
B3-2

CSS BASICS BONUS

Lesson overview
In this lesson, you will gain valuable skills working with cascading
style sheets and learn the following:

•	 How to write CSS rules by hand

•	 How to write different types of selectors based on cascade,
inheritance, and descendant theories

•	 How to format your HTML text and structural elements

This lesson will take about 2 hours to complete. If you have not already
done so, please log in to your account on peachpit.com to download
the project files for this lesson as described in the “Getting Started”
section at the beginning of this book and follow the instructions under
“Accessing the Lesson Files and Web Edition.” Define a site based on the
lesson03bonus folder.

3

B3-3

Key to any understanding of website design is knowledge
of and experience with cascading style sheets (CSS).

B3-4  LESSON 3  CSS Basics Bonus

Previewing the completed file
The best way to learn CSS is by creating your own style sheets. In this online bonus
lesson, you’ll learn how CSS works by creating a complete style sheet for a sample
HTML file like the one you will view in this exercise.

1	 Define a new site based on the lesson03bonus folder as described in the
“Getting Started” section at the beginning of the book.

2	 Select the Standard workspace in the Workspace menu, if necessary.

3	 Open the css-basics-finished.html file from the finished folder in
lesson03bonus.

4	 If necessary, switch to Split view using Code view and Live view.
Observe the content and code in the two windows.

The file contains a complete HTML page with a variety of elements, including
headings, paragraphs, lists, and links, all fully formatted by CSS. Note the text
styling, as well as the colors and borders assigned to each element. Typically,
files will open in Live view or with Live view active in Split view. This is impor-
tant because some styling may not display properly in Design view alone.

5	 If necessary, switch to Live view only.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-5

The entire webpage is displayed in one window. Live view displays CSS styling
more accurately than does Design view. For example, in Live view you should
see a drop shadow around the main content section. As before, the best way to
see the true power of CSS is by shutting it off.

6	 Switch to Design view.

7	 Choose View > Design View Options > Style Rendering > Display Styles to
toggle off the CSS rendering in Dreamweaver.

The page is no longer formatted by CSS and displays only the default styling you
would expect on standard HTML elements. The text content now stacks verti-
cally in a single column, with no colors, borders, backgrounds, or shadows.

8	 Choose View > Design View Options > Style Rendering > Display Styles to
toggle on the CSS rendering in Dreamweaver again.

The CSS styling is turned back on.

P	Note:  The Style Ren-
dering option is visible
only in Design view.

B3-6  LESSON 3  CSS Basics Bonus

9	 Select Live view.

Dreamweaver previews the page in Live view again.

10	Choose File > Close.

As you can see, CSS can style all aspects of a webpage with amazing variety and
detail. First let’s take a look at how CSS can format text.

Formatting text
1	 Open css-basics.html from the lesson03bonus folder.

2	 Switch to Split view, if necessary.

The file contains an exact copy of the content you reviewed in the finished file in
the preview exercise. The page contains various elements, headings, paragraphs,
lists, and links that are formatted only by default HTML styling.

3	 Select File > Save As.
Name the file mycss-basics.html.
Save the file in the site root folder.

Dreamweaver creates a copy of the file using the new name and displays two
tabs at the top of the document window. Since the original file is still open, it
could cause confusion during the following exercises. Let’s close the original file.

4	 Select the document tab for the css-basics.html file.
Choose File > Close.

The mycss-basics.html file should be the only one open.

E	Tip:  Dreamweaver
CC (2019 release) will
open most files in Live
view by default. In the
following exercises,
be aware that certain
commands will function
only in Design view.
Be prepared to switch
between Live view
and Design view as
necessary.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-7

5	 Observe the <head> section in the Code view window.

Note that the code contains a <style> section but no CSS rules.

6	 Insert the cursor between the opening <style> and closing </style> tags
(line 7).

P	 Note:  As you type the rule markup, Dreamweaver provides code hints, as it did with the
HTML code in bonus Lesson 2, “HTML Basics Bonus.” Feel free to use these hints to speed up your
typing, or simply ignore them and continue typing.

E	 Tip:  Live view should automatically refresh the display when you edit content in the Code
window. But if you don’t see the display change as described, you may need to refresh the
display manually by clicking in the Live view window.

7	 Type h1 { color:gray; } and, if necessary, click in the Live view window to
refresh the display.

8	 Save the file.

The h1 headings throughout the page now display in gray. The rest of the text still
displays the default formatting. Congratulations! You wrote your first CSS rule.

B3-8  LESSON 3  CSS Basics Bonus

Cascade theory in action
Once you start writing CSS rules, you will encounter various types of conflicts.
Putting your knowledge of CSS theory to the test will help you better understand
how to use cascading style sheets and how to troubleshoot the conflicts.

In this exercise, you will learn how cascade theory functions firsthand.

1	 Open mycss-basics.html in Split view, if necessary.

2	 In the Code window, insert the cursor at the end of the rule created in step 7 of
the previous exercise. Press Enter/Return to create a new line.

P	 Note:  Remember to insert the new line after the curly brace.

3	 Type h1 { color:red; } and click in the Live view window, if necessary, to
refresh the display.

The h1 headings now display in red. The styling of the new rule supersedes the
formatting applied by the first rule. It’s important to understand that the two
rules are identical except that they apply different colors: red or gray. Both rules
want to format the same elements, but only one will be honored.

It’s clear the second rule won, but why? In this case, the second rule is the last
one declared, making it the closest one to the actual content. Whether inten-
tional or not, a style applied by one rule may be overridden by declarations in
one or more subsequent rules.

4	 Click the line number containing the rule
h1 { color: red; } (line 8).

P	Note:  CSS does
not require line breaks
between rules, but they
do make the code easier
to read. Feel free to add
them between rules or
properties at any time.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-9

The entire line is selected. Dreamweaver allows you to drag selections within the
code window.

P	 Note:  It may take you some practice to learn how to drag and drop code properly. If you
make a mistake, select Edit > Undo and try again.

5	 Drag the selected code to insert it before the markup h1 { color: gray; }.

The two rules swap position. The rule applying the gray color now appears last.
You have switched the order of the rules.

6	 If necessary, click in the Live view window to refresh the preview display.

The h1 headings display in gray again.

Cascade applies to styles whether the rules are embedded in the webpage or
located in a separate external, linked style sheet.

7	 Select linked.css in the Related Files interface.

This is an external CSS file linked to the webpage. When you select the name
of the referenced file, the contents of that file appear in the Code view window.
If the file is stored on a local hard drive, Dreamweaver allows you to edit the
contents without actually opening the file. At the moment, the file contains only
a character set attribute.

B3-10  LESSON 3  CSS Basics Bonus

8	 Insert the cursor in line 2.
Type h1 { color:orange; } and press Ctrl+S/Cmd+S to save the file.

Click in the Live view window to refresh the display, if necessary.

9	 Select Source Code in the Related Files interface. Locate the <link> reference
for linked.css in the <head> section (around line 10).

The <link> element appears after the closing </style> tag. Based strictly on
cascade, this means any rule that appears in the linked file will supersede dupli-
cate rules in the embedded sheet.

10	Click the line number for the external CSS <link> reference to select the entire
reference. Drag the entire <link> reference above the <style> element.

11	Click in the Live view window to refresh the display, if necessary.

The headings revert to gray.

12	Choose File > Save All.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-11

As you can clearly see, the order, or proximity, of the rules within the markup is a
powerful factor in how CSS is applied.

Inheritance theory in action
Inheritance theory speaks to the lineage or parental origins of an element. In other
words, if your parent has blue eyes and blond hair, the odds of you also having blue
eyes and blond hair are very high.

In this exercise, you will learn how inheritance theory functions firsthand.

1	 If necessary, open mycss-basics.html in Split view.

2	 Insert the cursor after the rule h1 { color: gray; } in the embedded style
sheet. Press Enter/Return to insert a new line.

3	 Type h1 { font-family:Arial; } and click in the Live view window to refresh
the display.

The h1 elements appear in Arial and gray. The other content remains formatted
by default styling.

Now there are four CSS rules that format <h1> elements. Can you tell, by look-
ing at the Live view window, which rule, if any, are formatting the <h1> text
now? If you said two of them, you’re the winner.

At first glance, you may think that the rules formatting <h1> elements are sepa-
rate from each other. And technically, that’s true. But if you look closer, you’ll
see that the new rule doesn’t contradict the others. It’s not resetting the color
attribute, as you did in the previous exercises; it’s declaring a new, additional
attribute. In other words, since both rules do something different, both will be
honored, or inherited, by the h1 element. All <h1> elements will be formatted

B3-12  LESSON 3  CSS Basics Bonus

as gray and Arial. Even if the font specification was added to a competing rule,
it would still be inherited whether or not the other settings were applied.

Far from being a mistake or an unintended consequence, the ability to build rich
and elaborate formatting using multiple rules is one of the most powerful and
complex aspects of cascading style sheets.

4	 Insert the cursor after the last h1 rule.
Insert a new line in the code.

5	 Type h2 { font-family:Arial; color:gray; } and click in the Live view
window to refresh the display.

The h2 elements originally displayed in a serif font in black; now they appear in
Arial and gray.

6	 After the h2 rule, type the following code:
h3 { font-family:Arial; color:gray; }
p { font-family:Arial; color:gray; }
li { font-family:Arial; color:gray; }

7	 If necessary, refresh the Live view window display by clicking in it or by clicking
the Refresh button in the Properties panel.

All the elements now display the same styling, but you used six rules to format
the entire page.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-13

Although CSS styling is far more efficient than the obsolete HTML-based
method, inheritance can help you optimize your styling chores even more.
For example, all the rules include the statement { font-family:Arial;
color:gray; }. Redundant code like this should be avoided whenever possible.
It adds to the amount of code in each webpage and adds to the time it takes to
download and process it. By using inheritance, sometimes you can create the
same effect with a single rule. One way to make your styling more efficient is
to apply formatting to a parent element instead of to the individual elements
themselves.

8	 Create a new line in the <style> section.
Type the following code:
article { font-family: Arial; color: gray; }

If you look through the code, you will see that the <article> tag contains
much but not all of the webpage content. Let’s see what happens if you delete
some of your CSS rules.

9	 Select and delete the following rule:
h2 { font-family: Arial; color: gray; }

10	Refresh the Live view window display.

The h2 elements appearing within the <article> element remain formatted
as gray Arial. The other h2 element down the page and outside the <article>
now appears in HTML default styling.

P	Note:  There is no
requirement to create
rules in any specific
order or hierarchy. You
may order them any
way you please, as long
as you keep in mind
how the application
of styling is governed
by cascade and
inheritance.

E	Tip:  Rules typically
contain multiple prop-
erty declarations.

B3-14  LESSON 3  CSS Basics Bonus

11	Select and delete all h1 rules.
Don’t forget the one in the linked.css file.
Refresh the Live view display.

The h1 elements contained within the <article> element continue to be styled.
Those outside the <article> element have reverted to the HTML defaults.
Since the new rule targets only the <article> element, only the elements
contained within it are styled.

12	Select and delete the rules formatting h3, p, and li.
Refresh the Live view display.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-15

As in step 11, any content contained in the <article> tag remains formatted,
while content elsewhere has reverted.

This is the way inheritance works. You could simply re-create the rules to for-
mat the other content, but there’s a simpler alternative. Instead of adding addi-
tional CSS rules, can you figure out a way to use inheritance to format all the
content on the page the same way? Hint: Look carefully at the entire structure
of the webpage.

Did you choose the <body> element? If so, you win again. The <body> element
contains all the visible content on the webpage and therefore is the parent of all
of it.

13	Change the rule selector from article to body and delete any blank lines.

14	Choose File > Save All.
Refresh the Live view display, if necessary.

Once again, all the text displays in gray Arial. By using inheritance, all the content
is formatted using one rule instead of six. You’ll find that the <body> element is a
popular target for setting various default styles.

Descendant theory in action
Although inheritance affects elements automatically, the randomness with which it
functions is often frustrating. Styling elements when their parent is formatted is not
always predictable or reliable. Descendant theory allows you to target the child ele-
ment directly and specifically. Although inheritance can affect any child element—
headings, paragraphs, and list items—descendant theory can limit the styling to a
specific child element, if desired.

In this exercise, you will learn how descendant theory functions firsthand.

1	 If necessary, open mycss-basics.html in Split view and observe the structure of
the HTML content.

The page contains headings and paragraphs in various HTML5 struc-
tural elements, such as article, section, and aside. The rule body
{font‑family:Arial; color: gray; } applies a default font and color to
the entire page. In this exercise, you will learn how to create descendant CSS
rules to target styling to specific elements in context.

2	 In Code view, insert the cursor at the end of the body rule.
Press Enter/Return to insert a new line.

E	Tip:  In this particular
page, you could also
use the <div> element
to achieve the same
result. But since <div>
is a frequently used
element, it might pose
unpredictable conflicts
in the future. Since web-
pages have only one
<body> element, it is
definitely the preferred
target.

P	Note:  Dream-
weaver frequently edits
externally linked files.
You will see asterisks by
the affected filenames
in the Related Files
interface. Use Save All
whenever changes on
your page may affect
multiple files in your
site.

P	Note:  You will exam-
ine the role of specificity
later in this lesson.

B3-16  LESSON 3  CSS Basics Bonus

3	 Type p { font-family:Garamond; } and refresh the Live view display.

P	 Note:  Step 3 assumes you have Garamond installed on your computer. If you do not, select
another serif font, such as Times.

All p elements on the page now display in Garamond. The rest of the page con-
tinues to be formatted in Arial.

Because you created a selector using the p tag, the font formatting applied by
the body rule has been overridden for all p elements no matter where they
appear. You may be thinking that since the p rule appears after the body rule,
this type of styling simply relates to the cascade order. Let’s try an experiment to
see whether that’s true.

P	 Note:  Dragging code can be a difficult skill to master. Feel free to simply cut and paste
the code.

4	 Click the line number for the p rule.
Drag the p rule above the body rule.
Refresh the Live view display.

The p rule now appears above the body rule, but the styling of the paragraphs
did not change.

If the styling of p elements were determined simply by cascade, you would
expect the headings to revert to gray Arial. Yet here, the styling is unaffected by
changing the order of the rules. Instead, because you used a more specific tag
name in the selector, the new p rule becomes more powerful than the generic
body rule. By properly combining two or more tags in the selector, you can craft
the CSS styling on the page in even more sophisticated ways.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-17

5	 Create a new line after the body rule.
On the new line, type the following:
article p { font-size:120%; color:darkblue; }

By adding a p tag immediately after article in the selector, you are telling the
browser to format only p elements that are children, or descendants, of article
elements. Remember that a child element is one that is contained or nested
within another element.

6	 If necessary, refresh the Live view display.

All paragraphs appearing within the <article> element now display in dark
blue and 120 percent larger than the other paragraph text on the page.

7	 Choose File > Save All.

Although it may be hard to understand at this moment, the styling in other rules—
both body and p—is still being inherited by the newly formatted paragraphs. But
wherever two or more rules, or portions of a rule, conflict, a descendant selector
will win over any less specific styling.

Styling using class and id selectors

In mycss-basics.html, all h1 elements are formatted identically regardless of where
they appear in the layout. In the following exercise, you’ll use classes and ids to dif-
ferentiate the styling among the headings.

B3-18  LESSON 3  CSS Basics Bonus

1	 Insert a new line after the rule article p.
Type h1 { font-family:Tahoma; color:teal; } and refresh the display.

All h1 headings now display in the color teal and the font Tahoma.

Although it’s tagged identically to the other h1 headings, “A CSS Primer” is the
main heading in the <article> element. To make it stand out from the other
headings, you can use the class attribute assigned to its parent to target it for
special formatting.

2	 Create the following new rule:
.content h1 { color:red; font-size:300%; }

P	Note:  Unless other-
wise specified, you can
add rules anywhere in
the style sheet.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-19

The heading “A CSS Primer” displays in red and 300 percent larger than the
body text.

In CSS syntax, the period (.) refers to a class attribute, and the hash (#) means
id. By adding .content to the selector, you have targeted the styling only to h1
elements in <article class="content">.

In the same way, you can assign custom styling to each of the subheadings (h2)
by using the id attributes assigned to each of <section> elements in the code.

3	 Create the following rules:
#box_model h2 { color:orange; }
#cascade h2 { color:purple; }
#inheritance h2 { color:darkred; }
#descendant h2 { color:navy; }
#specificity h2 { color:olive; }

4	 Choose File > Save All.
If necessary, refresh the display.

The h2 headings targeted by the new rules now display unique colors. What’s
important to understand here is that all the formatting you see has been applied
without adding a single attribute to any of the headings. They are being formatted
based solely on their position within the structure of the code.

B3-20  LESSON 3  CSS Basics Bonus

Understanding descendant styling

CSS formatting can be confusing for designers coming from the print world. Print
designers are accustomed to applying styles directly to text and objects, one at a
time. In some cases, styles can be based on one another, but this relationship is
intentional. In print-based styling, it’s impossible for one paragraph or character
style to affect another unintentionally. On the other hand, in CSS, the chance of one
element’s formatting overlapping or influencing another’s happens all the time.

It may be helpful to think of it as if the elements were formatting themselves. When
you use CSS properly, the formatting is intrinsic not to the element but to the entire
page and to the way the code is structured.

The ability to separate the content from its presentation is an important concept in
modern web design. It allows you great freedom in moving content from page to
page and structure to structure without worrying about the effects of residual or
latent formatting. Since the formatting doesn’t reside with the element itself, the
content is free to adapt instantly to its new surroundings.

In this exercise, you’ll move one of the uniquely styled elements to a different loca-
tion in the page to see how its position dictates how it is styled.

1	 In Code view, click the line number for the heading “The Box Model” (around
line 50).

This should highlight the entire element. Note that the heading is orange.

2	 Choose Edit > Copy or press Ctrl+C/Cmd+C.

3	 Insert the cursor at the end of the h2 element “Cascade Theory” (around line 81)
and press Enter/Return to create a new line.

4	 Click to select the line number for the new blank line.
Choose Edit > Paste or press Ctrl+V/Cmd+V to replace the blank line.

5	 Refresh the display, if necessary.

The heading “The Box Model” follows and is formatted identically to the head-
ing “Cascade Theory.”

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-21

6	 Insert the cursor at the end of the “Inheritance Theory” heading and create a
new line.

7	 Press Ctrl+V/Cmd+V to paste the heading again.

The pasted heading is dark red and styled identically to the heading
“Inheritance Theory.”

As you can see, the formatting of the heading in the original instance does not
travel with the text pasted in a new location. That’s the point of separating con-
tent from presentation—you can insert the content anywhere and it will adopt
the formatting native to that position. It even works in reverse.

8	 In Code view, select and copy the “Inheritance Theory” heading.

9	 Insert the cursor after the original “The Box Model” heading and paste the text
on a new line.

The heading appears and adopts the same styling as “The Box Model.”

Once again, the pasted text matches the formatting applied to the other h2
element within the <article>, ignoring its original styling altogether. Now
that you’ve seen how descendant theory works, there’s no need for the extra
headings.

B3-22  LESSON 3  CSS Basics Bonus

10	Choose File > Revert. Click Yes to revert the file to the previously saved version.

The file reverts to the last saved version. All of the duplicate headings are gone.

Specificity theory in action
As explained in Lesson 3, “CSS Basics,” specificity is the means by which brows-
ers and other web-compatible applications determine how CSS styling is applied,
especially when two or more rules conflict. You could compare rules manually and
calculate which rule or rules should win, but Dreamweaver provides a couple of
built-in tools that can do that work for you: Code Navigator and CSS Designer.

Using Code Navigator to identify specificity

Code Navigator puts a CSS specificity checker a mouse-click away.

1	 In Live view, insert the cursor in the heading “A CSS Primer.”

2	 Right-click the heading and select Code Navigator from the context menu.

A pop-up window appears listing all the rules formatting the heading. Notice
that the display shows three rules (body, h1, and .content h1) in descending
order. The order is important because Code Navigator puts the most specific
rule at the bottom. In this case, that’s .content h1. But that’s not all it does; it
can also show you what styling is being applied by each rule.

3	 Position the cursor over each rule in the pop-up window, but do not click them.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-23

When the cursor hovers over the rule, another window opens showing the
properties and values assigned to that rule. Note that all three rules apply a
color specification, but .content h1 wins. Code Navigator also enables you to
edit the CSS rules.

4	 Click the rule .content h1.

The Code view window focuses on the CSS rule .content h1, enabling you to edit
the CSS if so desired. If the rule were in an external CSS file, the Code view window
would load the contents of that file.

Another tool that provides similar features gives you even more power to trouble-
shoot and edit CSS styling.

Using CSS Designer to identify specificity

The CSS Designer is the main tool in Dreamweaver for creating, editing, and
troubleshooting CSS styling. You will use it extensively throughout this lesson and
the rest of the book to write CSS rules and format content.

1	 If necessary, choose Window > CSS Designer to display the panel.

The CSS Designer should be a permanent fixture of the Standard workspace,
but if you see it appear as a floating panel, feel free to dock it to the right side of
the interface.

2	 Click the Sources tab to view the style sheets defined in the page.

When the All button is selected, the Source pane shows two style sheets defined
in the page: linked.css and <style>. The first is obviously an external CSS
file, while the notation <style> indicates that the second style sheet is embed-
ded within the webpage. CSS Designer can work with both types, as well as with
inline CSS styles.

E	Tip:  To obtain the
two-column display,
drag the left edge of
the CSS Designer to
increase its width.

B3-24  LESSON 3  CSS Basics Bonus

3	 Click All Sources.

This option shows all rules in all style sheets.

4	 Click the All button at the top of the CSS Designer.

CSS Designer displays all CSS rules defined in the webpage and its associated
style sheets. The Selectors pane lists the names of the rules. In All mode, rules
are listed in the order they are defined in the style sheets. The first in the pane
should be the p rule.

5	 Click the p rule. If necessary, select the option Show Set.

The Properties pane displays the settings assigned to the rule, in this case
font-family: Garamond. Note that all the <p> elements in the Live view doc-
ument window are highlighted in blue. This is one of the best features of CSS
Designer, which allows you to see graphically what elements are being styled by
a selected rule. The CSS Designer also works the other way.

6	 Click the heading “A CSS Primer” in the Live view window.

The Element Display appears around the heading.

7	 Click the Current button in the CSS Designer.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-25

The CSS Designer now displays the list of three rules that supply styling to the
selected element. The most specific rule appears at the top. Although .content
h1 is the most specific, this does not mean the other rules are not contributing
to the current styling in some fashion.

8	 Click each rule listed in the Selectors pane, and observe the properties defined
in it.

All three apply a font color, two apply a font family, and one sets the font size.
In the past, manually checking the specifications was the only way to find out
whether more than one rule was styling an element. Today, CSS Designer can
do that tedious work with a single click of the mouse.

9	 Click COMPUTED in the Selectors pane.

The CSS Designer compares all the competing rules and specifications and cal-
culates their specificity. It then displays the properties actually applied. You can
even use the display to identify the source of the styling.

10	Click the color: Red property.

B3-26  LESSON 3  CSS Basics Bonus

Note that the <style> notation in Sources and the .content h1 selector in Selec-
tors are highlighted in bold. The bold tells you that the property is contained in the
.content h1 rule in the embedded style sheet. Keep an eye on the bold notations
to identify the source of formatting as you work through the other exercises.

Formatting objects
After the last few exercises, you may be thinking that styling text with CSS is per-
plexing and difficult to understand. But hold onto your hat. The next concept you’ll
explore is even more complex and sometimes even controversial: object formatting.
Consider object formatting as specifications directed at modifying an element’s
size, background, borders, margins, padding, and positioning. Since CSS can
redefine any HTML element, object formatting can basically be applied to any tag,
although it’s most commonly directed at HTML container elements, such as <div>,
<header>, <article>, and <section>, among others.

By default, all elements start at the top of the browser window and appear con-
secutively, one after the other, from left to right and top to bottom. Block elements
generate their own line or paragraph breaks, inline elements appear at the point of
insertion, and hidden elements take up no space on the screen at all. CSS can con-
trol all these default constraints and enables you to size, style, and position elements
almost any way you want them.

Size is the most basic specification and is the least problematic for an HTML
element. CSS can control both the width and the height of an element, with varying
degrees of success. All specifications can be expressed in absolute terms (pixels,
inches, points, centimeters, and so on) or in relative terms (percentages, ems,
or exes).

Width
As you should already be aware, all HTML block elements take up the entire width
of the screen by default, but there are a variety of reasons why you’d want to set the
width of an element to something less than that. For example, studies have shown
that text is easier to read, and more understandable, if the length of a line of type is
between 35 and 50 characters. On a normal computer screen, a line of type stretch-
ing across 1000 or more pixels could easily include 120 characters or more. That’s
why most websites today break up their layouts and display text into two or more
columns.

CSS makes it simple to set the width of an element. In this exercise, we’ll experi-
ment by applying different types of measurements to the various content elements
on the page.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-27

1	 If necessary, open mycss-basics.html from the lesson03bonus folder.

2	 View the page in Split view, and observe the CSS code and HTML structure.

The file contains headings, paragraphs, and lists in several HTML5 semantic
elements. The text is partially formatted by several CSS rules, but the structural
elements display only default styling.

Fixed widths

The container elements, such as <div>, <header>, <article>, <section>, and
<aside>, each currently occupy 100 percent of the width of the browser window
or their parent element by default. CSS allows you to control the width by applying
absolute (fixed) or relative (flexible) measurements.

1	 If necessary, open mycss-basics.html in Split view.
In Code view, insert a new line after the last rule in the <style> section.

2	 Type .sidebar1 { width:200px; } to create a new rule to style sidebar1.

3	 Save the file and refresh the Live view display, if necessary.

The sidebar1 element now occupies only 200 pixels in width; the other
elements in the layout are unchanged.

B3-28  LESSON 3  CSS Basics Bonus

By using pixels, you have set the width of this element, and its children, by an
absolute, or fixed, measurement. This means sidebar1 will maintain its width
regardless of changes to the browser window or screen orientation.

4	 Select the Scrubber, drag it to the left and right, and observe how the different
elements react.

As expected, the element sidebar1 displays at 200 pixels in width no matter
what size the screen assumes. The other containers remain at full screen width.

5	 Drag the Scrubber fully to the right side of the document window.

Fixed widths are still popular all over the Internet, but in some cases, such as when
designing for mobile devices, you’ll want elements to change or adapt to the screen
size or user interaction. CSS provides three methods for setting widths using rela-
tive, or flexible, measurements such as em, ex, and percentage (%).

Relative widths

Relative measurements set by percentage (%) are the easiest to define and under-
stand. The width is set in relation to the size of the screen: 100% is the entire width
of the screen, 50% is half, and so on. If the screen or browser window changes, so
does the width of the element. Percentage-based designs are popular because they
can adapt instantly to different displays and devices. But they are also problematic
because changing the width of a page layout dramatically can also play havoc with
your content and its layout.

1	 If necessary, open mycss-basics.html in Split view.
Add a new rule: article { width:50%; }

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-29

2	 Save the file and refresh the Live view display.

E	 Tip:  To test element widths, it may be easier to display Split view windows vertically. You can
access this preference in the View menu.

The <article> element displays at 50 percent of the screen width. Widths set
in percentage adapt automatically to any changes to the screen size.

3	 Drag the Scrubber to the left and right, and observe how the <article>
element reacts.

While sidebar1 remains at a fixed width, the article element scales larger
and smaller, continuing to occupy 50 percent of the width no matter what size
the screen becomes.

Observe how the text wraps within the element as it changes in size. Note that it
stops scaling when the frame shrinks to the size of the largest word and that the
box model diagram juts out of the element below certain widths. Do you think
these issues would affect the page’s readability or usability?

Many designers forgo the use of percentage-based settings for these reasons.
Although they like that the containers scale to fit the browser window, they’d

B3-30  LESSON 3  CSS Basics Bonus

prefer that it would stop scaling before it affects the content detrimentally. This
is one of the reasons the properties min-width and max-width were created.

4	 Add the highlighted notation in the rule
article { width:50%; min-width:400px; } and save the file.

The min-width property prevents the element from scaling smaller than
400 pixels. Note that the min-width specification unit is defined in pixels. This
is important, because when combining the width setting with min-width or
max-width, you must use differing measurement units or only one of the speci-
fications will be applied. To see the effect of the min-width specification, you
need to use the entire screen.

5	 Switch to Live view and refresh the display, if necessary.
Drag the Scrubber left and right.
Observe how the <article> element reacts.

The <article> displays at 50 percent of the screen width as you scale it
smaller. When the screen becomes narrower than 800 pixels, the <article>
stops scaling and remains at a fixed width of 400 pixels. To limit scaling at the
upper end, you can also add the max-width property.

6	 Switch to Split view.
Insert the highlighted notation as shown here:
article { width:50%; min-width:400px; max-width:700px; }
and save the file.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-31

7	 Refresh the Live view display and drag the Scrubber left and right.

The <article> displays at 50 percent of the screen only between the widths of
800 pixels to 1400 pixels, where it stops scaling at the dimensions specified.

It’s all relative, or not

Ems and exes are kind of a hybrid cross between fixed and relative systems. The em
is a measurement that is more familiar to print designers. It’s based on the size of
the typeface and font being used. In other words, use a large font and the em gets
bigger; use a small font and the em gets smaller. It even changes based on whether
the font is a regular, condensed, or expanded face.

This type of measurement is typically used to build text-based components, such
as navigation menus where you want the structure to adapt to user actions that
may increase or decrease the font size on a site but where you don’t want the text
to reflow.

1	 If necessary, open mycss-basics.html in Split view.
Add the rule .sidebar2 { width:16em; } and save the page.
Refresh the Live view display, if necessary.

Although ems are considered a relative measure, they behave differently than
widths set in percentages. Unfortunately, em measurements don’t display prop-
erly in Design view; to see the exact relationship, you need to use Live view.

2	 Switch to Live view, if necessary.
Scroll down to view sidebar2.

The “Browser Specific Prefixes” heading should exactly fit the width of the
element without breaking to two lines or leaving any extra space.

B3-32  LESSON 3  CSS Basics Bonus

3	 Refresh the display if necessary and drag the Scrubber left and right.

The element seems to react like an element with a fixed measurement; it doesn’t
change size as you make the screen bigger and smaller. That’s because the
“relative” nature of ems is based not on screen size but on the font size.

4	 Switch to Split view.
Add the highlighted code as shown here:
body { font-family:Arial; color:gray;
font-size:200%; }

5	 Refresh the display.

All the text on the page scales 200 percent. The text in sidebar1 and the
<article> element have to wrap to fit within the container. On the other hand,
sidebar2 actually scales larger to accommodate the bigger text. Note how
using ems also preserves the line endings in that element.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-33

There’s one small caveat when you use ems: The measurement is based on the
base font size of the nearest parent element, which means it can change anytime
the font size changes within the element’s HTML structure. And you always
need to remember that the relative size of the em is influenced by inheritance.

6	 Change the font-size property for body to 100% and save the file.

The text in the page returns to its previous size.

By assigning various widths to the containers, you’re setting up the basic structure
for creating a multicolumn layout. The next step would be to start repositioning
these containers on the page. But CSS positioning can be tricky; lots of factors can
affect the display and interaction of these elements. Before you move the containers
to their final positions, it may help you to understand these techniques better if you
first apply some borders and background effects to make them easier to see.

Borders and backgrounds
Since every HTML element is a box, they can feature four individually formatted
borders (top, bottom, left, and right). These are handy for creating boxes around
paragraphs, headings, or containers, but there’s no requirement to use all four
borders on every element. For example, you can place them at the top or bottom
(or both) of paragraphs in place of <hr /> (horizontal rule) elements or to create
custom bullet effects.

Borders

It’s easy to create different border effects using CSS.

1	 If necessary, open mycss-basics.html in Split view and observe the CSS and
HTML code.

You can assign borders to text or containers.

B3-34  LESSON 3  CSS Basics Bonus

2	 Add the following rule and properties to the <style> section:
article section {
border-top:solid 10px #000;
border-left:solid 2px #ccc; }

3	 Refresh the display, if necessary.

A custom border appears at the top and left sides of each section in the
<article> element. The border gives a visible indication of the width and
height of the HTML section. At the moment, the borders sit uncomfortably
close to the text, but don’t worry—we’ll address this issue later. Let’s apply
borders to the other main containers now.

4	 Add the following rule and properties:
article, footer, header, section
{ border:solid 1px #999; }

5	 Refresh the display, if necessary.

P	Note:  Remember
that you can add the
CSS rules with or with-
out the line breaks and
indents.

P	Note:  Don’t forget
the commas between
the elements.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-35

Although it may be hard to see in the Live view display, a 1-pixel gray border
appears on the article, footer, and header and on every section element
on the page, including the ones already formatted in step 2.

6	 Save the file.

As described earlier, it’s not unusual for an element to be formatted by two or
more rules. Even though the <section> elements nested in the <article>
were styled with borders on the top and left by the first rule, they are now inher-
iting the 1-pixel border from the second rule, for the right and bottom sides.

It’s also important to emphasize that there is no extraneous markup within the
actual content; all the effects are generated by CSS code alone. That means you
can quickly adjust content, turn on and off effects, and move the content easily
without having to worry about graphical elements or extra code cluttering it up.
You keep your code sleek and efficient.

Now that you can see the outer boundaries of each container, keep a wary
eye on each to see how they react to the CSS styling created in the upcoming
exercises.

Backgrounds

By default, all element backgrounds are transparent, but CSS lets you format them
with colors, images, or both. If you use both, the image will appear above, or in
front of, the color. This behavior allows you to use an image with a transparent or
translucent background to create layered graphical effects. If you use an opaque
image and it fills the visible space or is set to repeat like wallpaper, it may obscure
the color entirely.

1	 Open mycss-basics.html from the lesson03bonus folder in Split view.
Observe the CSS and HTML code.

Backgrounds can be assigned to any visible block or inline element. If you want
the background to appear behind the entire webpage, assign it to the body
element.

E	Tip:  When an ele-
ment inherits properties
from another rule that
are undesirable, you
may need to add a new
rule (or new property
in an existing rule)
specifically to turn off
that styling.

B3-36  LESSON 3  CSS Basics Bonus

2	 In the body rule, add background-color:#ccc; and refresh the display.

The background of the document window is now filled with light gray.

Some background colors may make content hard to read. Studies show that
white is still the best color on which to read text. Let’s fill the main text contain-
ers with a white background.

3	 In the article, footer, header, section rule, add the property
background-color:#fff; and refresh the display.

Each of the targeted containers now displays a white background.

Websites have been using graphical backgrounds for many years. In the begin-
ning, images or icons were used to create wallpaper effects. Since the connec-
tion speeds of the Internet were much slower in those days, those images were
typically very small. Today, large images are becoming a popular way to apply a
custom look to websites everywhere. Let’s experiment with both types.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-37

4	 In the body rule, add the property
background-image:url(images/street.jpg); and refresh the display.

A photograph of a street scene appears in the background of the page, the exact
composition of which is determined by the width and height of your document
window.

By default, background images display at 100 percent of their original size and
attach at the upper-left corner of the screen. If you check the dimensions of
the image, you’ll see that it’s 1900 pixels by 2500 pixels and nearly 4 MB in size.
That’s big enough to fit almost any type of screen, but some aspects of a back-
ground image can’t be seen properly in Design view.

5	 Switch to Live view to fill the entire document window with the webpage
display.

P	Note:  Back-
ground and back-
ground-image can
both be declared at
the same time. The
background-image
settings will appear
above or in front of the
background settings,
but depending on the
image, both settings
may be visible at the
same time.

B3-38  LESSON 3  CSS Basics Bonus

Live view renders web content for a browser-like environment.

6	 Drag the Scrubber left and right and observe how the background image reacts
to the changing window size.

The background image does not respond to the changing window. As the win-
dow narrows, the right side of the image is hidden and off-center. It would look
better if the image scaled along with the window.

7	 Switch to Split view.
Add the property background-size:100% auto; to the body rule.

8	 Refresh the display.

P	 Note:  Background-size, like many CSS properties, can be specified in fixed or relative
measurements. The specification can be expressed in one or two values. When you use two
values, the first applies the width, the second the height.

The background image scales automatically to fit the width of the browser
screen. But if you scroll down the page, you will notice that the image repeats
vertically once you get to the bottom of the image. CSS allows you to control
many aspects of the background image to make it look and respond better on a
variety of devices. By adding other properties you can make the image stay fixed
in one location.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-39

9	 Add the following properties to the body rule and switch to Live view:
background-position: center center;
background-attachment:fixed;

10	Drag the Scrubber left and right and scroll the screen down to view the page
content.

The background image no longer scrolls along with the content, and it remains
centered regardless of how the window changes.

In the past, using such a large image on a webpage would have been avoided.
But as more people access the Internet with high-speed connections, this type
of large background image is becoming more popular. Although the user has to
download an image that may be several megabytes, they have to do it only once,
and for those who regularly visit the site or visit multiple pages, the image will
be cached on the visitor’s hard drive.

Yet for many designers an image of this size will never be acceptable. They
know that large images can cause undesirable delays as webpages and resources
download. Instead, these designers resort to a method that is still very popular:
creating a background pattern or wallpaper using a simple, smaller graphic.
Such graphics can be only a few kilobytes yet can produce beautiful, sophisti-
cated effects.

11	Switch to Code view.
Change the body rule as highlighted:
background-color:#acd8b6;
background-image:url(images/stripes.png);

This new graphic is 15 pixels by 100 pixels and only 2 KB. Even on a slow con-
nection, this graphic will download almost instantly. However, its small size
requires a few changes to the styling.

B3-40  LESSON 3  CSS Basics Bonus

12	Delete the following properties from the body rule:
background-size:100% auto; background-position:center center;
background-attachment:fixed;

By default, background images are intended to repeat vertically and horizon-
tally. But before you allow this to happen, make the following changes to get a
better idea of what’s going to happen.

13	Add the following property to the body rule:
background-repeat:repeat-x;

14	Switch to Split view.

You can see the graphic repeating horizontally along the x-axis at the top of the
page. To make the graphic repeat vertically, you can make a simple change.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-41

15	Edit the highlighted property in the body rule:
background-repeat:repeat-y;

Although it’s hard to see with the white background color, the graphic now
repeats vertically along the left edge of the screen. Background graphics
repeat horizontally and vertically by default. If you delete the repeat property
altogether, the wallpaper effect would be seamless.

16	Delete the background-repeat:repeat-y; property from the body rule and
refresh the display.

Without the repeat-y property, the background repeats vertically and
horizontally by default; the graphic is now repeating across the entire page.

17	Save the file.

Combined with the right color or gradient, these types of backgrounds are both
attractive and efficient in the use of resources. The choice is yours. No matter what
type you choose, be sure to fully test any background treatments. In some appli-
cations, CSS background specifications are not fully supported or are supported
inconsistently.

Positioning
As you have already learned, block elements generate their own line or paragraph
breaks; inline elements appear at the point of insertion. CSS can break all these
default constraints and let you place elements almost anywhere you want them
to be.

B3-42  LESSON 3  CSS Basics Bonus

As with other object formatting, positioning can be specified in relative terms (such
as left, right, center, and so on) or by absolute coordinates measured in pixels,
inches, centimeters, or other standard measurement systems. Using CSS, you can
even layer one element above or below another to create amazing graphical effects.
By using positioning commands carefully, you can create a variety of page layouts,
including popular multicolumn designs.

1	 If necessary, open mycss-basics.html in Split view.
Make sure that Dreamweaver is maximized on your screen and that the
document window is at least 1024 pixels in width.

2	 Observe the CSS and HTML code.

The file contains headings, paragraph text, and various HTML5 container
elements partially formatted by CSS. The rules, created in previous exercises,
set specific sizes on the main container’s sidebar1, sidebar2, and article
elements so that they no longer take up the entire width of the screen. In
the same way—using only CSS—you can control the positioning of all these
elements on the page. There are several ways to do this, but the float method is
by far the most popular. The options for the float property are left, right,
and none and can have a dramatic effect on the positioning of the targeted
elements. If no property is actually set by CSS, the default styling is none.

3	 Create the following rule:
.sidebar1, article, .sidebar2 { float:right; }

4	 Save the file. If necessary, switch to Live view and refresh the display.
Maximize the program window to the full size of the computer display.

Depending on the width of your screen, the aside and article elements
now display horizontally, side by side, from right to left in the document
window. By using float:right, the elements display from right to left on the
screen. Notice that sidebar1 appears on the far right, followed by article

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-43

and then by sidebar2. If you change the float value, you can produce the
opposite effect.

P	 Note:  The float property can also be applied individually to the existing rules for these
elements. By combining selectors, it is easier to update the property by simply editing one value.

5	 Change the property float:right to float:left and refresh the display.

All three elements reverse direction, now starting on the left.

As you can see, the float property takes an element out of the normal HTML
flow. By setting widths smaller than the default 100 percent on the sidebars and
the article, float allows these block elements to behave in a totally different
manner and share the space with each other. And float is also a dynamic prop-
erty in that it reacts to the width of the document window.

6	 Drag the Scrubber left and right to change the width of the display.

B3-44  LESSON 3  CSS Basics Bonus

As the window narrows, there’s no longer enough space to accommodate the
widths of the individual elements. They are forced to move down into the open
space below. When the window gets wider, the elements move up to share the
space again. This type of behavior allows websites to display rows of items that
adapt automatically to any type of screen, no matter how big or small. As you
make the window larger and smaller, you may notice that the footer element
slips up into the row with the other elements if your screen is wide enough.

You may be saying, “But the footer isn’t floated!” And you’d be right. This is one
of the consequences of using float: The first subsequent nonfloated element
will share the space with any floated ones if it doesn’t have a specific width or
other property that prevents it. The first nonfloated block element will honor all
the width, margin, and padding settings of any floated element and then occupy
100 percent of the space left over. At times you may take advantage of this
behavior to create some multicolumn layouts. However, for this layout, you want
the footer to stay at the bottom.

You can force an element to move, or position, itself differently by simply setting
a specific width to the parent container, or to the children themselves, that will
preclude them from sharing the available space. At the moment, the combined
width of the three floated elements is less than the width of the whole screen,
which allows the footer to sneak in if the screen is wide enough. To prevent this
from happening, you need to limit the amount of space the floated elements
can use.

7	 Add a new rule .container { width:1050px; } and refresh the display.
If necessary, switch to Live view.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-45

The div element displays at a width of 1050 pixels.

Now there’s not enough room for the elements to float all the way across the
screen, but the footer is still trying to sneak into the layout at the bottom of
sidebar2. There is a CSS property specifically designed to keep this from
happening.

8	 Create a new rule footer { clear:both; } and refresh the display.

P	 Note:  For this current layout, the footer could suffice with clear:left. But the footer is an
element that should clear all potential content elements on the page; therefore, I chose to use
clear:both.

The footer moves down to the bottom of the page again. The clear property
controls the behavior of elements when they are floated or interacting with ones
that are.

Although you fixed this situation with a single CSS property, it’s not always that
easy. Unfortunately, as powerful as CSS positioning seems to be, it is the one aspect
of CSS that is most prone to misinterpretation by the browsers in use today. Com-
mands and formatting that work fine in one browser can be translated differently
or totally ignored—with tragic results—in another. In fact, specifications that work
fine on one page of your website can even fail on another page containing a differ-
ent mix of code elements.

Height
The sidebar1, sidebar2, and article elements contain different amounts of
content and display at different heights. You could set a fixed height for all three
that would work on this page, but what dimension would work on the other pages
of the site?

Height is not specified as frequently on the web as width is. That’s mainly because
the height of an element or component is usually determined by the content con-
tained within it, combined with any assigned margins and padding. Setting a fixed
height can often result in undesirable effects, such as truncating, or clipping, text or
pictures. If you must set a height, the safest way is to use the min-height property.

B3-46  LESSON 3  CSS Basics Bonus

1	 In the .sidebar1, article, .sidebar2 rule, add the min-height:1000px;
property and refresh the display.

Sidebars 1 and 2 now display at a minimum height of 1000 pixels but will grow
as needed to match the length of their content.

On a different page, setting a common element height might work, but with
the amount of content in this article, a common element height isn’t really a
solution to the problem at hand. The main issue is the graphical background on
the page. It makes it pretty obvious that sidebars 1 and 2 are shorter than the
article element.

One answer would be to ditch the page background graphic altogether and
apply a background color that matches the one used in the elements. Or you
could simply apply a matching background color to the <div> containing the
layout itself.

2	 In the rule .container add the following property:
background-color:#fff;

The background color for all the elements is now identical.

3	 Save the file.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-47

For all intents and purposes, the heights of sidebar1, sidebar2, and the article
element are irrelevant. If not for the gray borders applied to each, you’d have no
idea how tall the elements are at all. Problem solved.

Margins and padding
Margins control the space outside the boundaries, or borders, of an element;
padding controls the space inside an element, between its content and its border.
It doesn’t matter whether the borders are visible; the effective use of such spacing is
vital in the overall design of your webpage.

Margins

Margins are used to separate one block element from another.

1	 If necessary, open mycss-basics.html.

Margins and padding don’t always render properly in Design view.

2	 If necessary, switch to the full Live view display.
Observe the page layout and styling.

The page displays a header, three columns, and a footer. The column elements
are touching each other, and the text within each column is touching the edges
of each container.

3	 In the rule.sidebar1, article, .sidebar2 add the property margin:5px;
and refresh the display.

P	 Note:  In most cases, horizontal margins between two adjacent objects combine to increase
the total spacing. On the other hand, only the larger of the two settings is honored for vertical
margins between two adjacent elements.

The new property adds 5 pixels of spacing outside the borders of each targeted
element. Although Live view gives you a more accurate browser-like display,
Design view still has a few tricks up its sleeve.

B3-48  LESSON 3  CSS Basics Bonus

4	 Switch to Design view.
Click the heading “A CSS Primer.”
Select the <article.content> tag selector.

Design view highlights the element and displays a hashed pattern to provide a
visual representation of the margin specifications. An equal amount of spacing has
been added around the two sidebars and the center section. Although margins are
used to apply space outside an element, they can also be used to center an element.

Centering elements
HTML block elements normally fill the screen edge to edge. In this page, you have
set the various containers to a fixed size less than the width of the screen. When
elements don’t stretch across the screen, they will align to the left by default. In the
finished layout, the content was centered. HTML 4 provided an element attribute
(align) to allow you to position elements to the left, right, or center. This attribute
was deprecated in HTML5, and CSS has no specific feature for centering block
elements. Until a better method is developed, you can use margins.

1	 In the .container rule add the following property:
margin: 20px auto;

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-49

2	 Refresh the display.

The element centers in the window. In this CSS shorthand notation, the auto
value applies equal amounts of spacing to the left and right sides of the article.

3	 Save the file.

You’ve added spacing between the elements. Now, let’s add some spacing inside the
elements too.

Padding

The text inside the layout is touching the borders within the containers. Padding
puts spacing between the content and an element’s border.

1	 In the rule .sidebar1, article, .sidebar2 add the following property:
padding: 5px;

2	 In the rule footer, add the following property: padding:10px;

3	 Refresh the display, if necessary.

B3-50  LESSON 3  CSS Basics Bonus

The text inside the targeted elements is now spaced away from all four element
borders.

Did you notice that the subsections in the article element didn’t inherit the pad-
ding themselves? The text is still touching the border of its element. This may be
confusing, because earlier we discussed how styling is inherited from a parent
element. Although it works for many properties, inheritance isn’t a guarantee
for several reasons.

Inheriting text formatting from a parent element makes a lot of sense if you
think about it. You would want all the text to have the same font, size, and color.
But is the same logic true for structural properties, such as width, height, pad-
ding, and margins? For example, if you set a width of 300 pixels on the con-
tainer div element, would you want all the child elements, such as sidebar1,
sidebar2, and article, to inherit the same width too? For this reason and
others, padding and margins are a few of the properties that are not inherited
via CSS.

4	 In the rule article section, add the following property: padding: 5px;

5	 Click the edge of the box model <section> to select it.

Using Design view you can see the padding represented graphically. If you posi-
tion the cursor over the element border, it even displays the amount of padding
applied. Did you notice that the element grew slightly larger when you applied
padding? Margins, padding, and even borders increase the width and height
of an element. Add too much, and you might break your carefully constructed
layout.

E	Tip:  In Design view,
you may need to click in
the document window
to force Dreamweaver
to refresh the display.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-51

6	 In the rule .sidebar1, article, .sidebar2, change the padding value to
15px; and refresh the display.

Increasing the padding has broken the layout. Sidebar 2 no longer fits beside the
article element. It will move down the page until it can find enough space.
This type of conflict happens frequently in web design. The constant interplay
between the elements and the CSS can produce undesirable results like this.
Luckily, in this case, the solution is as simple as the cause.

7	 In the rule .sidebar1, article, .sidebar2 change the padding value back
to 5px; and refresh the display.

Reducing the padding value has fixed the layout and allows sidebar2 to display
side by side with the other elements again.

Normalization
Now you know that margins and padding—among other things—affect the overall
size of an element. You have to factor these specifications into the design of your
page components. But apart from the properties applied directly by the style sheet,
don’t forget that some elements feature default margin specifications too. In fact,
you can see these very settings in the extra space appearing above and below the
headings and paragraphs on the current page.

Many designers abhor these default specifications, especially because they vary so
much among browsers. Instead, they start off most projects by purposely removing,
or resetting, these settings using a technique called normalization. In other words,
they declare a list of common elements and reset their default specifications to
more desirable, consistent settings.

1	 In the CSS section of the page code, move the body rule to the top of the
style sheet.

Since the styles in the body rule are inherited by all elements on the page, most
designers place it high in the style sheet, if not in the first position. Next should
come rules designed to normalize basic elements.

B3-52  LESSON 3  CSS Basics Bonus

2	 After the body rule add the following rule:
p, h1, h2, h3, h4, h5, h6, li { margin: 0; }

3	 Save the file.

As you learned in Lesson 3, the comma (,) means “and” in CSS syntax, indicat-
ing that you want to individually format all the tags listed. This rule resets the
default margin settings for all the listed elements. It’s important that this rule
be placed as high in the style sheet as possible, typically after the body rule, if
one exists. That way, you can still add margins to specific instances of any of the
targeted elements later in the style sheet without worrying about conflicts with
this rule.

4	 Refresh the display.

The text elements now display without the default spacing.

5	 Save the file.

Using zero margins may be a bit extreme for your tastes, but you get the picture. As
you become more comfortable with CSS and webpage design, you can develop your
own default specifications and implement them using CSS.

The page has come a long way from the beginning of this lesson. Let’s put some
final tweaks on the design to match the original finished page.

Final touches
You’re nearly finished; the page needs only a few last touches to make it match the
design you saw at the beginning of the lesson.

1	 In the rule article, footer, header, section delete the property
border:solid 1px #999;

In Design view, the elements will display a light gray-colored border, but the
black border displayed earlier is now gone.

ADOBE DREAMWEAVER CC CLASSROOM IN A BOOK (2019 RELEASE)  B3-53

2	 In the rule p, h1, h2, h3, h4, h5, h6, li add the highlighted value in the
following property: margin: 10px 0;

3	 Create the following rule:
header { padding:30px;
border-bottom:2px solid #000;
text-align:center; }

The final style you need to add is a new CSS3 feature.

4	 Add the following properties to the .container rule:
-webkit-box-shadow: 0 0 20px 5px rgba(0,0,0,0.40);
box-shadow: 0px 0px 20px 5px rgba(0,0,0,0.40);

Advanced CSS properties cannot be seen in Design view.

5	 Save the file.
Switch to Live view and refresh the display.

In Live view, a drop shadow effect appears behind the main content frame. The
sample page is complete. Congratulations! You successfully learned how to use CSS
to style nearly all aspects of an entire webpage.

	_GoBack

