hierarchy
extending base class, Create the class hierarchy
inheriting from base class, Create the class hierarchy

About the Authors
Bestselling O'Reilly authors Jennifer Greene and Andrew Stellman have been building software and
writing about software engineering together since they first met in 1998. Their first book, Applied
Software Project Management, was published by O’Reilly in 2005. Other Stellman and Greene books
for O’Reilly include Beautiful Teams (2009), and their first book in the Head First series, Head First
PMP (2007). They founded Stellman & Greene Consulting in 2003 to build a really neat software
project for scientists studying herbicide exposure in Vietnam vets. In addition to building software
and writing books, they’ve provided training and consulted for companies and spoken at conferences
and meetings of software engineers, architects and project managers.

Jenny studied philosophy in college but, like everyone else in the field, couldn’t find a job doing it.
Luckily, she’s a great software engineer, so she started out working at an online service, and that’s the
first time she really got a good sense of what good software development looked like. She moved to
New York in 1998 to work on software quality at a financial software company. She’s managed a
teams of developers, testers and PMs on software projects in media and finance since then. She’s
traveled all over the world to work with different software teams and build all kinds of cool projects.
Andrew, despite being raised a New Yorker, has lived in Minneapolis, Geneva, and Pittsburgh...
twice. The first time was when he graduated from Carnegie Mellon’s School of Computer Science,
and then again when he and Jenny were starting their consulting business and writing their first book
for O’Reilly. He and Jenny first worked together at a company on Wall Street that built financial
software, where he was managing a team of programmers. Over the years he’s been a Vice President
at a major investment bank, architected large-scale real-time back end systems, managed large
international software teams, and consulted for companies, schools, and organizations, including
Microsoft, the National Bureau of Economic Research, and MIT. He’s had the privilege working with
some pretty amazing programmers during that time, and likes to think that he’s learned a few things
from them.

Special Upgrade Offer
If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at
oreilly.com by clicking here.

http://opds.oreilly.com/buy/9781449358860.EBOOK?source=kindle

Head First C#
Jennifer Greene
Andrew Stellman
Editor
Courtney Nash

Copyright © 2013 Andrew Stellman, Jennifer Greene
Head First C#

Third Edition

by Andrew Stellman and Jennifer Greene

All rights reserved.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also available for most
titles (http://safaribooksonline.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Cover Designers: Louise Barr, Karen Montgomery

Production Editor: Melanie Yarbrough

Proofreader: Rachel Monaghan

Indexer: Ellen Troutman-Zaig

Page Viewers: Quentin the whippet and Tequila the pomeranian

Printing History:

November 2007: First Edition.

May 2010: Second Edition.

August 2013: Third Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First C#, and related
trade dress are trademarks of O’Reilly Media, Inc.

Microsoft, Windows, Visual Studio, MSDN, the .NET logo, Visual Basic and Visual C# are registered trademarks of Microsoft
Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps
or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no responsibility for errors or
omissions, or for damages resulting from the use of the information contained herein.

No bees, space aliens, or comic book heroes were harmed in the making of this book.

http://safaribooksonline.com
mailto:corporate@oreilly.com

[LSI] [2014-09-12]

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2014-09-23T09:12:34-07:00

	Head First C#
	Dedication
	A Note Regarding Supplemental Files
	Advance Praise for Head First C#
	Praise for other Head First books
	How to Use this Book: Intro
	Who is this book for?
	Who should probably back away from this book?

	We know what you’re thinking.
	And we know what your brain is thinking
	Metacognition: thinking about thinking
	Here’s what WE did
	Here’s what You can do to bend your brain into submission
	Read me
	What version of Windows are you using?
	Using Windows 8 or later? Then you’ll start with Windows Store apps
	Don’t have Windows 8 or VS2013 yet? No problem—you’ll start with WPF apps
	You’ll move on to create desktop applications

	The technical review team
	Acknowledgments
	Safari® Books Online

	1. Start Building with C#: Build something cool, fast!
	Why you should learn C#
	Here’s what the IDE automates for you...
	What you get with Visual Studio and C#...

	C# and the Visual Studio IDE make lots of things easy
	What you do in Visual Studio...
	What Visual Studio does for you...
	Aliens attack!
	Only you can help save the Earth
	Here’s what you’re going to build
	Start with a blank application
	Set up the grid for your page
	Add controls to your grid
	Use properties to change how the controls look
	Controls make the game work
	You’ve set the stage for the game
	What you’ll do next
	Add a method that does something
	Use the IDE to create your own method

	Fill in the code for your method
	Finish the method and run your program
	Here’s what you’ve done so far
	Add timers to manage the gameplay
	Make the Start button work
	Run the program to see your progress
	Add code to make your controls interact with the player
	Dragging humans onto enemies ends the game
	Your game is now playable
	Make your enemies look like aliens
	Add a splash screen and a tile
	Publish your app
	Use the Remote Debugger to sideload your app
	Start remote debugging

	2. It’s all Just Code: Under the hood
	When you’re doing this...
	...the IDE does this
	Where programs come from
	Every program starts out as source code files
	Build the program to create an executable
	The .NET Framework gives you the right tools for the job
	Your program runs inside the Common Language Runtime

	The IDE helps you code
	Anatomy of a program
	Let’s take a closer look at your code

	Two classes can be in the same namespace
	Your programs use variables to work with data
	Declare your variables
	Variables vary
	You have to assign values to variables before you use them
	A few useful types

	C# uses familiar math symbols
	Use the debugger to see your variables change
	Loops perform an action over and over
	Use a code snippet to write simple for loops

	if/else statements make decisions
	Build an app from the ground up
	Make each button do something
	Set up conditions and see if they’re true
	Use logical operators to check conditions

	Windows Desktop apps are easy to build
	Rebuild your app for Windows Desktop
	Your desktop app knows where to start
	You can change your program’s entry point
	So what happened?

	When you change things in the IDE, you’re also changing your code
	Wait, wait! What did that say?

	3. Objects: Get Oriented!: Making code make sense
	How Mike thinks about his problems
	How Mike’s car navigation system thinks about his problems
	Mike’s Navigator class has methods to set and modify routes
	Some methods have a return value

	Use what you’ve learned to build a program that uses a class
	So what did you just build?

	Mike gets an idea
	He could create three different Navigator classes...

	Mike can use objects to solve his problem
	You use a class to build an object
	An object gets its methods from its class

	When you create a new object from a class, it’s called an instance of that class
	A better solution...brought to you by objects!
	Theory and practice
	A little advice for the code exercises

	An instance uses fields to keep track of things
	Methods are what an object does. Fields are what the object knows.

	Let’s create some instances!
	Thanks for the memory
	What’s on your program’s mind
	You can use class and method names to make your code intuitive
	Give your classes a natural structure
	Let’s build a class diagram

	Class diagrams help you organize your classes so they make sense
	Build a class to work with some guys
	Create a project for your guys
	Build a form to interact with the guys
	There’s an easier way to initialize objects
	A few ideas for designing intuitive classes

	4. Types and References: It’s 10:00. Do you know where your data is?
	The variable’s type determines what kind of data it can store
	A variable is like a data to-go cup
	10 pounds of data in a 5-pound bag
	Even when a number is the right size, you can’t just assign it to any variable
	So what happened?

	When you cast a value that’s too big, C# will adjust it automatically
	C# does some casting automatically
	When you call a method, the arguments must be compatible with the types of the parameters
	Debug the mileage calculator
	Combining = with an operator
	Objects use variables, too
	Using an int
	Using an object

	Refer to your objects with reference variables
	References are like labels for your object
	If there aren’t any more references, your object gets garbage-collected
	Multiple references and their side effects
	Two references means TWO ways to change an object’s data
	A special case: arrays
	Use each element in an array like it is a normal variable

	Arrays can contain a bunch of reference variables, too
	Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!
	Objects use references to talk to each other
	Where no object has gone before
	Build a typing game
	Controls are objects, just like any other object

	I. C# Lab: A Day at the Races
	5. Encapsulation: Keep your privates... Private
	Kathleen is an event planner
	What does the estimator do?
	You’re going to build a program for Kathleen
	Kathleen’s test drive
	Each option should be calculated individually
	It’s easy to accidentally misuse your objects
	Encapsulation means keeping some of the data in a class private
	Use encapsulation to control access to your class’s methods and fields
	But is the RealName field REALLY protected?
	Private fields and methods can only be accessed from inside the class
	Encapsulation makes your classes...
	Mike’s navigator program could use better encapsulation
	Think of an object as a black box

	A few ideas for encapsulating classes
	Encapsulation keeps your data pristine
	A quick example of encapsulation

	Properties make encapsulation easier
	Build an application to test the Farmer class
	Use automatic properties to finish the class
	Fully encapsulate the Farmer class

	What if we want to change the feed multiplier?
	Use a constructor to initialize private fields

	6. Inheritance: Your object’s family tree
	Kathleen does birthday parties, too
	We need a BirthdayParty class
	Here’s what we’re going to do:

	Build the Part y Planner version 2.0
	One more thing...can you add a $100 fee for parties over 12?
	When your classes use inheritance, you only need to write your code once
	Dinner parties and birthday parties are both parties

	Build up your class model by starting general and getting more specific
	How would you design a zoo simulator?
	Use inheritance to avoid duplicate code in subclasses
	Different animals make different noises
	Think about what you need to override

	Think about how to group the animals
	Create the class hierarchy
	Every subclass extends its base class
	C# always calls the most specific method

	Use a colon to inherit from a base class
	We know that inheritance adds the base class fields, properties, and methods to the subclass...
	...but some birds don’t fly!

	A subclass can override methods to change or replace methods it inherited
	Any place where you can use a base class, you can use one of its subclasses instead
	A subclass can hide methods in the superclass
	Hiding methods versus overriding methods
	Use different references to call hidden methods
	Use the new keyword when you’re hiding methods

	Use the override and virtual keywords to inherit behavior
	A subclass can access its base class using the base keyword
	When a base class has a constructor, your subclass needs one, too
	The base class constructor is executed before the subclass constructor

	Now you’re ready to finish the job for Kathleen!
	Build a beehive management system
	How you’ll build the beehive management system
	Use inheritance to extend the bee management system

	7. Interfaces and Abstract Classes: Making classes keep their promises
	Let’s get back to bee-sics
	Lots of things are still the same

	We can use inheritance to create classes for different types of bees
	An interface tells a class that it must implement certain methods and properties
	Use the interface keyword to define an interface
	Now you can create an instance of NectarStinger that does both jobs
	Classes that implement interfaces have to include ALL of the interface’s methods
	Get a little practice using interfaces
	You can’t instantiate an interface, but you can reference an interface
	Interface references work just like object references
	You can find out if a class implements a certain interface with “is”
	Interfaces can inherit from other interfaces
	Any class that implements an interface that inherits from IWorker must implement its methods and properties

	The RoboBee 4000 can do a worker bee’s job without using valuable honey
	is tells you what an object implements; as tells the compiler how to treat your object
	A CoffeeMaker is also an Appliance
	Upcasting works with both objects and interfaces
	Downcasting lets you turn your appliance back into a coffee maker
	When downcasting fails, as returns null

	Upcasting and downcasting work with interfaces, too
	There’s more than just public and private
	Access modifiers change visibility
	Some classes should never be instantiated
	An abstract class is like a cross between a class and an interface
	Like we said, some classes should never be instantiated
	Solution: use an abstract class

	An abstract method doesn’t have a body
	The four principles of object-oriented programming

	Polymorphism means that one object can take many different forms
	Keep your eyes open for polymorphism in the next exercise!

	8. Enums and Collections: Storing lots of data
	Strings don’t always work for storing categories of data
	Enums let you work with a set of valid values
	Enums let you represent numbers with names
	We could use an array to create a deck of cards...
	...but what if you wanted to do more?

	Arrays are hard to work with
	Lists make it easy to store collections of...anything
	Lists are more flexible than arrays
	Lists shrink and grow dynamically
	Generics can store any type
	Collection initializers are similar to object initializers
	Let’s create a List of Ducks
	Here’s the initializer for your List of Ducks

	Lists are easy, but SORTING can be tricky
	Lists know how to sort themselves

	IComparable<Duck> helps your list sort its ducks
	An object’s CompareTo() method compares it to another object

	Use IComparer to tell your List how to sort
	Create an instance of your comparer object
	Multiple IComparer implementations, multiple ways to sort your objects

	IComparer can do complex comparisons
	Overriding a ToString() method lets an object describe itself
	Update your foreach loops to let your Ducks and Cards print themselves
	Add a ToString() method to your Card object, too

	You can upcast an entire list using IEnumerable
	Combine your birds into a single list

	You can build your own overloaded methods
	Use a dictionary to store keys and values
	The dictionary functionality rundown
	Your key and value can be different types

	Build a program that uses a dictionary
	And yet MORE collection types...
	Generic collections are an important part of the .NET Framework

	A queue is FIFO—First In, First Out
	A stack is LIFO—Last In, First Out

	9. Reading and Writing Files: Save the last byte for me!
	.NET uses streams to read and write data
	Different streams read and write different things
	Things you can do with a stream:

	A FileStream reads and writes bytes to a file
	Write text to a file in three simple steps
	The Swindler launches another diabolical plan
	Reading and writing using two objects
	Data can go through more than one stream
	Use built-in objects to pop up standard dialog boxes
	ShowDialog() pops up a dialog box

	Dialog boxes are just another WinForms control
	Dialog boxes are objects, too
	Use the built-in File and Directory classes to work with files and directories
	Things you can do with File:
	Things you can do with Directory:

	Use file dialogs to open and save files (all with just a few lines of code)
	IDisposable makes sure your objects are disposed of properly
	Avoid filesystem errors with using statements
	Use multiple using statements for multiple objects

	Trouble at work
	You can help Brian out by building a program to manage his excuses

	Writing files usually involves making a lot of decisions
	Use a switch statement to choose the right option
	Use a switch statement to let your deck of cards read from a file or write itself out to one
	Add an overloaded Deck() constructor that reads a deck of cards in from a file
	What happens to an object when it’s serialized?
	But what exactly IS an object’s state? What needs to be saved?
	When an object is serialized, all of the objects it refers to get serialized, too...
	Serialization lets you read or write a whole object graph all at once
	You’ll need a BinaryFormatter object
	Now just create a stream and read or write your objects

	If you want your class to be serializable, mark it with the [Serializable] attribute
	Let’s serialize and deserialize a deck of cards
	.NET uses Unicode to store characters and text
	C# can use byte arrays to move data around
	Use a BinaryWriter to write binary data
	Use BinaryReader to read the data back in

	You can read and write serialized files manually, too
	Find where the files differ, and use that information to alter them
	Working with binary files can be tricky
	Use file streams to build a hex dumper
	How to make a hex dump
	Working with hex

	StreamReader and StreamWriter will do just fine (for now)
	Use Stream.Read() to read bytes from a stream

	II. C# Lab: The Quest
	10. Designing Windows Store Apps with XAML: Taking your apps to the next level
	Brian’s running Windows 8
	Windows Forms use an object graph set up by the IDE
	Use the IDE to explore the object graph
	Windows Store apps use XAML to create UI objects
	Redesign the Go Fish! form as a Windows Store app page
	Page layout starts with controls
	Rows and columns can resize to match the page size
	Use the grid system to lay out app pages
	Data binding connects your XAML pages to your classes
	Context, path, and binding
	Two-way binding can get or set the source property
	Bind to collections with ObservableCollection
	Use code for binding (without using any XAML at all!)

	XAML controls can contain text...and more
	Use data binding to build Sloppy Joe a better menu
	Use static resources to declare your objects in XAML
	Use a data template to display objects
	INotifyPropertyChanged lets bound objects send updates
	Modify MenuMaker to notify you when the GeneratedDate property changes

	11. Async, Await, and Data Contract Serialization: Pardon the interruption
	Brian runs into file trouble
	Windows Store apps use await to be more responsive
	Use the FileIO class to read and write files
	Use the file pickers to locate file paths

	Build a slightly less simple text editor
	A data contract is an abstract definition of your object’s data
	Data contract serialization uses XML files

	Use async methods to find and open files
	KnownFolders helps you access high-profile folders
	The whole object graph is serialized to XML
	Stream some Guy objects to XML files
	Take your Guy Serializer for a test drive
	Use a Task to call one async method from another
	Build Brian a new Excuse Manager app
	Separate the page, excuse, and Excuse Manager
	Create the main page for the Excuse Manager
	Add the app bar to the main page
	Build the ExcuseManager class
	Add the code-behind for the page

	12. Exception Handling: Putting out fires gets old
	Brian needs his excuses to be mobile
	But the program isn’t working!

	When your program throws an exception, .NET generates an Exception object
	Brian’s code did something unexpected
	All exception objects inherit from Exception
	The debugger helps you track down and prevent exceptions in your code
	Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse Manager
	Uh oh—the code’s still got problems...
	Handle exceptions with try and catch
	What happens when a method you want to call is risky?

	Use the debugger to follow the try/catch flow
	If you have code that ALWAYS should run, use a finally block
	Use the Exception object to get information about the problem
	Use more than one catch block to handle multiple types of exceptions
	One class throws an exception that a method in another class can catch
	Bees need an OutOfHoney exception
	An easy way to avoid a lot of problems: using gives you try and finally for free
	Exception avoidance: implement IDisposable to do your own cleanup
	The worst catch block EVER: catch-all plus comments
	You should handle your exceptions, not bury them

	Temporary solutions are OK (temporarily)
	A few simple ideas for exception handling
	Brian finally gets his vacation...
	...and things are looking up back home!

	13. Captain Amazing: The Death of the Object
	Your last chance to DO something... your object’s finalizer
	When EXACTLY does a finalizer run?
	You can SUGGEST to .NET that it’s time to collect the garbage

	Dispose() works with using; finalizers work with garbage collection
	Finalizers can’t depend on stability
	Make an object serialize itself in its Dispose()
	A struct looks like an object...
	...but isn’t an object
	Values get copied; references get assigned
	Structs are value types; objects are reference types
	Here’s what happened...

	The stack vs. the heap: more on memory
	Use out parameters to make a method return more than one value
	Pass by reference using the ref modifier
	Use optional parameters to set default values
	Use nullable types when you need nonexistent values
	Nullable types help you make your programs more robust
	“Captain” Amazing...not so much
	Extension methods add new behavior to EXISTING classes
	Extending a fundamental type: string

	14. Querying Data and Building Apps With Linq: Get control of your data
	Jimmy’s a Captain Amazing super-fan...
	...but his collection’s all over the place
	LINQ can pull data from multiple sources
	.NET collections are already set up for LINQ
	LINQ makes queries easy
	LINQ is simple, but your queries don’t have to be
	Jimmy could use some help
	Windows Store apps use page-based navigation
	Use the IDE to explore app page navigation

	Start building Jimmy an app
	Use the new keyword to create anonymous types
	LINQ is versatile
	Add the new queries to Jimmy’s app
	LINQ can combine your results into groups
	Combine Jimmy’s values into groups
	Use join to combine two collections into one sequence
	Jimmy saved a bunch of dough
	Use semantic zoom to navigate your data
	Add semantic zoom to Jimmy’s app
	You made Jimmy’s day
	The IDE’s Split App template helps you build apps for navigating data

	15. Events and Delegates: What your code does when you’re not looking
	Ever wish your objects could think for themselves?
	But how does an object KNOW to respond?
	When an EVENT occurs...objects listen
	Want to DO SOMETHING with an event? You need an event handler

	One object raises its event, others listen for it...
	Then, the other objects handle the event
	Connecting the dots
	Use a standard name when you add a method to raise an event

	The IDE generates event handlers for you automatically
	Generic EventHandlers let you define your own event types
	C# does implicit conversion when you leave out the new keyword and type

	Windows Forms use many different events
	One event, multiple handlers
	Windows Store apps use events for process lifetime management
	Use the IDE to explore process lifetime management events

	Add process lifetime management to Jimmy’s comics
	XAML controls use routed events
	IsHitTestVisible determines if an element is “visible” to the pointer or mouse

	Create an app to explore routed events
	Connecting event senders with event listeners
	“My people will get in touch with your people.”

	A delegate STANDS IN for an actual method
	A delegate adds a new type to your project

	Delegates in action
	An object can subscribe to an event...
	...but that’s not always a good thing!

	Use a callback to control who’s listening
	A callback is just a way to use delegates
	MessageDialog uses the callback pattern
	Use delegates to use the Windows settings charm

	16. Architecting Apps with the mvvm Pattern: Great apps on the inside and outside
	The Head First Basketball Conference needs an app
	But can they agree on how to build it?
	Do you design for binding or for working with data?
	MVVM lets you design for binding and data
	Use the MVVM pattern to start building the basketball roster app
	User controls let you create your own controls
	The ref needs a stopwatch
	MVVM means thinking about the state of the app
	Start building the stopwatch app’s Model
	Events alert the rest of the app to state changes
	Build the view for a simple stopwatch
	Add the stopwatch ViewModel
	Finish the stopwatch app
	Converters automatically convert values for binding
	Converters can work with many different types
	Styles set properties on multiple controls
	Use a resource dictionary to share resources between pages
	Visual states make controls respond to changes
	Use DoubleAnimation to animate double values
	Use object animations to animate object values
	Build an analog stopwatch using the same ViewModel
	UI controls can be instantiated with C# code, too
	C# can build “real” animations, too
	Create a project and add the pictures

	Create a user control to animate a picture
	Make your bees fly around a page
	Use ItemsPanelTemplate to bind controls to a Canvas
	Congratulations! (But you’re not done yet...)

	III. C# Lab Invaders
	A. Leftovers: The top 10 things we wanted to include in this book
	#1. There’s so much more to Windows Store
	#2. The Basics
	...more basics...

	#3. Namespaces and assemblies
	...so what did I just do?
	Building a “Hello World” program from the command line

	#4. Use BackgroundWorker to make your WinForms responsive
	#5. The Type class and GetType()
	#6. Equality, IEquatable, and Equals()
	#7. Using yield return to create enumerable objects
	#8. Refactoring
	Extract a method
	Rename a variable
	Consolidate a conditional expression

	#9. Anonymous types, anonymous methods, and lambda expressions
	#10. LINQ to XML
	Save and load XML files
	Query your data
	Read data from an RSS feed

	Did you know that C# and the .NET Framework can...

	B. Windows Presentation Foundation: WPF Learner’s Guide to Head First C#
	Why you should learn WPF
	Build WPF projects in Visual Studio
	How to use this appendix
	Chapter 1
	Start with a blank application
	Set up the grid for your window
	Add controls to your grid
	Use properties to change how the controls look
	Controls make the game work
	You’ve set the stage for the game
	What you’ll do next
	Add a method that does something
	Use the IDE to create your own method
	Fill in the code for your method
	Finish the method and run your program
	Here’s what you’ve done so far
	Add timers to manage the gameplay
	Make the Start button work
	Run the program to see your progress
	Add code to make your controls interact with the player
	Dragging humans onto enemies ends the game
	Your game is now playable
	Make your enemies look like aliens

	Chapter 2
	Use the debugger to see your variables change
	Build an app from the ground up

	Chapter 10
	WPF applications use XAML to create UI objects
	Redesign the Go Fish! form as a WPF application
	Page layout starts with controls
	Rows and columns can resize to match the page size
	Use data binding to build Sloppy Joe a better menu
	Use static resources to declare your objects in XAML
	Use a data template to display objects
	INotifyPropertyChanged lets bound objects send updates
	Modify MenuMaker to notify you when the GeneratedDate property changes

	Chapter 11
	C# programs can use await to be more responsive
	Stream some Guy objects to a file
	Take your Guy Serializer for a test drive

	Chapter 12
	Brian’s code did something unexpected
	Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse Manager
	Uh-oh—the code’s still got problems...
	Handle exceptions with try and catch
	What happens when a method you want to call is risky?
	Use the debugger to follow the try/catch flow
	If you have code that should ALWAYS run, use a finally block

	Chapter 14
	Build a WPF comic query application

	Chapter 15
	XAML controls use routed events
	IsHitTestVisible determines if an element is “visible” to the pointer or mouse
	Create an app to explore routed events

	Chapter 16
	Use the MVVM pattern to start building the basketball roster app
	User controls let you create your own controls
	Build the view for a simple stopwatch
	Finish the stopwatch app
	Converters automatically convert values for binding
	Converters can work with many different types
	Build an analog stopwatch using the same ViewModel
	UI controls can be instantiated with C# code, too
	Create a user control to animate a picture
	Make your bees fly around a page
	Use ItemsPanelTemplate to bind controls to a Canvas
	Congratulations! (But you’re not done yet...)

	Index
	About the Authors
	Copyright

